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Abstract

Three-dimensional structure and amino acid
sequence of proteins are related by an unknown set
of rules that is often referred to as the folding
code. This code is believed to be significantly
influenced by nonlocal interactions between the
residues.  A quantitative description of nonlocal
contacts requires the identification of neighboring
residues.  We applied statistical geometry
approach to analyze the patterns of spatial
proximity of residues in known protein structures.
Structures from a dataset of well resolved
nonhomologous proteins with a single point
representation of residues by Cα atoms were
tessellated using Delaunay algorithm.  The
Delaunay tessellation generates an aggregate of
space-filling irregular tetrahedra, or Delaunay
simplices.  The vertices of each simplex
objectively define four nearest neighbor Cα atoms
and therefore four nearest neighbor residues.
Compositional analysis of Delaunay simplices
reveals highly nonrandom clustering of amino acid
residues in protein structures.  Relative abundance
or deficiency of residue quadruplets with certain
compositions reflects propensities of different
types of amino acids to be associated or
disassociated in folded proteins.  The likelihood of
occurrence of four residues in one simplex
displays strong nonrandom signal also in the case
of a reduced amino acid alphabet.  We used
several different three-letter alphabets based on the
residue chemical and structural properties and on

the complementarity of the corresponding codons.
In all cases the clustering of residues correlates
with their properties or genetic origin.  The results
of this analysis are being implemented in
algorithms for protein structure classification and
prediction.

Introduction

Revolutionary developments in genomics and
computational structural biology lead to the
rapidly increasing amount of data on biomolecular
sequences and structures. The deposition rate for
both sequence and structure databases continues to
grow exponentially. The efficient utilization of this
data depends on the availability of the methods
and tools for protein structure analysis and
prediction.  Accurate prediction of protein three-
dimensional structure from its primary sequence
represents one of the greatest challenges of
modern theoretical biology.  Detailed knowledge
of protein structure is essential for understanding
the mechanisms of biological processes at
molecular, cellular, and evolutionary levels.  The
structures of only a fraction of all known primary
sequences have been determined experimentally.
Several approaches to protein structure prediction
have been developed in recent years. Many of
these approaches rely on the knowledge derived
from the analysis of spatial and compositional
patterns in known protein structures. Such an
analysis require an objective definition of nearest
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neighbor residues, that can be provided by the
statistical geometry methods.  In the statistical
geometry methods the nearest neighbors and
identified by statistical analysis of irregular
polyhedra obtained as a result of a specific
tessellation in three-dimensional space. Voronoi
tessellation which partitions the space into convex
polytopes called Voronoi polyhedra was used for
the analysis of geometry and packing density of a
number of molecular systems including protein
crystals [1-5]. A group of four atoms, whose
Voronoi polyhedra meet at one vertex, forms
another basic topological object, the Delaunay
simplex. The Delaunay tessellation was used for
structural analysis of various disordered systems
and showed a good potential as a structure
description method [6,7].  Unlike many of the
existing definitions of nearest neighbors that are
often based on some selected distance criteria (e.g.
separation of Cα atoms or other pairs of atoms by a
certain distance), Delaunay tessellation provides
the robust definition of nearest neighbors,
independent of any arbitrary criteria.  Statistical
analysis of the compositional propensities in
adjacent residues can be used for protein structure
classification and prediction.

Delaunay tessellation of protein structures

By studying patterns of spatial arrangement of
individual amino acids in known protein
structures, valuable information about specific
interactions between particular residues types can
be obtained. It is likely that multibody interactions
make significant contribution to the potential
energy landscape of folded proteins, and therefore
it is important to identify and correctly estimate
these contributions. To define groups of nearest
neighbors, we propose to use Delaunay tessellation
[8,9] in the analysis of protein structures, where
each amino-acid residue is represented by a single
point. The geometry of Delaunay simplices and
Voronoi polytopes is illustrated in Fig. 1.  Two-
dimensional Delaunay simplices shown in Fig. 1
are triangles, Delaunay simplices in three
dimensions are tetrahedra.  Since the Delaunay
simplex in three-dimensional space always has
four vertices, the Delaunay tessellation of a protein

structure generates an aggregate of space-filling,
non-overlapping, irregular tetrahedra.

For the analysis of correlations between the
structure and sequence of proteins, we introduced
a classification of simplices based on the relative
positions of vertex residues in the primary
sequence. The following five nonoverlapping
classes are considered (Fig. 2): class {4},where all
four residues of the simplex are consecutive in the
protein sequence; class {3,1}, where three residues
are consecutive, and the fourth is distant in the
sequence; class {2,2}, where two pairs of
consecutive residues are distant in sequence; class
{2,1,1}, where two residues are consecutive, and
two other residues are distant from the first two
and from each other; and class {1,1,1,1} where all
four residues are distant from each other.  The two
residues were defined as distant if they were
separated by one or more residues in protein
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Fig. 2. Five classes of Delaunay simplices.

Fig. 1. Voronoi/Delaunay tessellation in 2D
space

(Voronoi polyhedra - dashed line,  Delaunay
simplices - solid line).
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sequence. The representatives of each class are
usually found in every protein structure.  Simplices
belonging to each of the five classes have
characteristic geometrical properties such as edge
length distribution, volume, and tetrahedrality.
Tetrahedrality is a quantitative measure of the
degree of distortion of the Delaunay simplices
from the ideal tetrahedron [10].

T l l li
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where li  is the length of the i-th edge, and l is the
mean length of the edges of a given simplex.
Distribution of tetrahedrality and volumes for all
five classes of tetrahedra is shown in Fig. 3.  The
figure shows significant differences between
tetrahedra in different classes.  Simplices of class
{4} (solid line) and class {2,2} (dots) have
pronounced, sharp peaks in both tetrahedrality and
volume distributions.

Compositional analysis of Delaunay
simplices

Statistical analysis of amino acid composition
of the Delaunay simplices provides information
about spatial propensities of all quadruplets of
amino acid residues to be clustered together in
folded protein structures. We shall analyze the
results of Delaunay tessellation of some known
proteins in terms of statistical likelihood of
occurrence of four nearest neighbor amino acid
residues for all observed quadruplet combinations
of 20 natural amino acids. The log-likelihood
factor, q, for each quadruplet is defined as

q ijkl = log
f ijkl

pijkl

(2)

where i,j,k,l are amino acid residues, fijkl is the
observed frequency of occurrence of a given
quadruplet, and pijkl is the frequency of random
occurrence of a given quadruplet. The fijkl is
calculated by dividing the total number of
occurrences of each  quadruplet type by the total
number of observed quadruplets of all types.  The
pijkl is calculated as p ijkl = cai a ja ka l , where ai, aj,

ak, and al are the frequencies of individual amino
acid residues, and c is the permutation factor,
defined as
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where n is the number of distinct residue types in a
quadruplet and ti is the number of amino acids of
type i. The factor c accounts for permutability of
replicated residue types in a quadruplet.  The qijkl

shows the likelihood of finding four particular
residues in one simplex.

Theoretically, the maximum number of all
possible quadruplets of 20 natural amino acid
residues is 8,855. The distribution of likelihood
factor for all possible compositions is shown in
Fig. 4.  The plot reveals highly non-random
distribution: for some quadruplets observed
frequencies are orders of magnitude higher (or
lower) than expected from random model.  Some
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Figure 3.  Distribution of tetrahedrality and
volume (in Å3) of Delaunay simplices
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of the top scoring compositions, as well as several
compositions with the lowest scores are listed in
the table.  It is worth to note the presence of
cysteins in all of the quadruplets with the highest
scores.  High likelihood of the all-cystein cluster
suggests that when two sulfur bridges are present
in protein they tend to be together.  While 20-letter

log-likelihood distribution contain significant
amount of useful information and can be used as a
statistical potential function, for some other types
of analysis it may be more convenient to use
reduced alphabets.

Reduced amino acid alphabets

More general trends in the clustering of amino
acid residues in proteins can be identified easier if
the analysis uses classes of residues grouped
according to their properties. Such a classification
may be based on various properties, e.g. on the
residue chemical and structural properties,
hydrophobicity of the side chains, genetic
properties, etc.  In a chemically based
classification [11], the 20 amino acids are divided
into three groups: (1) hydrophobic (F), (2) charged
(L), and (3) polar (P) types; the hydrophobic
amino acids include Ala, Val, Phe, Ile, Leu, Pro,
Met, the charged amino acids include Asp, Glu,
Lys, Arg, and the polar amino acids include Ser,
Thr, Tyr, Cys, Asn, Gln, His, Trp.

Figure 5 shows the log-likelihood ratio for the
fifteen possible quadruplets of the three types of
amino acids among all simplices in tessellated
proteins of the dataset.  The quadruplets
containing four or three residues of types F and P
are much more likely to occur than the ones with
four or three type L residues.  Figure 5 illustrates
also the differences in log-likelihood ratios for the
same compositions belonging to the different
sequential classes. E.g., the likelihood of
quadruplet FFFF is very high in all classes except
class {4}. It means that hydrophobic residues are
likely to be found closely together in three-
dimensional structure, unless they are neighbors in
primary sequence. Opposite is true for the FFLL
composition of the quadruplets.  This type of
analysis can provide an important insight into
structural peculiarities of folded proteins.

   Delaunay simplices with distinct composition
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Figure 4. Log-likelihood ratio for the Delaunay
simplices  (20-letter alphabet).
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Fig. 6. Log-likelihood ratio for the Delaunay simplices (3-letter alphabet based on genetic code)
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Amino acid residues could be classified
according to their genetic code. Molecular
recognition theory suggests that residues encoded
by complementary codons may interact
specifically [12]. This phenomenon of antisense
peptide recognition may play an important role in
determining the structure of folded proteins by
influencing spatial proximity of matching (i.e.
encoded by complementary codons) residues. In
the classification based on the genetic code 20
natural amino acid residues can be divided into
three independent groups: (A) Met, His, Val, Tyr,
Asn, Asp, Ile, (B) Gln, Leu, Glu, Lys, Phe, (C)
Trp, Pro, Arg, Gly, Ser, Ala, Thr, Cys. The
residues in each group are related to each other by
sense-antisense relationships.  If the assumptions
of the molecular recognition theory are correct,
residues belonging to one group are likely to be
found in the proximal positions in folded proteins
more often than in random models.  This
hypothesis is in good agreement with the results of
our analysis (Figure 6).  Quadruplet compositions
AAAA, BBBB, and CCCC occur much more
frequently than expected from the random model
(Figure 6a).  As in the previous example, the
likelihood distribution strongly depend on the
sequential proximity of participating residues
(Figures 6b-d). For example, compositions AAAA
and CCCC that are highly scored in overall
distribution, have the lowest scores for class {4}
quadruplets.

Conclusions

This work demonstrates the applicability of
the statistical geometry methods for protein
structure analysis.  The examples discussed in this
paper deal with the objective and robust
identification of nearest neighbors and analysis of
clustering patterns in three-dimensional protein
structures.  The results of this analysis can be used
in various algorithms for protein structure
classification and prediction.
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