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ABSTRACT Pairwise contact energies for 20
types of residues are estimated self-consistently
from the actual observed frequencies of contacts
with regression coefficients that are obtained by
comparing ‘‘input’’ and predicted values with the
Bethe approximation for the equilibrium mixtures
of residues interacting. This is premised on the fact
that correlations between the ‘‘input’’ and the pre-
dicted values are sufficiently high although the
regression coefficients themselves can depend to
some extent on protein structures as well as interac-
tion strengths. Residue coordination numbers are
optimized to obtain the best correlation between
‘‘input’’ and predicted values for the partition ener-
gies. The contact energies self-consistently esti-
mated this way indicate that the partition energies
predicted with the Bethe approximation should be
reduced by a factor of about 0.3 and the intrinsic
pairwise energies by a factor of about 0.6. The
observed distribution of contacts can be approxi-
mated with a small relative error of only about 0.08
as an equilibrium mixture of residues, if many
proteins were employed to collect more than 20,000
contacts. Including repulsive packing interactions
and secondary structure interactions further re-
duces the relative errors. These new contact ener-
gies are demonstrated by threading to have im-
proved their ability to discriminate native structures
from other non-native folds. Proteins 1999;34:49–68.
r 1999 Wiley-Liss, Inc.
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INTRODUCTION

Simulating complete protein folding processes, occur-
ring on a time scale ranging from milliseconds to seconds,
would require enormous computational power because of
the high dimensionality of the space of protein conforma-
tions and the complexity of their energy surfaces. If
potentials with full atomic representations of proteins are
used, present-day computer capabilities usually limit the
time scale of molecular dynamics simulations to nano-
seconds. Consequently simplified models are required at

an appropriate level of coarse graining for complete descrip-
tions of the energy landscape, from the denatured to the
native state. Simplifications must be made consistently to
both geometry and potential functions. Pairwise contact
energies,1–4 and pairwise potentials of mean force5,6 are
types of such simplified potential functions that have been
used to provide a crude estimate of conformational energy
at the residue level7 or to distinguish between native and
non-native folds.8–13 Similarities and differences among
pairwise interaction energies have been analyzed.14 Pseudo-
potentials were devised to find out which amino acid
sequences fold into a known three-dimensional struc-
ture.15–17 An empirical method to evaluate the correctness
of protein models was developed.18 Statistical potentials
extracted from known protein structures are also used to
predict the docking of protein structures,19 to predict
protein binding,20,21 and to simulate protein folding.22–25

To extract these statistical potentials1–6 from protein
structures, the pairwise density or higher order cluster of
residues observed in protein native structures was approxi-
mated or assumed to obey the Boltzmann distribution with
the corresponding interaction energy for the specific pairs
or clusters. Boltzmann statistics was also assumed for the
distribution of residues between the interior and exterior
of protein molecules.26 Extracted partition energies be-
tween interior and exterior of protein molecules correlate
well with transfer experiments. For other properties,
Boltzmann-like distributions are observed for the distribu-
tions of backbone and side-chain dihedral angles,27–29

ion-pair substructures in proteins,30 cis and trans confor-
mations of proline residues,31 and the sizes of empty
cavities.32 Thomas and Dill33 pointed out that for many
different protein structures the apparent temperature is of
the same order of magnitude, lying between about 150 K
and 600 K. They estimated that the temperatures of
Boltzmann-like distributions for the interior-exterior par-
titioning of residues in protein structures range from 640
K to 1800 K, depending on the length, amino acid composi-
tion and compactness of the protein.

Thomas and Dill33 also analyzed whether or not pairwise
distributions of residues are Boltzmann-like in the unique,
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lowest energy conformations of lattice proteins of the AB
model, which consist of two monomer types A and B for
short chains on a two-dimensional square lattice. 1) First,
they assumed a set of true contact free energies. 2) For
each chain length, they performed an exhaustive search of
conformational space, and found the lowest energy states,
the native states, for all sequences. 3) A ‘‘database’’ of the
unique native structures was constructed. 4) From this
database, contact potentials were extracted by two repre-
sentative methods, the contact energy approach of Miya-
zawa and Jernigan1 and the distance-dependent approach
for pairwise potentials of mean force by Sippl.5 5) Then,
these extracted potentials were compared with the origi-
nal ‘‘input’’ contact energies, in order to assess how the
derived statistical potentials reflect the true contact ener-
gies in real proteins. In the two residue, hydrophobic and
polar, HP model, a simpler version of the AB model, the
extracted contact energies are non-zero whereas ‘‘input’’
ones were zero, and these also showed unrealistic depen-
dences on chain length or on the surface-to-volume ratio of
proteins. The extracted energies also depended on the
average partition propensity of the structures in the
database of lattice proteins; the average partition propen-
sity being defined as the total number of contacts divided
by the total number of coordination sites of hydrophobic
residues. Based on these results, they suggested that the
Boltzmann distribution law may be inappropriate espe-
cially for converting pair frequencies of residues in protein
structures into energies.

On the other hand, Mirny and Shakhnovich34 pointed
out that there were good correlations between ‘‘input’’
pairwise energies and contact energies extracted by the
methods of Miyazawa and Jernigan1 and Hinds and Lev-
itt,4 although the method of Miyazawa and Jernigan1

yields extremely strong non-specific attractions between
residues. Unlike Thomas and Dill,33 they used 3 3 3 3 3
cubic lattice proteins consisting of 20 types of residues,
whose structures are the most compact forms, and whose
sequences are designed to not only be the lowest energy
form for thermodynamic stability, but also to have maxi-
mal 0Z 0 scores, that is, large energy gaps to ensure kinetic
accessibility, for each structure.

Here, we analyze how well our method1 for extracting
contact energies from contact frequencies of residue pairs
in protein structures reproduces ‘‘input’’ contact energies
in protein structures. There are two questions: the first
question is whether assumptions in our method are actu-
ally satisfied in real proteins, and the second question is
how well can the Bethe approximation (quasi-chemical
approximation) reproduce ‘‘input’’ contact energies when
those assumptions are satisfied. One basic assumption in
our method is that inter-residue contacts in a large enough
sample can be regarded as an equilibrium ensemble of
unconnected residues which interact with one another
through pairwise potentials specific to their residue types.1

This assumption will be examined directly by comparing
the observed numbers of inter-residue contacts with those
predicted with this assumption. The predicted numbers of
contacts for each protein are calculated from the equilib-

rium mixtures of residues interacting with the estimated
contact energies in a protein. The reproducibility of ‘‘input’’
contact energies by the Bethe approximation is analyzed
by comparing ‘‘input’’ contact energies with those ex-
tracted from the equilibrium mixtures of residues. This
way of testing the self-consistency of extracted potentials
was proposed by both Thomas and Dill33 and Mirny and
Shakhnovich.34

The equilibrium mixtures of residues are generated in a
Monte Carlo simulation by shuffling residues in the pro-
tein structures. Residues are shuffled in each protein
structure, so that the total numbers of residue-to-residue
contacts and residue-to-solvent contacts are fixed for each
protein. Therefore, the effects of chain connectivity1 impos-
ing a limit to the size of the system, i.e., the total number of
lattice sites or the number of effective solvent molecules,
are not considered at all. In this case, the absolute values
of contact energies cannot be estimated but only the
alignment energies, i.e., the relative contact energy de-
fined as contact energies less a collapse energy, ei j 2 err; see
Materials and Methods section for details. To examine how
the reproducibilities of ‘‘input’’ energies by the Bethe
approximation depend on the model systems, amino acid
mixtures on simple cubic lattices and on face-centered
cubic lattices are also examined. Lattice calculations indi-
cate that the reproducibility depends strongly on the
lattice structures and interaction strengths. Simulations
on protein structures reveal that the Bethe approximation
overestimates the strengths of contact energies, especially
of partition energies, eir 2 err. However, simulations show
that the correlation between ‘‘input’’ energies and pre-
dicted values is greater than 0.9 for most proteins. Because
of these high correlations, the present simulations permit
us to evaluate quantitatively how much the Bethe approxi-
mation overestimates contact energies and to correct our
original estimates. When these corrected values of contact
energies are taken iteratively as ‘‘input’’ energies, contact
energies can be self-consistently estimated by the present
method from the observed distribution of contacts.

The equilibrium distributions of contacts generated
with the corrected contact energies are compared with
what is actually observed in proteins. The relative errors
between the equilibrium distributions and the observed
ones decrease with about the 20.4 power of the total
number of contacts, which is close to the power depen-
dence, 20.5, to be expected a for random sample and
converges to a value of about 0.08 for more than 20,000
contacts, indicating that the actual observed distributions
of contacts may be approximated as equilibrium distribu-
tions of residue mixtures interacting with contact ener-
gies.

In addition, the effects of other interactions operative in
protein structures, such as repulsive packing interac-
tions,2 secondary structure interactions,13 and random
noise to simulate all other interactions are also examined
for the estimation of contact energies. The corrections for
contact energies are evaluated in the presence of these
interactions to yield a self-consistent set of values.
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MATERIALS AND METHODS
What Interaction Energies Can Be Estimated
for This System?

Let us consider the system of a protein surrounded by
effective solvent molecules and assume that the neighbor-
ing pairs of residues of the i and j types interact with
energies Ei j. The total energy of this system is

Total energy 5 o
i50

o
j50

Ei jnij (1)

5 o
i50

(2Ei0 2 E00)qini/2 1 o
i51

o
j51

ei jni j (2)

where nii and nij 1 nji are the numbers of contacts between
i type residues and between i and j types of residues.
Subscript 0 is used to represent effective solvent, and
subscripts 1 through 20 are for residue types. Energies Ei j

and the numbers of contacts ni j are both symmetrical;

Ei j 5 Eji (3)

ni j 5 nji (4)

qi is coordination number for an i type residue, and
satisfies

o
j50

ni j 5
qini

2
(5)

where ni is the number of residues of type i. The contact
energy ei j is defined as

ei j ; Ei j 1 E00 2 Ei0 2 E0 j (6)

5 eji (7)

It is clear that only the second term in Eq. 2 depends on the
protein conformation, i.e. ni j. Therefore, in the following
parts of this paper, the phrase of ‘‘the total contact energy’’
is used to mean only the second term of this equation.

Then, let us assume that residues can be exchanged
within a native protein structure. In the Bethe approxima-
tion, the partition function of this system is estimated as

Z 5 const o
Eni jF

nr0!n0r!nrr!

p
i51

ni0! p
j51

n0j! p
i51

p
j51

ni j!

exp 12 o
i51

o
j51

ei jni j2 (8)

where nr0 is the total number of residue-to-solvent con-
tacts, and nrr is the total number of contacts. Note that all
energies here are taken to be dimensionless, i.e. in units of
RT. Because only shuffling of residues within native
protein structures is considered, the total number of
contacts nrr and then the total number of residue-to-
solvent contacts nr0 are fixed for this system. Thus, con-

straints for this system are

o
i51

o
j51

ni j 5 nrr (9)

o
i51

ni0 5 nr0. (10)

o
j51

n0j 5 n0r. (11)

By maximizing the partition function with respect to ni j

with these constraints and Eqs. 4 and 5, the statistical
average, nij, of nij is derived:

ni jnr0n0r

nrrni0n0 j

5 exp (2Dei j) (12)

Dei j ; ei j 2 err. (13)

A constant err that is called the collapse energy is defined
as

exp (2err) ; 3oi51
o
j51

ni j exp (ei j)

nrr
4

21

(14)

5

o
i51

o
j51

ni0n0 j exp (2ei j)

nr0n0r
. (15)

Eq. 12 indicates that applying the Bethe approximation to
this system cannot provide estimates of contact energies ei j

but only of relative contact energies Dei j (; ei j 2 err). This
is physically reasonable, since structures are fixed in the
native state.

The partition energy or hydrophobic energy, eir, which is
defined as

exp (2eir) ; 3oj51
ni j exp (ei j)

nir
4

21

(16)

5

o
j51

n0j exp (2ei j)

n0r
(17)

is related to statistical averages of the numbers of contacts
as follows:

ni0 /3 nirnr0

nrr
4 5 exp (Deir) (18)

Deir ; eir 2 err (19)

where nir is the sum of ni j over all types of amino acids

nir ; o
j51

ni j (20)
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Deir may be called the relative partition energy or relative
hydrophobic energy.

Also, intrinsic inter-residue interaction energies, dei j,
between 20 types of residues, which do not include hydro-
phobic energies, are defined as

dei j ; Dei j 2 Deir 2 Der j 5 ei j 1 err 2 eir 2 er j (21)

and satisfy the following equation

ni j /3 nirnr j

nrr
4 5 exp (2dei j). (22)

The above equation means that the ratio of the observed
number of i–j contacts in protein structures to their
expected number for random mixing with fixed nir and nrj

is equal to the Boltzmann factor of their intrinsic inter-
residue energy. These energies are similar to contact
energies used by Park and Levitt; their way to evaluate the
expected number is different from Eq. 22.35 Similarities
and differences between Sippl’s potentials of mean force5 and
contact energies are described in detail in theAppendix.

Here, intrinsic pairwise energies and relative partition
energies predicted by the Bethe approximation are calcu-
lated as follows from the observed frequencies of contacts
in protein structures or from the equilibrium frequencies
of residue pairs in contact for the same set of proteins.
First, residues in protein structures are represented by
single points at the centers of their side chain atom
positions; the positions of Ca atoms are used for glycines.
Residues whose centers are closer than Rc are defined to be
in contact. The limiting value Rc 5 6.5 Å for contacts was
chosen on the basis of the occurrence of the first peak in the
radial distribution of residues in the interior of proteins.1

The coordination number for each type of residue was
estimated from residue volumes and the volume of the first
shell.1,2 The numbers of residue-to-solvent contacts are
evaluated from Eq. 5 with these estimated values of coordi-
nation numbers. Then, those energies are calculated from

exp (2dei j) 5
Ni j

Ci j
(23)

exp (Deir) 5
Ni0

Ci0
(24)

where Ni j is defined as the total number of i–j contacts in
all protein structures used, and Ci j is its expected value for
random mixing.

Ni j ; o
p

ni j; p (25)

Ci j ; o
p

1

2 3
nir; pnr j; p

nrr; p
?

1 2 di j /ni; p

1 2 nr i; p /nrr; p /ni; p

1
njr; pnr i; p

nrr; p
?

1 2 dj i /nj; p

1 2 nr j; p /nrr; p /nj; p
4 (26)

where p indicates the pth protein, and di j is the Kronecker
d. The definition of Ci j, Eq. 26, includes a correction for
infrequent residues, which was missing in the original
definition.1 Eq. 24 to estimate the partition energy is
different from the one in Miyazawa and Jernigan,1,2 al-
though their estimated values are only slightly different.

Then, relative contact energies Dei j are calculated from
intrinsic pairwise energies and relative partition energies
as follows:

Dei j 5 Deir 1 Der j 1 dei j. (27)

The relative contact energies Dei j calculated from the
observed frequencies of contacts in proteins with Eqs. 23,
24, and 27 are the initial estimates of contact energies in
the present iterative procedure.

Iterative Procedure to Self-Consistently Estimate
Contact Energies

The number of relative contact energies for all amino
acid pairs that must be determined is 210. However, as
presented in the Results section later, the results for
lattice monomers indicate that the correlations between
real energies and predicted ones with the Bethe approxima-
tion described above are high for both the partition ener-
gies and intrinsic pairwise energies in the actual range of
interaction strength. If these correlation coefficients are
high enough, one may reduce the number of parameters to
obtain, from 210 to two regression coefficients for the
partition energies and intrinsic pairwise energies by utiliz-
ing values predicted with the Bethe approximation. In
other words, contact energies are estimated from values
calculated from the actual distribution of contacts in
proteins with the Bethe approximation and the regression
coefficients between ‘‘input’’ and predicted energies. Be-
cause these regression coefficients depend significantly on
interaction strength and on structure, they are self-
consistently calculated in an iterative procedure in which
the equilibrium distribution of contacts in each protein is
generated with the previous estimates of contact energies
by a Monte Carlo simulation, and better estimates of the
regression coefficients are calculated.

The iterative procedure is:

1. Assume the relative contact energies Dei j calculated
from the observed frequencies of contacts in protein
structures with Eqs. 23, 24, and 27 as ‘‘input’’ energies.

2. Perform a Monte Carlo simulation with the Metropolis
method36 for each protein in which residues in a protein
are assumed to interact with each other with the
pairwise contact energies and are shuffled to obtain an
equilibrium distribution of contacts. It should be noted
here that the equilibrium distribution of contacts in a
protein does not depend on the collapse energy, because
protein structures (nr0 and nrr) are fixed and residues
are shuffled only within a protein; see Eq. 12. Relative
temperature Trel is taken to be one. In some cases,
repulsive packing energies and secondary structure
energies2,13 are also taken into account to generate an
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equilibrium mixture of residues; see the sub-section
‘‘Conformational Energy.’’

3. Calculate predicted contact energies by using the Bethe
approximation from the total equilibrium distribution
of contacts; see Eqs. 23, 24, and 27.

4. Calculate regression coefficients of the ‘‘input’’ versus
‘‘predicted’’ values for both types of energies,
Deir(; eir 2 err) and deij(; eij 1 err 2 eir 2 erj) by compar-
ing the predicted and the ‘‘input’’ energies.

5. Calculate better estimates of real contact energies by
using the new estimates of the regression coefficients
obtained in the simulation together with the predicted
energies with the Bethe approximation from the num-
bers of contacts actually observed in protein structures.

6. If the regression coefficients do not indicate a suffi-
ciently good match with those values used to estimate
contact energies for this iteration, repeat steps from 2
through 6 again by updating the ‘‘input’’ energies.
Otherwise the procedure is completed and yields newly
estimated energies.

In the Bethe approximation, the intrinsic inter-residue
energies are estimated without any adjustable parameter
from the ratios of the observed numbers of contacts and
their expected numbers in random mixing; see Eq. 23. On
the other hand, the partition energies are estimated from
the ratios of the observed numbers of residue-to-solvent
contacts and their expected numbers in random mixing;
see Eq. 24. The numbers of residue-to-solvent contacts are
evaluated with Eq. 5 from coordination numbers and the
numbers of residue-to-residue contacts. The coordination
number for each type of residue was estimated from
residue volumes and the volume of the first shell.2 An
improper evaluation of the coordination numbers can
affect the correlation for the partition energies. Even
though the correct numbers are used for the coordination
numbers, the Bethe approximation certainly limits the
correlation for the partition energies as seen in the results
of lattice simulations. Apart from the physical meaning of
coordination numbers, they may be treated here as adjust-
able parameters to obtain a better correlation for the
partition energies. In this case, step 4 is replaced by the
following procedure.

48. Calculate the optimal values for coordination num-
bers to yield the best correlation for the partition
energies, and the regression coefficients of ‘‘input’’
compared with ‘‘predicted’’ values for both types of
energies, Deir and dei j. These coordination numbers
and regression coefficients are then used in the next
iteration.

Also step 6 is replaced by:

68. Coordination numbers and regression coefficients
are both checked to see whether they indicate a
sufficiently good match with values used to estimate
contact energies for this iteration, and then the whole

procedure of steps from 2 through 68 is repeated until
such a convergence is attained.

Now, both coordination numbers and regression coeffi-
cients are self-consistently calculated in the iterative
procedure, and then contact energies are finally estimated
with them from the actual distribution of contacts in
proteins.

How to Estimate Contact Energies
With Regression Coefficients

The estimates, ei j, of contact energies are calculated
from values obtained with the Bethe approximation and
the estimates of regression coefficients for ‘‘input’’ versus
predicted values. Let us define regression coefficients
between ‘‘input’’ and predicted energies with the Bethe
approximation for the equilibrium distribution of contacts
in Monte Carlo simulations as a, b and h for partition
energies, intrinsic inter-residue energies, and relative
contact energies, respectively; that is

Deir
input , a ? Deir

pred
1 constant (28)

dei j
input , b ? dei j

pred
1 constant (29)

Dei j
input , h ? [a ? Deir

pred
1 a ? Der j

pred
1 b ? dei j

pred]

1 constant (30)

Then, the estimates of relative contact energies,
Dei j(; ei j 2 err), are calculated from those regression coeffi-
cients and the observed distribution of contacts in all proteins.

Deir 5 a8 ? Deir
obs (31)

dei j 5 b8 ? dei j
obs (32)

Dei j 5 Deir 1 Der j 1 dei j (33)

a8 ; h ? a b8 ; h ? b (34)

where eobs means energy values calculated from the ob-
served numbers of contacts in proteins with Eqs. 23, 24.
Here it should be noted that Deir

obs does depend on the
values of coordination numbers qi that are dealt with as
adjustable parameters but dei j

obs does not; see Eqs. 5, 23, 24.
The regression coefficients, a8 and b8, and coordination

numbers if adjusted are self-consistently calculated. That
is, until they converge, another iteration is performed by
assuming Dei j as the ‘‘input’’ contact energies ei j

input; the
collapse energy err is unknown, and taken as zero here,
because protein structures (nr0 and nrr) are fixed and
residues are shuffled in a protein, and thus the equilibrium
distribution of contacts in a protein does not depend on
this constant energy; see Eq. 12.

Coordination Numbers as Adjustable Parameters

Coordination numbers are adjusted to yield the best
correlation between ‘‘input’’ and predicted values for the
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relative partition energies:

1

2
qi

adjNi 5 Nir
equil 1 Ni0

adj (35)

Ni0
adj 5 g ? Ci0

equil exp (eir
adj 2 err

adj). (36)

The superscript ‘‘equil’’ means those numbers in the equi-
librium distributions of contacts generated in Monte Carlo
simulations. The constant g has been chosen, so that the
total number of residue–solvent contacts, Nr0, is kept
constant; that is, the average value of coordination num-
ber is kept constant;

Nr0
adj 5 Nr0 (37)

The adjusted values, eir
adj, for partition energies are calcu-

lated from the ‘‘input’’ potential, ei j
input, assumed for the

system:

eir
adj 5 eir

input/a (38)

exp (2err
adj) 5 3oi51

Nir
equil exp (eir

adj)

Nrr
4

21

(39)

exp (2eir
input) 5 3oj51

Ni j
equil exp (ei j

input)

Nir
equil 4

21

(40)

where the constant a is the ratio of ‘‘input’’ relative to
predicted values of partition energies. Adjusted coordina-
tion numbers yield an improved correlation for the parti-
tion energies between ‘‘input’’ and predicted values. Here,
coordination numbers are taken as adjustable parameters
regardless of their intrinsic physical meaning. A value for
a is chosen by minimizing the mean square deviation of
the optimum values, qi

adj, from the original values, qi, of the
coordination numbers.

Conformational Energy

The conformational energy of a protein is divided into
two terms: secondary structure energies and tertiary
structure energies.

E conf ; E sec 1 E tert (41)

The tertiary structure energies have previously been esti-
mated as a sum of pairwise residue–residue contact ener-
gies and repulsive residue packing energies for volume
exclusion, and termed long-range interaction energies:2

Ep
tert 5 Ep

c 1 Ep
r (42)

The contact energy Ep
c and the repulsive packing energy Ep

r

of a residue at position p are defined by Eqs. 18, 19, and 40
in Miyazawa and Jernigan; even when coordination num-
bers are treated as adjustable parameters in the iterative

procedure, the original values of coordination numbers are
used for the calculation of repulsive packing energy.2 The
total contact energies and the total repulsive energies are
calculated as the sums of these energies over all residues.
Alternatively, the total contact energies can be calculated
by simply summing contact energies for all contact residue
pairs,Si jni jei j.

The secondary structure energies, which include intrin-
sic preferences, backbone–backbone interactions, and back-
bone–side chain interactions, were estimated13 on the
basis of short-range interactions, ignoring the effects of
long-range interactions, from the observed frequencies of
secondary structures by assuming Boltzmann statistics;
interactions between side chains could not be evaluated for
these cases because of the limited data. These potentials
are used here directly. In this paper, because protein
structures are fixed at their native structures and residues
are shuffled, intrinsic energies and backbone–backbone
interaction energies remain constant and do not affect the
results.

RESULTS

First, preliminary calculations have been performed to
see how similar the contact frequencies at equilibrium are
to the observed ones, when the contact energies estimated
in Miyazawa and Jernigan2 are used as ‘‘input’’ energies.
The equilibrium distributions of contacts are simulated by
shuffling residues in individual protein structures accord-
ing to the Metropolis method36 in a Monte Carlo simula-
tion.

Table I lists relative errors in the equilibrium distribu-
tion for the numbers of residues that are within 6.5Å of a
central residue and defined to be in contact with the
residue, 0DN(i, nc) 0 / 0N(i, nc) 0 , and the relative error in the
equilibrium frequencies of residue pairs in contact, 0DNi j 0 /
0Ni j 0 , for each type of residue pair, defined by

0DN(i, nc) 0

0N(i, nc) 0
;
3o

i
o
nc

(N equil(i, nc) 2 N obs(i, nc))24
1/2

3o
i

o
nc

N obs(i, nc)24
1/2

(43)

0DNi j 0

0Ni j 0
;

3o
i

o
j.i

(2Ni j
equil 2 2Ni j

obs)2 1 o
i

(Nii
equil 2 Nii

obs)24
1/2

3o
i

o
j.i

(2Ni j
obs)2 1 o

i
(Nii

obs)24
1/2

(44)

where N(i, nc) represents the number of i type residues in
contact with nc, the number of residues. Superscripts
‘‘equil’’ and ‘‘obs’’ of N(i, nc) are for the equilibrium and
observed distributions, respectively. Proteins37 employed
here are the set of 86 non-homologous, monomeric proteins
used previously to assess the contact energies.2 Calcula-
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tions are performed at relative temperatures, Trel, from 1
to 5.

Contrary to expectation, the relative errors are quite
large at Trel 5 1, and their minimum values are located at
much higher temperatures; the relative error has its
minimum at Trel , 3.5 for the frequency distribution of
residue pairs in contact and at the higher temperature,
Trel , 4.5, for the distribution of the number of residues in
contact. This means that there are deficiencies in either
the basic assumption of the statistical equilibrium for
inter-residue contacts with respect to their contact ener-
gies or in the reproducibility of ‘‘input’’ energies by the
Bethe approximation. The fact that the relative errors
take small values at their minima suggests that this result
might be caused by an over-estimation of contact energies
rather than the assumptions about the distribution of
contacts.

The predicted contact energies from the use of the Bethe
approximation are compared to those ‘‘input.’’ The compari-
sons are made for the intrinsic pairwise energies,
dei j (; ei j 1 err 2 eir 2 erj), and also for the relative hydro-
phobic, partition energies, Deir(; eir 2 err); see the Materi-
als and Methods section for the definitions of these ener-
gies. The regression coefficients of the ‘‘input’’ energies
divided by Trel compared to the predicted values are also
shown in Table I. The ‘‘input’’ values of the intrinsic
pairwise energies dei j are smaller by about a factor 0.49 to
0.72 compared with the predicted values over the tempera-
ture range examined. By contrast, the partition energies
Deir are exaggeratedly over-estimated; the ‘‘input’’ energies
are smaller by about a factor 0.12 to 0.52 compared to the
predicted values. Here it should be noted that all values of
Deir cannot be estimated because the number of residue-
solvent contacts becomes erroneously negative for strongly
hydrophobic residues; the number of residue types for
which Deir could be estimated are listed in the last column
of Table I. On the other hand, even though the absolute
values of these predicted energies are quite different from
the ‘‘input’’ ones, the correlation coefficients between them
are rather good; these are mostly larger than 0.8 for dei j,
and 0.9 for Deir.

These facts strongly indicate that the large differences
between the predicted and observed distributions of the

number of residues in contact and of residue pairs in
contact result from an over-estimation of contact energies
rather than from the basic assumption of the Boltzmann
equilibrium for contact formation.

Reproducibility of Contact Energies by the Bethe
Approximation, for Amino Acid Mixtures on Simple
Cubic and Face-Centered Cubic Lattices

In order to examine how accurately the Bethe approxima-
tion can reproduce ‘‘input’’ contact energies, we consider a
mixture of 20 types of amino acid monomers on simple
cubic lattices and also on face-centered cubic lattices, in
which only nearest-neighbor interactions are assumed.
Amino acid pairs occupying nearest-neighbor sites on
lattice are assumed to interact with preassumed values of
contact energies. First, lattice sites that are occupied by
amino acids are determined. The most compact, dense
systems, i.e. n by n by n for a simple cubic lattice, are
examined. Less dense systems, which are generated by
randomly removing amino acids from the most compact
systems, were also examined but are not presented here.
Second, amino acids are randomly chosen according to the
average composition of amino acids in proteins used in
Miyazawa and Jernigan.2 Third, the equilibrium of an
amino acid mixture is generated by shuffling amino acids
among lattice sites according to the Metropolis method in a
Monte Carlo simulation based on the input energies.
Finally, contact energies predicted by the Bethe approxima-
tion are compared with the true input ones.

Monte Carlo simulations for both types of lattices are
carried out for various lengths, from about 60 to 700, of
sequences and at relative temperatures ranging from
Trel 5 1.0 to 5.0. When input energies are the contact
energies ei j estimated by Miyazawa & Jernigan,2 the
correlation coefficients between predicted and ‘‘input’’ val-
ues of the partition energies Deir are mostly better than
0.99 in the present temperature range for both types of
lattice. Regression coefficients for the partition energies
depend strongly on lattice structures, the size of mol-
ecules, and temperature, that is, the interaction strength.
Those regression coefficients range from 1.87 to 0.87 at
Trel 5 1 and from 1.33 to 1.01 at Trel 5 5 for shorter to
longer sequences, respectively, on simple cubic lattices,

TABLE I. Characteristics of the Equilibrium Distributions of Contacts in Protein Structures Generated With
the Original Contact Energies eij of Miyazawa and Jernigan (1996)2 Scaled by Relative Temperature, Trel

†

Trel

Relative errors deij(; eij 1 err 2 eir 2 erj) Deir(; eir 2 err )
Number of

residue types*0DN(i, nc) 0 / 0N(i, nc) 0 0DNij 0 / 0Nij 0
Correlation
coefficient

Regression
coefficient, b

Correlation
coefficient

Regression
coefficient, a

1.0 0.45 0.37 0.83 0.72 0.95 0.52 15
2.0 0.27 0.24 0.79 0.56 0.95 0.30 17
3.0 0.18 0.16 0.81 0.50 0.97 0.29 17
4.0 0.14 0.16 0.85 0.49 0.93 0.20 18
5.0 0.14 0.20 0.88 0.50 0.87 0.12 20
†The correlation coefficients and regression coefficients above are those between ‘‘input’’ energies scaled by the relative temperature and values
predicted with the Bethe approximation. The original values of coordination numbers are used to predict partition energies (Deir). Here 86
non-homologous monomeric proteins used in the original work are employed with equal weights.
*The number of residue types for which Deir can be estimated; they are not all estimated because the number of residue-solvent contacts becomes
erroneously negative for strongly hydrophobic residues with these interaction strengths.
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and from 0.68 to 0.30 at Trel 5 1 and from 0.38 to 0.28 at
Trel 5 5 for face-centered cubic lattices. However, there is a
general trend that if more amino acids are included, i.e.,
the smaller the surface-to-volume ratio is, then the more
the partition energies Deir are over-estimated; the surface-
to-volume ratio is measured here as the ratio of the
number of residue–solvent contacts to the number of
feasible contacts, nr0 / (qrnr/2); nr ; o

i51 ni and qrnr ; o
i51 qini .

Such a dependence of the partition energies on chain
length or the surface-to-volume ratio in the Bethe approxi-
mation was pointed out.33 As stated in our original paper,1
this is a limitation of the Bethe approximation.

One of the interesting features is that unlike the sys-
tems on simple cubic lattices, the partition energies are
over-estimated in face-centered cubic lattices to a similar
degree as those for protein structures. The coordination
numbers for protein structures are estimated as 6.28 on
average,2 and these are used in Table I. Thus, the average
coordination number for protein structures is closer to that
for a simple cubic lattice, 6, than to the value for a
face-centered cubic lattice, 12. However, the number of
residues in contact with a residue in protein structures
within a sphere of 6.5 Å radius can sometimes reach 10 or
11. It may be reasonable that the estimate of partition
energies depends on the feasible range of contact numbers
in structures.

For the original contact energies, correlations between
predicted and ‘‘input’’ energies are better for the partition
energies than for the intrinsic pairwise energies. The
correlation coefficients for the partition energies are 0.99
at Trel 5 1 and 1.00 at Trel 5 5 for any length of sequence on
simple cubic lattices, and range from 0.92 to 0.99 at Trel 5 1
for shorter to longer sequences and are 1.00 at Trel 5 5 for
face-centered cubic lattices. On the other hand, the correla-
tion coefficients for the intrinsic pairwise energies range
from 0.91 to 0.68 at Trel 5 1 and from 0.97 to 0.98 at Trel 5 5
for shorter to longer sequences on simple cubic lattices,
and from 0.90 to 0.63 at Trel 5 1 and from 0.89 to 0.82 at
Trel 5 5 for face-centered cubic lattices. This is probably
because the ‘‘input’’ energies consist of strong partition
energies, Deir, compared to the intrinsic pairwise energies,
dei j. The low correlation for the intrinsic pairwise energies
is more pronounced for face-centered cubic lattices in
which the net interaction is much stronger than in a
simple cubic lattice, because the face-centered cubic lattice
has twice as many nearest neighbor sites as the simple
cubic lattice. It is confirmed for both types of lattice that
the correlation improves as the partition energies become
weaker in comparison with the intrinsic pairwise energies.

The values of the regression coefficients for the intrinsic
pairwise energies range from 0.81 to 0.50 at Trel 5 1 and
from 0.81 to 0.82 at Trel 5 5 for shorter to longer sequences
on simple cubic lattices, and from 0.95 to 0.47 at Trel 5 1
and from 0.54 to 0.38 at Trel 5 5 for face-centered cubic
lattices. Thus, the values of the regression coefficients for
face-centered cubic lattices also resemble those for protein
structures listed in Table I, but this feature is not clear
here because of the low correlation between predicted and
true energies. However, this feature is confirmed with

better correlations by employing more realistic values for
the contact energies; this is shown later.

Estimation of Real Energies From Energies
Calculated With the Bethe Approximation

The results for lattice monomers described in the preced-
ing section indicate that: 1) the correlations between
predicted and ‘‘input’’ energies are high for both the
partition energies and intrinsic pairwise energies in the
actual range of interaction strength, Trel , 4 for the
original contact energies ei j,2 but 2) the regression coeffi-
cients between them vary significantly depending on inter-
action strength and on structures, i.e., the topology of
residue positions in space, and on the number of residues.
Because the correlation coefficients are high enough, the
‘‘input’’ energies can reliably be estimated from values
calculated in the Bethe approximation with regression
coefficients, separately for partition energies and intrinsic
pairwise energies. Because these regression coefficients
significantly depend on interaction strength and on struc-
ture, those values for estimating real contact energies
from the actual distribution of contacts in proteins must be
self-consistently calculated by an iterative procedure in
which the equilibrium distribution of contacts in each
protein is generated with the previous estimates of contact
energies in a Monte Carlo simulation, and better estimates
of the regression coefficients and then of contact energies
are calculated; see the description of the iterative proce-
dure in the Materials and Methods section.

The row of Method-A in Table II shows the correlation
coefficients and regression coefficients for both types of
energies calculated using the above procedure; the coordi-
nation numbers qi used in Method-A are the original
values estimated from residue volumes in Miyazawa and
Jernigan.2 In this table, all protein structures used in
Miyazawa and Jernigan2 are employed; the effective num-
ber of non-homologous proteins is 251. The correlation
coefficients are sufficiently high, larger than 0.96, for both
types of energies. The correlation for the intrinsic inter-
residue energies (dei j) is better in this case than in Table I,
because the ‘‘input’’ partition energies (Deir) are much
weaker here in comparison with the intrinsic inter-residue
energies; the regression coefficient is much smaller for the
partition energies than for the intrinsic inter-residue
energies. The change in ‘‘input’’ energies also causes
differences in the regression coefficients compared to Table
I. The relative error in the equilibrium distributions of
contacts compared to the actual distributions falls below
0.1. The ‘‘input’’ and predicted energies with the Bethe
approximation for partition energies are compared in
Figure 1. The solid line in the figure shows a regression
line. The relationship between the ‘‘input’’ and predicted
values for the partition energies is slightly concave instead
of being precisely linear.

Table II also shows the results where the coordination
numbers are adjusted to yield the best correlation; both
the coordination numbers and regression coefficients are
self-consistently calculated in these iterative procedures.
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The adjusted values for the coordination numbers and the
estimated values of the partition energies with the regres-
sion coefficient from the observed frequencies of contacts
are listed in Table III; the original predictions with the
Bethe approximation are listed as ‘‘Original’’ in Table III.
Method-B corresponds to a case in which interactions
among residues consist of pairwise contact energies only.
In Method-C, repulsive packing energies are taken into

account in addition to the contact energies. In Method-D,
the total interaction energies consist of contact energies,
repulsive packing energies, and secondary structure ener-
gies. Repulsive packing potentials and secondary struc-
ture potentials are estimated from the observed distribu-
tions of the numbers of residues in contact with a residue,2

or from the observed frequencies of secondary structures
in protein structures,13 by assuming the Boltzmann distri-
bution.

In order to compare these characteristics with those for
lattice proteins, correlation and regression coefficients
between ‘‘input’’ and predicted values are calculated for
both simple cubic and face-centered cubic lattices with the
contact energies newly estimated in Method-B; their val-
ues are listed in Table IV. It should be noted that the value
of the coordination number in these calculations is fixed at
the actual value, 6 or 12, for simple and face-centered cubic
lattices, respectively.

An interesting observation is the fact that adjusting the
coordination numbers to obtain the best correlation for
partition energies leads to a decrease in the relative errors
in the equilibrium frequencies of contacts compared with
the observed ones, thereby providing a justification for the
adjustment of the coordination numbers; compare the
results of Method-A and Method-B in Table II. A general
trend in the changes of the coordination numbers is that
they increase for non-polar residues and decrease for polar
residues, with only a few exceptions. However, it should be
noted that the adjustment to the coordination numbers in
Methods-B/C/D to increase the correlation between ‘‘input’’
and predicted partition energies are artificial and such
changes of the coordination numbers do not have an actual
physical basis. This is indicated by the fact that the
changes of the coordination numbers from their original
values in Method-B correlated well with the adjustments
of the coordination numbers to obtain the best correlation
in lattice monomers; the correlation coefficient of the
deviations of the optimized qi from their physical values is
about 0.85 for the pair of Method-B of Table III-A for

TABLE II. Correlations Between ‘‘Input’’Contact Energies and Values Calculated With the BetheApproximation
From the Equilibrium Distributions of Contacts, and Relative Errors in the Equilibrium Distributions

of Contacts From theActual Observed Ones†

Method

Relative errors Deir(; eir 2 err) deij(; eij 1 err 2 eir 2 erj) Deij(; eij 2 err)
0DN(i, nc) 0 / 0N(i, nc) 0
and x2 with number
of degrees of freedom

0DNij 0 / 0Nij 0
and x2 with number
of degrees of freedom

Correlation
coefficient

Regression
coefficient,

a
Correlation
coefficient

Regression
coefficient,

b
Correlation
coefficient

Regression
coefficient,

h

Method-Aa 0.116 1374 (190) 0.0884 1359 (209) 0.970 0.173 0.962 0.687 0.960 0.943
Method-Bb 0.0757 717 (171) 0.0645 752 (209) 1.000 0.305 0.947 0.643 0.988 0.930
Method-Cc 0.0707 497 (171) 0.0563 589 (209) 1.000 0.313 0.959 0.709 0.990 0.948
Method-Dd 0.0646 405 (171) 0.0698 890 (209) 1.000 0.280 0.942 0.612 0.985 0.938
†The ‘‘input’’ contact energies are ones estimated self-consistently from energies calculated with the Bethe approximation from the observed
numbers of contacts, and from the regression coefficients between ‘‘input’’ and predicted values. The same set of proteins and sampling weights as
in Miyazawa and Jernigan2 are used; the effective numbers of proteins, residues and contacts are 251, 54,617, and 114,350, respectively.
aqi are fixed at the original values in Miyazawa and Jernigan.2 Interaction energies consist of contact energies only.
bqi are optimized, and interaction energies consist of contact energies only.
cqi are optimized, and repulsive interaction energies estimated in Miyazawa and Jernigan2 are included in addition to contact energies.
dqi are optimized, and repulsive energies and secondary structure energies, both of which were estimated in Miyazawa and Jernigan,2,13 are taken
into account as well as contact energies.

Fig. 1. Comparison of ‘‘input’’ and predicted energies with the Bethe
approximation for relative partition energies, Deir (; eir 2 err). The original
values2 estimated from residue volumes are used for coordination
numbers for 20 types of residues. ‘‘Input’’ energies used here are contact
energies estimated self-consistently from the observed numbers of
contacts and from the regression coefficient between ‘‘input’’ values and
values calculated with the Bethe approximation. Only contact energies
are taken into account here; this interaction scheme corresponds to
Method-A in Table II. The solid line is the regression line.
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protein structures and length 172 of Table IV-B for face-
centered cubic lattices; note that the deviations of the
optimized qi from the actual value, 12, for face-centered
cubic lattices have no physical bases.

For values of the regression coefficients for partition
energies, protein structures appear to be more similar to
face-centered cubic lattices than to the simple cubic lat-
tices, indirectly confirming the underlying lattice type for
protein structures.38 In the case of intrinsic pairwise
energies, regression coefficients exhibit a wide range from
0.37 to 0.84, depending on the protein size, for the face-
centered cubic lattice. However, the values, about 0.5 ,
0.8, of regression coefficients in Method-B for real proteins
lie within nearly this same range.

Figure 2A shows a comparison of ‘‘input’’ and predicted
energies with the Bethe approximation for intrinsic pair-
wise energies in Method-D; the input contact energies are
those values self-consistently estimated from the observed
frequencies of contacts. Although the relationship between
the ‘‘input’’ and predicted energies is slightly convex rather
than linear, the ‘‘input’’ values are approximated by a
linear regression line. Points that deviate from the regres-
sion line in a low energy region correspond to the Cys-Cys
pair and residue pairs between positively charged resi-
dues, Lys and Arg, and negatively charged ones, Glu and
Asp. In addition to the attractive intrinsic pairwise ener-
gies for these residue pairs, repulsive interactions for
Lys-Lys and Arg-Lys are underestimated. Figure 2B shows
the comparison of ‘‘input’’ contact energies and those
estimated by assuming a linear relationship between
‘‘input’’ and predicted values for partition energies and
intrinsic pairwise energies. Although there are a few
residue pairs for which the expected values of the contact
energies deviate from their ‘‘input’’ values, the correlation
for the contact energies is higher than 0.98; see Table II.

Figure 3A shows the dependences of the regression
coefficients of ‘‘input’’ versus predicted energies for parti-
tion energies on the protein’s surface-to-volume ratios;
here only 86 non-homologous monomeric proteins are
shown. Because an approximate linearity is clearer for
monomeric proteins than for multimeric ones, they depend
also on other geometrical factors. The results for lattice
monomers show that this linearity is crude, and the
regression coefficients depend also on lattice structures
and interaction strengths; see Table IV. Generally, the
partition energies Deir(; eir 2 err) tend to be more overesti-
mated for larger proteins with the Bethe approximation,
as pointed out by Thomas and Dill.33

On the contrary, Figure 3B shows that the estimates of
intrinsic pairwise energies depend less on protein size, at
least for this set of interaction energies. The deviation of
the regression coefficients from the mean tends to be larger
for smaller proteins than for larger ones. However, the
results for Method-B and Method-C for proteins and Table
IV-B for face-centered cubic lattices, in which secondary
structure energies are not included, show that the intrin-
sic pairwise energies tend to increase with the surface-to-
volume ratio of structures, although correlations between
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them are quite weak, with correlation coefficients of about
0.6, in Method-B and Method-C.

The Effects of Other Interactions on the Estimation
of Contact Energies

Obviously, other interactions besides contact potentials
are operative in real proteins. Does the equilibrium distri-
bution of contacts better reproduce the observed one when
other interactions are taken into account? Do these signifi-
cantly change the estimation of contact energies? Here the
effects of repulsive packing potentials, secondary structure
potentials,13 and also random noise to simulate other
interactions have been examined. As shown in Table II, the
repulsive packing potentials reduce the relative error
0DNi j 0 / 0Ni j 0 as well as 0DN(i, nc) 0 / 0N(i, nc) 0 . Because the
repulsive packing potentials work to reproduce the ob-
served distributions of the number of residues in contact,
N(i, nc), it is reasonable that the relative error in their
equilibrium distributions, 0DN(i, n c) 0 / 0N(i, nc) 0 , is smaller
for Method-C than for Method-B. It is noteworthy that the
repulsive packing potentials are also effective in reducing
the relative error of 0DNi j 0 / 0Ni j 0 . However, these effects are
not detectable in the relative errors, 0Dn(i, nc) 0 / 0n(i, nc) 0
and 0Dni j 0/ 0ni j 0 , for each protein, which show little or no
change upon addition of the repulsive packing energies.
On the other hand, correlations between ‘‘input’’ and
predicted values for intrinsic pairwise energies are signifi-
cantly improved for each protein, although there is no such
trend for partition energies; Figure 4 shows a comparison
of the correlation coefficients for intrinsic pairwise ener-
gies for each of 86 non-homologous monomeric proteins.

This shows probably because the use of coordination
numbers for the maximum number of neighbors becomes
more appropriate in this situation. These results indicate
that including repulsive packing energies improves on
average the reproducibility of the observed frequencies of
contacts, and also increases the predictability of the intrin-
sic inter-residue energies.

On the other hand, secondary structure potentials are
not related directly to the distribution of contacts at all, so
that they can potentially interfere with favorable pairwise
interactions. Correlations between ‘‘input’’ and predicted
values for both types of energies, partition and intrinsic
pairwise energies, with the Bethe approximation become
significantly worse in almost all proteins for Method-D
than for the other methods; the correlation coefficients of
intrinsic pairwise energies for 86 non-homologous mono-
meric proteins are scattered mostly within a range of 0.88
to 0.96 in Method-D but 0.94 to 0.98 in Method-C. Thus,
secondary structure potentials interfere somewhat with
the pairwise interactions. This small incompatibility be-
tween secondary structure interactions and pairwise ter-
tiary structure interactions is also reflected in the increase
of matched identical residues between equilibrium struc-
tures and the native proteins. The average proportion of
such identical residues increases almost by a factor of 2
due to secondary structure energies; the ratio of identical
residues is mostly within a range of 0.06 to 0.17 for
Method-C and 0.12 to 0.35 for Method-D. On the other
hand, the decrease in variabilities of residues may reduce
relative errors in the predicted distribution of the number
of residues in contact. Actually, the relative error is

TABLE IV. Correlations Between ‘‘Input’’ and Predicted Values for Relative Partition Energies (Deir)
and Intrinsic Inter-Residue Energies (deij) From the Equilibrium Distributions

ofAminoAcid Mixtures in the Most Compact Configurations on Lattices†

A. Simple cubic lattice

Number of residues nr0/(qrnr/2)*
Deir(; eir 2 err) deij(;eij 1 err 2 eir 2 erj)

Correlation coefficient Regression coefficient Correlation coefficient Regression coefficient

64 0.25 0.991 1.13 0.995 0.97
125 0.20 0.987 0.95 0.992 0.89
216 0.17 0.985 0.85 0.990 0.86
343 0.14 0.984 0.80 0.991 0.84
512 0.12 0.983 0.75 0.990 0.83
729 0.11 0.982 0.72 0.990 0.84

B. Face-centered cubic lattice

Number of residues nr0/(qrnr/2)*
Deir(; eir 2 err) deij(; eij 1 err 2 eir 2 erj)

Correlation coefficient Regression coefficient Correlation coefficient Regression coefficient

63 0.37 0.993 0.38 0.971 0.84
108 0.31 0.992 0.35 0.942 0.65
172 0.27 0.994 0.32 0.914 0.54
256 0.23 0.993 0.29 0.890 0.47
365 0.21 0.993 0.28 0.870 0.43
500 0.19 0.993 0.26 0.853 0.39
666 0.17 0.994 0.25 0.838 0.37

†In these calculations, the value of the coordination number is fixed at the actual value, 6 for simple cubic lattices or 12 for face-centered cubic
lattices. The self-consistently estimated values of contact energies in Method-B are used as ‘‘input’’ nearest neighbor interactions. Relative
temperature Trel is taken to be one.
*nr ; o

i51
ni and qr nr ; o

i51
qi ni.
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reduced significantly for all proteins and also for each
monomeric protein; see Table II and Figure 5. Even for the
frequencies of residue pairs in contact, its relative error for

each monomeric protein is slightly improved, although the
relative error over all proteins is rather larger for Meth-
od-D than for Method-C in Table II.

The effects of repulsive packing interactions and second-
ary structure interactions on the estimate of contact
energies are found in Table II for intrinsic pairwise

Fig. 2. (A) Comparison of ‘‘input’’ energies and energies calculated
with the Bethe approximation for intrinsic pairwise energies,
deij(; eij 1 err 2 eir 2 erj). The solid line shows the regression line. (B)
Comparison of ‘‘input’’ energies and energies estimated from the regres-
sion coefficient between ‘‘input’’ values and values predicted with the
Bethe approximation, for Deij(; e ij 2 err); see Eq. 30. The dotted line
indicates equal values for both coordinates. The coordination number for
each type of residue is adjusted to yield the best correlation for the
partition energies. ‘‘Input’’ energies used here are contact energies
self-consistently estimated from the observed numbers of contacts and
the regression coefficient between ‘‘input’’ values and values calculated
with the Bethe approximation. Here interaction energies consist of contact
energies, repulsive packing energies, and secondary structure energies;
this interaction scheme corresponds to Method-D in Table II.

Fig. 3. Dependences of the regression coefficients of ‘‘input’’ versus
predicted values, (A) a for the partition energies and (B) b for the intrinsic
pairwise energies, on the surface-volume ratios, nr0/(qrnr/2), of monomeric
proteins; nr ; o

i51 ni and qr nr ; o
i51 qi ni. A solid line in (A) shows the

regression line of 0.81nr 0/ (qrnr /2) 2 0.03. Correlation coefficients are
0.84 for (A) and 0.03 for (B). All interactions, contact energies, repulsive
packing energies and secondary structure energies, are included to
generate the equilibrium ensemble for each protein; this interaction
scheme corresponds to Method-D in Table II. Here, only 86 non-
homologous monomeric proteins2 are shown.
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energies and in Table III for partition energies. Eqs. 23, 24,
31, and 32 in the Materials and Methods section indicate
that partition energies depend on both a regression coefficient
and coordination numbers, but intrinsic pairwise energies
depend only on a regression coefficient. Table II shows that the
regression coefficient for intrinsic pairwise energies does not
change much among Method-B, C, and D; its value is 0.64 for
Method-B, 0.71 for Method-C, and 0.61 for Method-D. Thus,
repulsive packing interactions and secondary structure inter-
actions do not much affect the estimates of intrinsic pairwise
energies from the observed distributions of contacts. Likewise,
the addition of repulsive packing energies does not change
significantly the estimates of the partition energies for the 20
types of amino acids except for Trp. The effects of secondary
structure energies are typically reflected in the change of the
partition energy of Gly. That is, the addition of secondary
structure energies makes the estimate of the partition energy
of Gly less positive, because Gly tends to be located on protein
surfaces in order to build specific secondary structures such as
turns or bends. Generally, the estimates of partition energies
become slightly less negative for non-polar amino acids and
less positive for polar amino acids. This is interesting, because
this feature shows a consistency between secondary structure
interactions and tertiary interactions.

Interactions not considered here may be regarded as
random noise. A noise with a uniform distribution in the
energy range of 20.5 to 0.5 is added to the contact energy
for each contact; this energy range is almost equal to the
range of Dei j. In another case, the same strength of noise is
added to the secondary structure energies. Both types of
noise do not affect at all our estimates of contact energies,
and also do not even change the correlation between ‘‘input’’

and predicted energies for each protein. This is probably
because equilibrium ensembles rather than minimum energy
structures are employed to predict contact energies.

Can the Distribution of Contacts Be Approximated
as the Equilibrium Mixture of Contacts?

In order to assess the assumption of equilibrium mix-
tures for the distribution of contacts, the equilibrium

Fig. 4. Effects of repulsive interactions on the correlation coefficients b
of ‘‘input,’’ de i j

input, versus predicted values, dei j
pred, for intrinsic pairwise

energies. The abscissa and ordinate values correspond to Method-B and
Method-C in Table II, respectively. Only 86 non-homologous monomeric
proteins2 are shown here.

Fig. 5. Effects of secondary structure interactions on (A) 0Dn(i, nc) 0
/ 0n(i, nc) 0 , the relative errors in the predicted frequencies of the number of
contact residues in each protein, and (B) 0Dnij 0 / 0nij 0 , the relative errors in
the predicted frequencies of inter-residue contacts in each protein; see
Eqs. 43–44 for the definitions. The abscissa and ordinate values corre-
spond to Method-C and Method-D in Table II, respectively. Only 86
non-homologous monomeric proteins2 are shown here.
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distribution of contacts is compared with the actual distri-
bution. In Figure 6, the dependences of the relative errors
of the equilibrium distributions on the total number Nrr of
contacts by adding proteins one by one, are shown only for
the frequencies of residue pairs in contact; Method-D in
Table II is used here to estimate contact energies and to
generate the equilibrium distributions of contacts. An
interesting fact is that in the range of Nrr , 104 both types
of relative errors, 0DN(i, nc) 0 / 0 N(i, nc) 0 and 0DNi j 0 / 0Ni j 0 ,
have power dependences of 20.45 and 20.43 on the total
number of contacts Nrr, respectively. These power depen-
dences almost coincide with that of random sampling
errors, 20.5. However, these relative errors attain a limit,
about 0.08 at the sample size of Nrr , 104.5. The x2 value of
the equilibrium distributions of contacts for each method
in Table II is significantly larger than the 5% limit.
Because the x2 values should be roughly proportional to
0DN(i, nc) 02/ 0N(i, nc) 0 or 0DNi j 02/ 0Ni j 0 , the x2 values will
remain constant in the range of Nrr , 104 but will then
increase with Nrr beyond the 5% limit. Although the
observed distributions of contacts cannot precisely be
regarded as the equilibrium distributions with the inter-
residue contact energies newly estimated here, they can be
approximated with relative errors below 0.1 as the equilib-
rium mixture of residues in protein structures. The match
between the observed and equilibrium frequencies of con-
tacts may be improved with better estimates of contact
energies.

Here the same set of proteins is used to estimate contact
energies and also to assess the assumption of equilibrium

mixtures for the distribution of contacts, because the
present purpose is not to examine the dependence of
contact energies on data but to test whether the observed
distribution of contacts can be regarded as an equilibrium
mixture of contacts. It was confirmed2 that values2 of
contact energies calculated with the Bethe approximation
from the present set of proteins do not significantly change
from those1 calculated from the smaller set of proteins,
18,192 contacts. This is consistent with the fact that, as
indicated by Figure 6, the estimates of contact energies
can hardly be improved by employing more contacts than
Nrr , 104.5.

The dependence of the relative errors in the predicted
distribution of the number of contact residues and that in
the predicted frequencies of contact residue pairs on the
number of samples, i.e., the total number of contacts, nrr,
in a protein has also been considered. The slopes of the
regression lines in these log-log plots indicate 0Dn(i, nc) 0 /
0n(i, n c) 0 ~ nrr

20.21 and 0Dni j 0/ 0ni j 0 ~ nrr
20.28; Method-D in Table

II is also used here to estimate contact energies and to
generate the equilibrium distributions of contacts. These
power dependences are almost half as large as for random
sampling errors, probably because of the effects of chain
connectivity.

Characteristics of Newly Estimated
Contact Energies

The newly estimated values of relative contact energies
with Eqs. 31–34 in Method-D are listed in Table V. The
most remarkable change in the relative contact energies
(Dei j) from the original values directly predicted with the
Bethe approximation is that the new estimates are re-
duced to only about 30% of their original estimates. Also
the new estimates of relative partition energies (Deir) are
less than 30% of the original estimates. On the other hand,
intrinsic pairwise energies (dei j) are estimated to be about
60% of their original values. Since the original estimates of
the partition energies are about twice the hydrophobic
energies of Nozaki and Tanford,39 the present estimates
come closer to being about half of their hydrophobic
energies, with the energies measured relative to that of
glycine. This is a puzzle at present. On the other hand,
there are more reasonable features apparent in the pres-
ent estimate than in the original one. Cys–Cys pairs are
the most attractive in the present estimate, but most
non-polar residue pairs had lower contact energies than
the Cys–Cys pair in the original estimate. This change is
caused by two kinds of changes in the energy estimation.
First, the proportion of the partition energy in the contact
energy is much lower in the present scheme than in the
original estimate with the Bethe approximation; in Table
II, the regression coefficient a of the partition energy is
smaller than that of the intrinsic pairwise energy. Second,
the estimate of the partition energy for Cys is about as
negative as for other non-polar residues; compare the
partition energies for Method-A with those for other
methods in Table III-B.

Another remarkable change is that the relative contact
energies (Dei j) for residue pairs between charged residues

Fig. 6. Dependences of the relative errors in the predicted frequencies
of inter-residue contacts, 0DNij 0 / 0Nij 0 , on the total number Nrr of contacts
accumulated by adding proteins; see Eq. 44 for the definition. The dotted
line corresponds to 5.8Nrr

20.43. This predicted distribution is an equlibrium
distribution generated with the contact energies estimated by Method-D in
Table II, including repulsive packing energies and secondary structure
energies.
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TABLE V. Contact Energies in RT Units Estimated by Method-D; Deij(; eij 2 err) for Upper Triangular Half and Diagonal
and deij(B eij 1 err 2 eir 2 erj) for Lower Triangular Half. These Energies Come from Method-D in Table II

CYS MET PHE ILE LEU VAL TRP TYR ALA GLY THR SER GLN ASN GLU ASP HIS ARG LYS PRO

21.19 20.61 20.67 20.64 20.65 20.59 20.66 20.39 20.33 20.31 20.15 20.13 20.07 20.01 0.20 0.12 20.36 0.08 0.33 20.18 CYS
CYS 20.54 20.70 20.83 20.66 20.70 20.51 20.73 20.56 20.27 20.17 20.11 0.05 20.06 0.04 0.12 0.30 20.29 0.03 0.29 20.13 MET
MET 20.03 20.19 20.88 20.73 20.80 20.67 20.68 20.58 20.36 20.19 20.15 20.12 20.11 20.01 0.14 0.18 20.34 20.05 0.19 20.19 PHE
PHE 20.02 20.24 20.22 20.74 20.81 20.67 20.60 20.49 20.37 20.13 20.15 0.03 20.01 0.14 0.17 0.22 20.13 0.00 0.24 20.05 ILE
ILE 20.03 20.13 20.11 20.18 20.84 20.74 20.62 20.55 20.38 20.16 20.15 20.02 20.04 0.04 0.17 0.27 20.18 20.04 0.22 20.12 LEU
LEU 20.00 20.12 20.14 20.20 20.19 20.65 20.51 20.38 20.32 20.15 20.07 0.04 0.08 0.12 0.26 0.36 20.06 0.08 0.29 20.05 VAL
VAL 20.03 20.03 20.11 20.16 20.19 20.20 20.64 20.49 20.27 20.25 20.02 20.01 20.02 20.10 20.00 0.07 20.37 20.21 0.09 20.37 TRP
TRP 20.06 20.21 20.08 20.05 20.03 20.02 20.11 20.45 20.20 20.22 20.09 20.08 20.14 20.11 20.08 20.07 20.30 20.25 20.05 20.25 TYR
TYR 0.16 20.08 20.02 0.02 0.00 0.08 0.01 0.00 20.12 20.08 0.04 0.10 0.22 0.15 0.38 0.27 0.07 0.24 0.41 0.15 ALA
ALA 0.01 0.00 20.02 20.07 20.04 20.07 0.01 0.05 20.09 20.29 20.04 20.01 0.13 20.01 0.32 0.11 0.00 0.09 0.29 0.02 GLY
GLY 0.03 0.10 0.16 0.17 0.18 0.09 0.03 0.03 20.05 20.26 0.03 0.04 0.12 0.04 0.16 0.11 20.03 0.11 0.33 0.13 THR
THR 0.12 0.09 0.13 0.08 0.13 0.10 0.19 0.08 0.00 20.08 20.08 0.05 0.22 0.09 0.18 0.10 0.04 0.16 0.36 0.20 SER
SER 0.08 0.19 0.10 0.20 0.20 0.16 0.15 0.04 0.00 20.10 20.13 20.17 0.20 0.06 0.27 0.24 0.15 0.09 0.28 0.17 GLN
GLN 0.10 0.04 0.07 0.12 0.14 0.15 0.09 20.06 0.08 20.01 20.09 20.04 20.10 20.06 0.12 0.02 0.00 0.10 0.22 0.18 ASN
ASN 0.21 0.19 0.22 0.32 0.26 0.25 0.06 0.02 0.07 20.10 20.12 20.12 20.20 20.27 0.46 0.44 0.00 20.22 20.06 0.37 GLU
GLU 0.31 0.16 0.26 0.24 0.28 0.27 0.05 20.07 0.18 0.13 20.11 20.14 20.10 20.19 0.03 0.29 20.10 20.24 20.01 0.33 ASP
ASP 0.26 0.37 0.33 0.32 0.41 0.41 0.15 20.03 0.10 20.06 20.13 20.20 20.10 20.27 0.04 20.08 20.40 0.05 0.38 0.01 HIS
HIS 20.01 20.02 0.00 0.18 0.17 0.19 20.08 20.05 0.10 0.04 20.06 20.06 0.02 20.08 20.19 20.26 20.36 0.19 0.66 0.17 ARG
ARG 0.33 0.21 0.20 0.21 0.21 0.22 20.03 20.10 0.18 0.02 20.03 20.04 20.14 20.08 20.52 20.51 20.02 0.03 0.76 0.47 LYS
LYS 0.35 0.24 0.22 0.23 0.24 0.22 0.05 20.12 0.13 0.01 20.02 20.05 20.17 20.18 20.58 20.49 0.10 0.28 0.16 0.11 PRO
PRO 0.03 0.01 0.03 0.12 0.09 0.06 20.22 20.13 0.05 20.08 20.03 20.02 20.10 20.04 0.04 0.03 20.08 20.03 0.05 20.11
eir 2 err 20.32 20.25 20.33 20.28 20.32 20.23 20.27 20.23 20.02 20.02 0.05 0.11 0.15 0.10 0.21 0.19 20.02 0.08 0.30 0.11



(Glu, Asp, Arg, and Lys) and non-polar residues (Met, Phe,
Ile, Leu, and Val) were negative in the original estimate
but become positive in the present estimate. This is caused
by the smaller contribution of the partition energies in the
present contact energies. Negative energies for the oposite
charge pairs Arg-Glu and Arg-Asp in the present estimate
are also more reasonable than the positive energies of the
original estimate.

Simple Threading With Newly-Estimated
Contact Energies

It has been examined how the present estimate of
contact energies affects the recognition of the correct pairs
of native sequences and structures compared with other
non-native sequence–structure pairs, by doing conven-
tional threading and inverse threading simulations as
described in Miyazawa and Jernigan.2,13 A set of proteins
each of which represent a different protein fold was
prepared. For each protein in this set, we examine whether
the pair of native sequence and structure is recognizable
over other non-native sequences or structures. Release
1.35 of the SCOP database40 is used as a classification of
protein folds. Another set of proteins is also prepared to
provide non-native sequences or structures. This set of
proteins consists of single protein representatives from
each domain defined in the SCOP database.

These representatives of families or domains are the
first entries in the protein lists of each family or each
domain in SCOP; if these first proteins in the lists are not
appropriate to use for the present purpose, then the second
ones are chosen. These families and domains are all those
which belong to the protein classes 1 to 5; that is, classes of
all a, all b, a/b, a 1 b, and multi-domain proteins. Classes
of membrane and cell surface proteins, small proteins,
peptides and designed proteins are not used. Proteins
whose structures were determined by NMR or with resolu-
tion worse than 2.5 Å are removed. Also, proteins whose
coordinate sets either consist of only Ca atoms, include
many unknown residues, or lack many atoms or residues,
are removed. Proteins shorter than 50 residues are also
removed.

In the SCOP database, protein domains whose se-
quences are highly homologous may be classified into the
same domains, and protein domains whose structures are
extremely similar may belong to different domains al-
though in the same family. Therefore, protein pairs, which
are more similar than 0.9 sequence identity, or whose
structures are more similar than 1 Å r.m.s.d. (root mean
square deviation), are also removed from the set of domain
representatives. As a result, the set of family representa-
tives includes 440 proteins and the set of domain represen-
tatives has 988 proteins.

Each protein sequence of family representatives is
threaded into the protein structures of domain representa-
tives in the conventional threading case, or the sequences
of domain representatives are threaded into each struc-
ture of family representatives in the inverse threading
case in order to examine if these structures can recognize
the native sequences. The total energy score,2,13 DEc(Dei j)

(; Ec(Dei j ) 2 7Ec(Dei j)8) that is defined as the total relative
contact energies (Ec(Dei j) 5 Si jni j Dei j) relative to the
average energy of native proteins (, Ec(Dei j) . ), is calcu-
lated for protein sequences threaded at all possible posi-
tions in all other protein structures, and their means and
standard deviations are calculated; no gaps in either the
sequences or the structures are allowed. Total energy
scores are calculated for multimeric states only if the
coordinates of the other bound subunits are given in the
PDB file.37 Then, the positions of the native energies in the
distributions of all threadings, i.e., z-scores, are measured
in units of standard deviation (s.d.) where larger negative
values indicate that the native energies are further below
the mean.

Figure 7 shows how the present new estimate of contact
energies discriminates native structures from other non-
native folds with conventional threading to compare with
the previous estimate.2 The ordinate gives z-scores calcu-
lated with the values of contact energies estimated by
Method-D in Table II, and the abscissa is for the previous
estimate. In the conventional threading case, z-scores for
almost all proteins are significantly higher with the pres-
ent estimate of contact energies than with the previous
estimate, although such improvements are not observed in
the case of inverse-threading case. This fact supports the
present estimates in which the proportion of partition

Fig. 7. Comparison of the effects of contact energies on the discrimi-
nation of native structures from other non-native folds with a given
sequence. Both ordinate and abscissa show z-scores that are defined as
the total energy scores per residue DEc(Deij)/ nr of proteins,2,13 in standard
deviation units from the mean in the energy distribution of random
threadings. The previous estimate of contact energies2 is used on the
abscissa and the present estimate with Method-D in Table II is used on the
ordinate. 440 proteins each of which represents a protein family in
Release 1.35 of SCOP database40 are threaded into each of 988 proteins
each of which represents a protein domain defined in SCOP. See text for
details.
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energies present in the contact energies is reduced in
comparison with the previous estimates. However, it should
be noted here that with this consideration of z-scores one
cannot consider the magnitudes of contact energies.

DISCUSSION

It has been pointed out33,34 that statistical potentials
should be tested with respect to their self-consistency to
see if ‘‘input’’ potentials can be reproduced. Thomas and
Dill33 found several discrepancies between ‘‘input’’ poten-
tials and extracted potentials using both the methods of
Miyazawa and Jernigan1 and Sippl.5 Dependences of ex-
tracted energies on the surface-to-volume ratio of a protein
and/or the differences in apparent temperatures for pro-
teins are among those which are also confirmed here. In
other words, the regression coefficient of the partition
energies between ‘‘input’’ and predicted energies, which
corresponds to an apparent temperature, depends on the
surface-to-volume ratio of a protein. Simulations on lat-
tices and on protein structures here indicate that this is
certainly one limitation of the Bethe approximation, when
it is applied to such small systems; the fact that the Bethe
approximation cannot reproduce the surface-to-volume
ratio of proteins was pointed out in our original paper.1

Thomas and Dill33 asserted from this negative evidence
that the statistically extracted potentials are not an accu-
rate approximation of the true potentials. This conclusion
contrasts with the result of Mirny and Shakhnovich34

showing that procedures1,2,4 based on the Bethe approxima-
tion can extract potential with impressive accuracy.

This difference comes from the negative emphasis of
Thomas and Dill33 compared to the more positive attitude
of Mirny and Shakhnovich.34 In fact, the correlations
between ‘‘input’’ and predicted energies are mostly remark-
ably high, at least for a reasonable range of contact
energies; see Tables I, II, and IV. Here we have utilized
these positive features of the Bethe approximation, in
order to statistically estimate contact energies.

Mirny and Shakhnovich34 showed how to a large extent,
applications of pairwise interactions can yield native-like
character, not only the lowest energy state for native
structures but also large energy gaps, i.e., for the foldabil-
ity of native structures. Our purpose here is to reproduce
actual pairwise interactions between residues in protein
structures, but not to optimize pairwise interactions to
design native structures. If these are not sufficient to
design foldable proteins as they pointed out, then other
interactions that are physically present and responsible
for protein folding must be sought.

Energy gaps, which can be a measure of protein foldabil-
ity, were defined by Mirny and Shakhnovich34 as gaps
between the lowest energy and the average energy over all
compact structures. Because the average energy of all
feasible compact structures depends only slightly on se-
quence but mostly only on amino acid composition, lower
energy structures correspond to structures with larger
energy gaps. Therefore, sequences in equilibrium consist
of those with relatively large energy gaps and thus have
relatively high foldabilities.

A theory was proposed41,42 to explain why the statistics
of globular structures are Boltzmann-like. It is phenomeno-
logically known that the distributions of secondary struc-
tures in protein structures are Boltzmann-like. However,
the present results on the reproducibility of contact ener-
gies by the Bethe approximation show that even in residue
mixtures interacting with contact energies, the equilib-
rium distribution of contacts is Boltzmann-like but the
relative temperatures of the Boltzmann factors are differ-
ent for partition energies and intrinsic pairwise energies.
This temperature also depends, among other things, on
the surface-to-volume ratio of a protein.

Here a more basic question, i.e., whether or not the
observed distributions of contacts are well approximated
by the equilibrium distributions of residue mixtures inter-
acting with pairwise contact energies, has been examined
by comparing their distributions to one another. The
relative errors of the equilibrium distributions depend on
the number of samples roughly in the form of Nrr

20.43, which
is close to the form of Nrr

20.5 expected for random sampling;
see Figure 6. However, the relative errors become almost
constant at a sample size of Nrr , 104.5 and cannot be
improved by utilizing larger samples, indicating a limita-
tion to the estimation of contact energies and/or other
higher order interactions not considered. The effects of
chain connectivity on the distribution of contacts are also
indicated by the power dependence of the relative errors on
the number of contacts for individual proteins which is
20.28, much smaller than the value 20.43 for a large set of
proteins.

In this paper, a linear regression is used to correct
intrinsic inter-residue energies calculated with the Bethe
approximation and then to derive contact energies, which
are calculated from corrected partition energies and intrin-
sic pairwise energies; see Eqs. 29, 30. Estimating intrinsic
pairwise energies or contact energies by higher order
polynomials rather than with a linear equation could
improve the estimation of contact energies, especially for
Cys–Cys and charged residue pairs; see Figure 2. Cys and
charged residues (Glu, Asp, Arg, and Lys) have relatively
large x2 values for the agreement of the frequencies of
residue pairs in contact, Ni j. Such an improvement might
yield a better match between the observed and equilibrium
frequencies of contacts especially for these residues.

Also, the reference state for inter-residue contacts, i.e.,
Ci j in Eqs. 23, 24, is always assumed to be a random
mixture of residues, but it should be set up for Method-D to
include secondary structure interactions in the reference
state. This might also improve correlations between ‘‘in-
put’’ and predicted values with the Bethe approximation in
Method-D.

Some contributions to the frequencies of contacts ig-
nored here are chain connectivity43 and interactions such
as long-range electrostatic interactions, hydrogen bonding
interactions, and interactions of higher order44 than two-
body. The present analyses indicate that the observed
distributions of contacts could be approximated with a
relative error less than 0.1 by their equilibrium distribu-
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tions if distributions for many proteins rather than for
single proteins are considered.

It was suggested35 that the over-emphasis of hydropho-
bic energies is responsible for the (relatively) poor perfor-
mance of the contact potentials of Miyazawa and Jernigan1

for the recognition of near-native folds. Actually the pre-
sent estimate of contact energies, in which partition
energies and intrinsic pairwise energies are better bal-
anced, is shown to increase the capability of discriminat-
ing native folds from other non-native folds; see Figure 7.
However, energy differences among residue pairs in the
present estimate of contact energies are only about half of
the hydrophobic energy changes estimated from the experi-
mental values of hydrophobic energies for residues.

CONCLUSION

Here pairwise contact energies for 20 types of residues
have been self-consistently estimated in the approxima-
tion of equilibrium mixtures of residues for proteins. First,
by comparing ‘‘input’’ and energies predicted with the
Bethe approximation (quasi-chemical approximation) for
the equilibrium mixtures of residues interacting with
‘‘input’’ contact energies, the reproducibilities of ‘‘input’’
contact energies with this approximation are examined. In
this system, the intrinsic pairwise energies and the (rela-
tive) partition, hydrophobic energies can be predicted by
the Bethe approximation. Calculations for amino acid
mixtures on lattices and in protein structures indicate that
correlations between ‘‘input’’ and values predicted for both
types of energies are sufficiently high, better than 0.9 for
most proteins, but regression coefficients themselves de-
pend on lattice or protein structures, as well as interaction
strengths. Because of these high correlations, ‘‘input’’
contact energies can be estimated well from the predicted
values and the regression coefficient. Because of the depen-
dences of the regression coefficients on interaction
strengths, contact energies are self-consistently estimated
from the actual observed frequencies of contacts with
regression coefficients obtained by comparing ‘‘input’’ and
predicted values for the equilibrium mixtures of residues
generated with the contact energies taken as the true ones.
Coordination numbers are optimized to obtain the best
correlation between ‘‘input’’ and predicted values for parti-
tion energies. Other interactions such as repulsive packing
energies, secondary structure energies, and random noise
are added to generate equilibrium mixtures of residues,
and their effects on the estimation of contact energies are
examined.

The contact energies self-consistently estimated indi-
cate that the partition energies predicted with the Bethe
approximation may be reduced by a factor of about 0.3 and
the intrinsic pairwise energies by a factor of about 0.6,
decreasing the contribution of the partition energies. This
new estimate of contact energies, in which the proportion
of partition energies is much less than in the predicted
values with the Bethe approximation, increases the capa-
bility for discriminating native structures from other
non-native folds.

The equilibrium mixture approximation of residues for
proteins is supported at least to the extent that the
observed frequencies of residue pairs in contact can be
approximated with a relative error of about 0.08, if many
proteins are employed to collect more than 20,000 con-
tacts. The inclusion of repulsive packing interactions2 and
secondary structure interactions13 further reduces the
relative errors.

APPENDIX
Differences Between the Present Contact Energies
and Sippl’s Type of Pairwise Potentials
of Mean Force

Sippl5 defined a net potential, DEk
i j(d), between i and j

types of amino acids as the potential, Ek
i j(d) of mean force

relative to the overall potential, and Ek(d), of mean force:

DEk
i j(d ) ; Ek

i j(d ) 2 Ek(d ) 5 2ln
f k

i j(d )

fk(d )
(45)

where f k
i j(d) is the probability that i and j types of amino

acids, separated by k residues in protein sequence, are
located at the distance d in protein structures. fk(d) is such
a probability over all types of amino acid pairs. The
pairwise potentials devised by Kocher et al.12 and Nishi-
kawa and Matsuo16 are essentially the same as Sippl’s.

From this definition, the following equation can be
derived; in the following the subscript ‘‘k’’ that represents
the length of separation in the amino acid sequence is
omitted for simplicity:

DEi j(d ) 1 DErr(d ) 2 DEir(d ) 2 DErj(d )

5 2ln 312ni j(d )

ninj
2 /1 2nrr(d )

nr(nr 2 1)24 1 ln 31 2nir(d )

ni(nr 2 1) 2 /1
2nrr(d )

nr(nr 2 1)24
1 ln 31 2nrj(d )

(nr 2 1)nj
2 /1 2nrr(d )

nr(nr 2 1)24 . 2 ln 3 ni j(d)nrr(d )

nir(d )nr j(d ) 4
5 ei j(d ) 1 err(d ) 2 eir(d ) 2 er j(d ). (46)

Here the numbers of contacts and contact energies are
expressed as functions of distance. That is, 2ni j(d) is the
number of amino acid pairs of i and j types at distance d.
nir(d) is the sum of ni j(d) over all amino acid types, j. The
bar designates the statistical average. ni is the number of i
type amino acids, and nr is the total number of amino
acids. ei j(d) is an interaction energy between i and j types
of amino acids at distance d, and is defined in the same
way as Eq. 9a of Miyazawa and Jernigan:1

ei j(d ) ; 2 ln1 ni j(d )n00(d )

ni0(d )n0 j(d ) 2 (47)

where the subscript 0 means solvent molecules (water).
Here it should be noted that the equation above is the
definition for ei j(d), but is no longer in accord with the
Bethe approximation for the contact energies, ei j.
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Another useful expression that clarifies the relation-
ships between Sippl’s potential DEk

i j(d) and contact ener-
gies ei j is as follows:

ei j(d ) 2 err(d ) . DEi j(d ) 1 DEi(d ) 1 DE j(d ) (48)

eir(d ) 2 err(d ) 5 DEir(d ) 1 DEi(d ) (49)

where DEi(d) corresponds to the relative hydrophobic
energy for a pair of amino acids one of which is i type and
the other of which is located at distance d, and is defined as

DEi(d ) ; 2ln 31 nr0(d )

nr
2 /1 ni0(d )

ni
24 . (50)

Thus, in comparison with ei j(d), Sippl’s potential DEk
i j(d)

does not include the hydrophobic energies DEi(d) as well
as the collapse energy err(d).

When the distance d in Sippl’s potential is coarse-
grained and is categorized into two classes of contact and
non-contact, ei j(d # Rc) must be equal to ei j that is the
contact energy defined by Eq. 5a of Miyazawa and Jerni-
gan1; here Rc is the maximum distance defining residue
pairs as pairs in contact:

ei j(d # Rc) 5 ei j (51)

; Ei j 1 E00 2 Ei0 2 E0 j (52)

where Ei j is the absolute contact energy between i and j
types of amino acids. The total energy is represented in the
scheme of contact energies by

Etotal 5 o
i

o
j

Ei jni j 5 o
i

(2Ei0 2 E00)qini /2

1 errnrr 1 o
i

o
j

(ei j 2 err)ni j (53)

where qi is the coordination number for a i type amino acid.
The second and third terms depend on protein conforma-
tions, but the first term does not.

These relations, specifically Eq. 48, indicate that the
conformational energy of a protein could be represented in
the scheme of Sippl’s potential as

E conf 5 o
d

err(d )nrr(d )

1 o
d

o
i

o
j

(ei j(d ) 2 err(d))ni j(d ) (54)

5 o
d

err(d )nrr(d )

1 o
d

o
i

o
j

(DEi j(d ) 1 DEi(d ) 1 DE j(d ))ni j(d ). (55)

Thus, at least including the hydrophobic energies DEi(d) is
required to estimate correctly conformational energies of
proteins, and even for fold recognition. Energies corre-

sponding to DEi(d) were not taken into account either in
the identification of native protein folds46 or in the detec-
tion of native-like folds.9 A missing term in Sippl’s poten-
tial was also pointed out by Sippl45 himself.

Jones et al.10 used the following type of formula for
relative hydrophobicities of the 20 types of residues:

DEi(h) ; 2 ln 1 f i(h)

f (h) 2 (56)

where f i(h) is the fraction of i type residues with residue
accessibility h, and f (h) is that fraction for all residue
types. Kocher et al.12 also used the same formula but
employed the accessible surface area of a residue as the
variable h. On the other hand, Nishikawa and Matsuo16

employed as h the number of residues within a certain size
shell surrounding a given residue. These expressions for
relative hydrophobicity, which were used together with
Sippl’s type of pairwise potentials for fold recognition, do
not exactly correspond to the present expression for rela-
tive hydrophobic energy that is required together with
Sippl’s type of pairwise potentials.

Finally, it should be noted that the Bethe approximation
supports Eq. 47 and Eq. 52 only for nearest-neighbor
interactions but does not assure the rationality of the
equation, ei j(d) 5 Ei j(d) 1 E00(d) 2 Ei0(d) 2 E0j(d), for any
distance beyond nearest neighbor contacts. How well Eq.
55 can approximate actual interaction energies between
residues in proteins is unknown. The potentials of mean
force, DEi j(d) and DEi(d), include the effects of many body
interactions in proteins. High frequencies for certain amino
acid pairs of i and j types at distances corresponding to a
next-neighbor shell can result from favorable nearest-
neighbor interactions between i and k types of amino acids
and between k and j types. As a result, including the
potentials of mean force for distant amino acid pairs
beyond the nearest neighbors might improve the estimates
of conformational energies but also could cause them to
become worse by including many body effects. All interac-
tions between amino acids in proteins have short range
components including hydrophobic interactions, hydrogen
bonding, van der Waals interactions, and electrostatic
interactions; whereas only electrostatic interactions can
have long range effects. As a result of the large number of
short range interactions compared to long range ones, the
short range terms are likely to be dominant.
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