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Abstract 
 
 Delaunay tessellation is applied for the first time in the analysis of protein structure.  By 
representing the location of amino acid residues in protein chains by Cα atoms, the protein 
structure is described as a set of points in three-dimensional space. Delaunay tessellation of a 
protein structure generates an aggregate of space-filling irregular tetrahedra, or Delaunay 
simplices.  The vertices of each simplex define objectively four nearest neighbor Cα atoms, i.e. 
four nearest neighbor residues.  A simplex classification scheme is introduced in which simplices 
are divided into five classes based on the relative positions of vertex residues in the protein 
primary sequence. Statistical analysis of the residue composition of Delaunay simplices reveals 
nonrandom preferences for certain quadruplets of amino acids to be clustered together.  This 
nonrandom preference may be used to develop a four-body potential that can be used in 
evaluating sequence-structure compatibility for the purpose of inverted structure prediction. 
 
Introduction 
 
  Analysis of known protein topologies is an important component in understanding protein 
folding.  Recent research indicates that all protein structures may be classified using a limited 
number of protein folds (Chothia 1992), which provides a foundation for inverted structure 
prediction methods (Bowie et al. 1991).  These methods rely on the analysis of sequence-
structure relationships in known protein folds and the problem of structure prediction for a 
protein sequence is formulated in terms of finding existing structural templates (folds) which are 
most compatible with this sequence. Sequence-structure compatibility is estimated based on 
empirical potential energy functions (Sippl 1995). An unknown structure is predicted by 
threading its primary sequence through known protein structural templates and finding a set of 
templates with the lowest potential energy (Bryant and Altschul 1995). 
 
 Potential energy functions for protein folding simulation and structure prediction are 
derived based on the statistical analysis of nearest neighbors in proteins.  The majority of these 
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functions account for pairwise interactions only; however consideration of cooperative 
interactions of higher order may improve the quality of structure prediction (see recent reviews 
by Johnson et al. 1994, Sippl 1995). 
 
 Most methods of protein structure analysis require a definition of nearest neighbor 
residues.  Existing definitions of nearest neighbors are often based on arbitrary distance criteria 
(e.g. separation of Cα atoms by no more than 5.5 Å (Yee et al. 1994), the separation between any 
pair of atoms that belong to different residues by less than 2.8 Å (Behe et al. 1991), the separation 
in the range of distance from 4.5 to 7.5 Å (Miyazawa and Jernigan 1985) or a set of separations 
between various pairs of atoms (Crippen and Maiorov 1994)).  Because the definition of a 
contact between two residues is not objective, the results of such analyses strongly depend on the 
chosen criteria of the contact. Therefore, an objective and robust definition of nearest neighbor 
residues in proteins would eliminate one of the dominant sources of ambiguity in methods for 
inverted structure prediction and protein folding simulation. 
 
 An objective definition of nearest neighbors in three-dimensional space can be obtained 
by applying the methods of statistical geometry.  The statistical geometry approach for studying 
structure of disordered systems was introduced by Bernal (Bernal 1959).  He suggested 
characterization of structural disorder using statistical analysis of irregular polyhedra obtained by 
a specific tessellation in the three-dimensional space.  The method, including the design and 
implementation of practical algorithms, was further developed by Finney for the case of Voronoi 
tessellation (Finney 1970, 1977).  Voronoi tessellation partitions the space into convex polytopes 
called Voronoi polyhedra.  For a molecular system the Voronoi polyhedron is the region of space 
around an atom, such that each point of this region is closer to the atom than to any other atom of 
the system.  A group of four atoms whose Voronoi polyhedra meet at  a common vertex forms 
another basic topological object called a Delaunay simplex.  The procedure for constructing 
Voronoi polyhedra and Delaunay simplices in two dimensions is illustrated in Figure 1.  The 
topological difference between these objects is that the Voronoi polyhedron represents the 
environment of individual atoms whereas the 
Delaunay simplex represents the ensemble of 
neighboring atoms.  Although the Voronoi 
polyhedra and the Delaunay simplices are 
completely determined by each other, there exists 
a significant difference. Whereas the Voronoi 
polyhedra may differ topologically (i.e., they may 
have different numbers of faces and edges), the 
Delaunay simplices are always topologically 
equivalent (i.e., in three-dimensional space they 
are always tetrahedra). Delaunay tessellation has 
been used for structural analysis of various 
disordered systems. In most such cases it has 
served as a valuable tool for structure description 
(Voloshin et al. 1988, Vaisman et al. 1994).  In 
this paper we report for the first time the use of 
Delaunay tessellation to define objectively the 

 
Figure 1. Voronoi/Delaunay tessellation in 2D space 

(Voronoi tessellation - dashed line,  
Delaunay tessellation - solid line). 
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nearest neighbor residues in 3D protein structures.  The most significant feature of Delaunay 
tessellation, as compared with other methods of nearest neighbor identification, is that the 
number of nearest neighbors in three dimensions is always four, which represents a fundamental 
topological property of 3D space. Statistical analysis of the amino acid composition of Delaunay 
simplices provides information about spatial propensities of all quadruplets of amino acid 
residues to be clustered together in folded protein structures.  The empirical four-body contact 
potentials derived from this analysis may significantly improve the results of protein structure 
prediction. 
 
Methods 
 
 Delaunay tessellation is a canonical tessellation of space based on nearest neighbors 
(Aurenhammer 1991, Sugihara 1995).  A Delaunay tessellation of a set of points is equivalent to 
a convex hull of the set in one higher dimension (Barber et al. 1993).  For example, to determine 
the Delaunay tessellation of a set of points in 3D, we lift the points to a paraboloid and compute 
their convex hull in 4D.  In general, a (d+1)-dimensional convex hull of a set of points is a 
simplicial complex which is represented by its vertices, d-dimensional facets (or simplices), and 
lists of adjacent facets. 
 
 Since Delaunay tessellation is performed on a set of points, we represent these points 
using only the Cα atoms for each residue (it has been shown (Rey 1992) that such reduced 
representation of proteins is adequate for accurate restoration to the full atomic backbone 
structure).  The first step in this process is extracting the set of 3D coordinates of the Cα atoms 
from the PDB entry file. Delaunay tessellation of this set of points is then performed using  the 
program qhull which implements the Quickhull algorithm developed by Barber et al. (Barber et 
al. 1993) and is distributed by the University of Minnesota Geometry Center. The Quickhull 
algorithm is a variation of the randomized, incremental algorithm of Clarkson and Shor. The 
program qhull produces the Delaunay tessellation by computing the convex-hull of this set of 
points in four dimensions and is shown to be space and time efficient.  The results of the 
tessellation are analyzed with the qstat program which computes various geometrical properties 
and compositional statistics of Delaunay simplices.  Computer software was developed using the 
C programming language. Wall clock time required for analyzing a typical protein structure using 
an HP-9000/735 workstation is on the order of 10 seconds. 
 
 Delaunay tessellation was performed on three representative sets of high-resolution 
proteins structures with low primary-sequence identity (Jones et al. 1992, Fischer 1994, and 
Hobohm and Sander 1994).  The results of our analysis were nearly identical for all three 
datasets; the results obtained using the Jones' list are presented in this paper.  The dataset 
contains 103 protein chains with high crystallographic resolution that do not have apparent 
structural similarity and share less than 30% sequence identity.  The entries for the proteins in the 
Jones’ list were extracted from Brookhaven Protein Data Bank (PDB; Bernstein et al. 1977).  
Several PDB entries form the original list, namely 1abp, 1cd4, 1cy3, 1gcr, 1lrd1, 1pcy, 1sn3, 
were updated to more recent, 5abp, 3cd4, 2cy3, 4gcr, 1lmb1, 1plc, 2sn3, respectively. 
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Results and discussion 
 
 Delaunay tessellation of folded protein structures.  The typical results of Delaunay 
tessellation of a folded protein are illustrated on Figure 2a for crambin (1crn).  The tessellation of 
this 46-residue protein generates an aggregate of 192 nonoverlapping, space-filling irregular 
tetrahedra (Delaunay simplices).  Each Delaunay simplex uniquely defines four nearest neighbor 
Cα atoms (vertices of the simplex), i.e., four nearest neighbor amino acid residues. 
 

 For the analysis of correlations between the structure and sequence of proteins, we 
introduced a classification of simplices based on the relative positions of vertex residues in the 
primary sequence. Two residues were defined as distant if they were separated by one or more 
residues in the protein primary sequence. Simplices were divided into five nonredundant classes: 
class {4}, where all four residues in the simplex are consecutive in the protein primary sequence; 
class {3,1}, where three residues are consecutive and the fourth is a distant one; class {2,2}, 
where two pairs of consecutive residues are separated in the sequence; class {2,1,1}, where two 
residues are consecutive, and the other two are distant both from the first two and from each 
other; and class {1,1,1,1} where all four residues are distant from each other (Figure 2b).  All 
five classes usually occur in any particular protein. 
 We first investigated differences between classes of simplices using geometrical 
parameters of tetrahedra such as volume and tetrahedrality.  Tetrahedrality is a quantitative 
measure of the degree of distortion of the Delaunay simplices from the ideal tetrahedron: 
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      Figure 2a: Delaunay tessellation of Crambin      Figure 2b. Five classes of Delaunay simplices 
 

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5

Tetrahedrality
   

0

0.1

0.2

0 10 20 30 40

Volume
 

Figure 3.  Distribution of tetrahedrality and volume (in Å3) of Delaunay simplices 
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where li  is the length of the i-th edge, and l  is the mean length of the edges of the given 
simplex.  Distributions of volume and tetrahedrality for all five classes of simplices is shown in 
Figure 3.  The sharpest peaks correspond to the simplices of classes {4} and {2,2}.  They tend to 
have the lowest volume and lowest distortion of tetrahedrality.  These results suggest that 
tetrahedra of these two classes may occur in regular protein conformations such as α-helices.  
 

 In order to verify this hypothesis, we analyzed 
the possible correlations between the classes of 
simplices and the conventional secondary structure 
assignment of the constituent residues.  The secondary 
structure assignments of individual residues were 
extracted from the headers of PDB files.  We have 
considered three conformational states for all residues: 
helical (H), β-strand (S), and random coil (C).  There 
are 15 possible combinations of these three 
conformational states in sets of four residues. Figure 4 
presents the frequency of occurrence of each Delaunay 
simplex class where all four residues are found in the 

same conformational state.  As can be seen from this Figure, there are certain correlations 
between secondary structure and simplex class.  For example, simplices of classes {4} and {2,2} 
are formed mainly by residues in helical conformations.  On the other hand, the residues in α-
helical conformation almost never form simplices of class {3,1}. Residues in β-sheet 
conformation almost never form classes {4} and {1,1,1,1} simplices but frequently form 
simplices of classes {2,2} and {3,1}. 
 
 The observed correlations between regular conformations of protein backbone and classes 
of tetrahedra (Figure 4) suggest that the ratio of tetrahedra of different classes in a protein may be 
characteristic of a protein fold family.  We have calculated the relative frequency of occurrence 
of tetrahedra of each class in each protein in the Jones’ dataset and plotted the results in Figure 5.  
The proteins were sorted in the ascending order of fraction of tetrahedra of class {4}.  
Interestingly, the content of simplices of class {3,1} (which are indicative of β-sheet 
conformation; cf. Figure 4) decreases with the increase of the content of class {4} simplices.  
According to common classifications of protein fold families (Richardson and Richardson 1989, 
Orengo 1995), at the top level of hierarchy most proteins can be characterized as all-alpha, all-
beta, or alpha/beta.  The fold families for the proteins in the Jones’ dataset are also shown in 
Figure 5. The results of Figure 4 suggest that proteins having a high content of tetrahedra of 
classes {4} and {2,2} (i.e., proteins in the right-most part of the plot of Figure 5) belong to the 
family of all-alpha proteins.  A comparison between conventional protein fold family assignment 
and relative frequency of tetrahedra of different classes confirms this hypothesis (cf. Figure 5).  
Similarly, proteins having a low content of tetrahedra of classes {4} and {2,2} but a high content 
of tetrahedra of classes {2,2} and {3,1} (i.e., proteins in the left-most part of the plot in Figure 5) 
belong to the all-beta protein fold family.  Finally, proteins in the middle of the plot belong to the 
alpha/beta fold family.  Thus, the results of this analysis show that the ratio of tetrahedra of 
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different classes is indicative of the protein fold family.  Further systematic analysis using 
clustering techniques may lead to more rigorous classification of the fold families based solely on 
the classes of Delaunay simplices. 
 

 
 Statistical analysis of the composition of the Delaunay simplices and implications for 
inverted structure prediction. Delaunay tessellation of 103 protein chains in the Jones’ dataset 
(Jones et al 1992) generates a total of 114,617 simplices.  The composition of these simplices 
was first analyzed in terms of unbiased preferences for four amino acid residues to be clustered 
together.  We analyzed the results of the Delaunay tessellation of these proteins in terms of 
statistical likelihood of occurrence of four nearest neighbor amino acid residues for all observed 
quadruplet combinations of 20 natural amino acids.  The log-likelihood factor, q, for each 
quadruplet was calculated from the following equation: 

    q ijkl = log
f ijkl

pijkl

       (2) 

where i,j,k,l are any of the 20 natural amino acid residues, fijkl is the observed normalized 
frequency of occurrence of a given quadruplet, and pijkl is the randomly expected frequency of 
occurrence of a given quadruplet. The qijkl shows the likelihood of finding four particular 
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Figure 5. Classes of Delaunay simplices and protein fold families. Contents of simplices of class {4} (solid line), class 
{3,1} (dash), class {2,1} (dot), class {2,1} (dash-dot), class {1,1,1,1} (dash-dot-dot).  Upper part of the figure displays 
fold family assignment: all-alpha (circles), all-beta (squares), and alpha-beta (triangles).  Proteins are ordered as the 
following: 1-1hoe, 2-1tnfa, 3-2gcr, 4-2sodo, 5-2hlab, 6-2cna, 7-8atcb, 8-2fb4h, 9-1i1b, 10-2fb4l, 11-2rhe, 12-2sga, 13-
3cd4, 14-4sgbi, 15-9wgaa, 16-2ltna, 17-2paba, 18-2pcy, 19-2stv, 20-3fxc, 21-4ptp, 22-2er7e, 23-1tgsi, 24-2ca2, 25-
2sn3, 26-4cpai, 27-1ubq, 28-2azaa, 29-1paz, 30-5pti, 31-2ssi, 32-1csee, 33-4dfra, 34-7rsa, 35-3dfr, 36-2rnt, 37-4rxn, 
38- 8adh, 39-1dhfa, 40-1gd1o, 41-2ovo, 42-9pap, 43-1csei, 44-5acn, 45-1hip, 46-2sns, 47-3grs, 48-2tmne, 49-1rhd, 
50-2cdv, 51-3pgm, 52-2lbp, 53-3cla, 54-3icd, 55-5cpa, 56-1ctf, 57-1phh, 58-5abp, 59-1crn, 60-1fx1, 61-1pfka, 62-
1wsyb, 63-4mdha, 64-1fd2, 65-3blm, 66-3gapa, 67-6ldh, 68-7cata, 69-1ccr, 70-1ypia, 71-2aat, 72-2gbp, 73-3pgk, 74-
8atca, 75-1lz1, 76-1wsya1, 77-1wsya2, 78-1wsya3, 79-4fxn, 80-1cc5, 81-2cy3, 82-4xiaa, 83-2cyp, 84-2cpp, 85-3adk, 
86-1bp2, 87-351c, 88-1lrp, 89-2cro, 90-1l01, 91-4cpv, 92-2ccya, 93-4tnc, 94-1mba, 95-1mbd, 96-1utg, 97-3hhba, 98-
3icb, 99-1lh1, 100-256ba, 101-2mhr, 102-2wrpr, 103-1eca. 
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residues in one simplex.  The fijkl is calculated by dividing the total number of occurrence of each  
quadruplet type by the total number of observed quadruplets of all types.  The pijkl was calculated 
from the following equation: 
    p ijkl = cai a ja ka l       (3) 

where ai, aj, ak,and al are the observed frequencies of occurrence of individual amino acid 
residue (i.e. total number of occurrences of each residue type divided by the total number of 
amino acid residues in the dataset), and C is the permutation factor, defined as 

    

  

C =
4!

i

n

Π(t i!)
       (4) 

where n is the number of distinct residue types in a quadruplet and ti is the number of amino 
acids of type i. The factor C accounts for the permutability of replicated residue types. 
 
 Theoretically, the maximum number of all possible quadruplets of natural amino acid 
residues is 8,855 whereas only 8,351 actually 
occur in the dataset.  The log-likelihood 
factor q is plotted in Figure 6 for all observed 
quadruplets of natural amino acids.  Each 
quadruplet is thus characterized by a certain 
value of the q factor which describes the 
nonrandom bias for the four amino acid 
residues to be found in the same Delaunay 
simplex.  This value can be interpreted as a 
four-body potential energy function.  This 
function can be applied both for inverted 
structure prediction and in simulations of 
protein folding.  This work is currently in 
progress, and the results will be described 
elsewhere. 
 
Conclusions 
 
 Existing methods of protein three-dimensional structure prediction would greatly benefit 
from a rigorous definition for the representation of nearest neighbor amino acid residues.  In this 
paper, we introduced Delaunay tessellation as such a definition, and use it in the analysis of 
protein architecture. Delaunay tessellation is an objective and robust algorithm for identifying 
sets of four nearest neighbors in 3D space.  We have identified all sets of nearest neighbor 
residues in a number of structurally diverse proteins and classified the corresponding Delaunay 
simplices on the basis of sequence proximity of the constituent residues.  We have shown that 
simplices of each class are characterized by specific distributions of their geometrical 
characteristics (volume and tetrahedrality) and that this classification correlates with the 
conventional secondary structure assignment of composing residues.  We have also shown that 
the ratio of tetrahedra of different classes in individual proteins may be used for protein 
classification. 
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 This novel approach, based on first principles, provides a unique means for protein 
structure analysis and has direct implications for protein structure prediction.  Statistical analysis 
of the amino acid composition of Delaunay simplices affords calculation of nonrandom 
preferences for all observed quadruplets of amino acids clustered together in folded proteins.  
These results provide a basis for calculation of four body potentials that can be used in 
simulations of protein folding and inverted structure prediction.  These ideas are currently being 
implemented in our laboratories. 
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