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ABSTRACT A primary and a secondary neural
network are applied to secondary structure and
structural class prediction for a database of 681
non-homologous protein chains. A new method of
decoding the outputs of the secondary structure
prediction network is used to produce an estimate
of the probability of finding each type of secondary
structure at every position in the sequence. In addi-
tion to providing a reliable estimate of the accuracy
of the predictions, this method gives a more accu-
rate Q3 (74.6%) than the cutoff method which is
commonly used. Use of these predictions in jury
methods improves the Q3 to 74.8%, the best available
at present. On a database of 126 proteins commonly
used for comparison of prediction methods, the jury
predictions are 76.6% accurate. An estimate of the
overall Q3 for a given sequence is made by averaging
the estimated accuracy of the prediction over all
residues in the sequence. As an example, the analy-
sis is applied to the target b-cryptogein, which was a
difficult target for ab initio predictions in the CASP2
study; it shows that the prediction made with the
present method (62% of residues correct) is close to
the expected accuracy (66%) for this protein. The
larger database and use of a new network training
protocol also improve structural class prediction
accuracy to 86%, relative to 80% obtained previ-
ously. Secondary structure content is predicted with
accuracy comparable to that obtained with spectro-
scopic methods, such as vibrational or electronic
circular dichroism and Fourier transform infrared
spectroscopy. Proteins 1999;35:293–306.
r 1999 Wiley-Liss, Inc.
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INTRODUCTION

Secondary structure prediction is a useful first step in
understanding how the amino acid sequence of a protein
determines the native state. The most accurate secondary
structure prediction algorithms are based on neural net-
works1,2 and nearest-neighbor algorithms.7,27 Methods
trained and tested on groups of aligned, homologous
sequences, as compiled in the HSSP database,3 are more
accurate than methods trained and tested on single se-
quences.4 The most accurate network methods currently

available have three-state prediction accuracy (cross-
validated on large databases of non-homologous se-
quences) of over 72%.5,6 Accuracy of almost 75% has been
reached on a dataset in which very short helices and
strands are considered to be coil;7 this method does not
perform as well when accuracy is measured by correlation
coefficients8 rather than percent of correct predictions.

Other aspects of protein structure, such as the struc-
tural class,9 can also be predicted using neural networks
and other methods. Secondary structure predictions alone
can be used to assign proteins to one of four broad classes
(All-a, All-b, a/b, and Other) with 75% accuracy.5 Neural
networks trained on secondary structure predictions, as
well as other information such as the amino acid composi-
tion and sequence length, can improve this result to 80%.6

The network can always eliminate one or more classes as
possible candidates for a given sequence with 98% accu-
racy. Use of the latter result to construct specialized
training sets for secondary structure prediction networks
according to the predicted structural class results in a
slight increase in accuracy.6

To use neural network algorithms for the prediction of
the secondary structure of a new sequence, it is important
to know the reliability of the prediction. Thorough cross
validation on a large set of non-homologous proteins
provides an estimate of the average accuracy expected for
new sequences.10,11 However, results on individual se-
quences (or small prediction sets) can vary signifi-
cantly.10–12 Therefore, it is desirable to be able to estimate
the accuracy of a prediction for a given sequence, or
particular regions of a sequence. The neural network
outputs have been shown previously to correlate with the
accuracy of the predictions at every position in the se-
quence.13 This information can be used to assign a ‘‘reliabil-
ity index’’ to each prediction.5 In this paper, we describe a
new method of decoding network outputs which predicts
the probability of each type of secondary structure occur-
ring at every position in the sequence, as well as the
overall prediction accuracy. We also provide data on how
much variation in accuracy can be expected for individual
sequences.

Studies have shown that jury techniques combining
several neural networks11 or other prediction methods10

can be more accurate than methods based on a
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single prediction. However, it is unclear how to best weight
the predictions resulting from several methods.10 With
estimated accuracies at every position in the sequence,
predictions can be readily combined in a jury decision by
averaging the predicted probabilities resulting from two or
more network trials. In this paper, we investigate the
effect of jury size on the accuracy of the combined predic-
tion, and discuss possible reasons for the increased accu-
racy seen as a result of jury decisions.

Previous studies have shown that an increase in the size
of the database of known structures can result in an
increase in the accuracy of both secondary structure and
class predictions, provided the networks are supplied with
more independent variables (weights) with which to learn
additional patterns present in the larger database.6 The
methods described in this paper are applied to a database
of non-homologous sequences almost three times larger
than the ones previously studied using similar techniques.
A discussion is given of the resulting increase in accuracy
and the implications for the future of secondary structure
prediction as database sizes continue to increase. We
compare our results with other recent methods5,7,27 using a
database of 126 proteins often used to benchmark second-
ary structure prediction methods. Finally, we consider
briefly the accuracy of the present results relative to those
reported for secondary structure prediction in CASP2.14

METHODS
Data Set

The proteins used in this study were a set of 681 chains
representative of high-resolution structures available in
the Brookhaven Protein Data Bank (PDB) in late 1996.
This database was prepared by Andrej Šali using the
MODELLER program.15 First, protein chains from all
well-resolved structures in the PDB were classified into
groups according to sequence homology. The structure
with the highest resolution in each group was taken to
represent that group. All structures determined by X-ray
crystallography have a resolution of 3.0 Å or better; 27
chains for which only NMR-determined structures were
available were used in addition. Filtering was done to
ensure that no pair of protein chains had more than 25%
sequence identity. Pairwise alignments were done using
global dynamic programming26 with the identity substitu-
tion matrix and a constant gap penalty of 3.

The HSSP database3 was used to obtain multiple se-
quence information for each of the structures in the
database. An average of 40 aligned sequences for each
structure was found, and there was an average of 3.4
different residue types at each position in the known
structures. The program DSSP16 was used to classify the
secondary structure of residues in the database. All resi-
dues that were neither alpha helix (H) or extended beta
strand (E) were considered to be in the ‘‘coil’’ category. The
complete database contains a total of 158,428 residues
with a composition of 30% helix, 22% strand, and 48% coil;
310 helices were treated as coil.

Multiple cross validation trials are necessary to mini-
mize variation in results caused by a particular choice of

training or test sets.4,12 Because of the size of the database,
jackknife cross validation (individual testing of each pro-
tein in the database) was not feasible. Instead, the data-
base was randomly divided into 15 groups, each containing
several protein chains (14 sets of 46 chains, and 1 set of
37). Networks were trained on sets produced by removing
one group of proteins at a time from the database of 681.
Each network was then tested on the excluded group of
proteins and the results were combined for evaluation of
overall prediction accuracy. All results reported in this
paper were obtained using this method of cross validation.

For comparison of results with those obtained on a
smaller database, the same procedure was performed on
the PDB database from 1994. This resulted in a set of 258
chains containing a total of 50,718 residues, with a compo-
sition of 30% helix, 22% strand, and 48% coil. For cross-
validated testing, these were divided into 12 sets of 20
proteins and one set of 18.

Neural Networks

The primary secondary structure prediction network
used in this study is similar to several described previ-
ously.4,12,17 The network uses a ‘‘sliding window’’ approach
to iteratively predict the secondary structure of each
residue in the protein. At a given time, the network is
presented with 15 to 27 (the window width) sequential
residues of the protein. When training or testing the
network, this input window is centered on each of the
residues in the protein in turn, and produces a secondary
structure prediction for that residue. An overview of the
network is shown in Figure 1, and each layer is discussed
below.

Fig. 1. First level secondary structure prediction network. Units in the
network are represented by ellipses, connections between units by solid
lines. In the input layer, shown at the bottom of the figure, clusters of 22
units are used to input information about each residue in a continuous
stretch of sequence surrounding a given residue, i, for which the
secondary structure is being predicted. Twenty units are used to enter the
percentage of each amino acid in the multiple sequence alignment at that
position. The 21st unit in each cluster, labelled %-, is turned on when the
input window overlaps the ends of the sequence alignment. The 22nd unit
in each cluster is used to enter the conservation weight.3 All input units are
connected to every unit in the hidden layer, each of which is connected to
both output units, H and E. Most units and connections are not shown for
clarity.
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For each residue in the input window, the residue type is
encoded and presented to the network in 22 separate units
of the input layer. Twenty of the units represent a single
amino acid residue and are encoded with the frequency
with which that residue appears in the profile at that
position in the window. The 21st unit is used to indicate
that no amino acid appears at the position; this occurs
when the window overlaps the ends of all sequences in the
profile. The 22nd unit encodes the conservation weight3 at
the position; this is a weighted sum of residue similari-
ties18 over all sequence pairs in the profile.

The output layer of the networks consisted of two units,
H and E, whose outputs correspond to helix and strand
prediction, respectively. In previous studies,6,12 these were
converted to a prediction by comparing the outputs to a
cutoff; if neither value was greater than the cutoff, coil is
predicted as the secondary structure. Otherwise, the sec-
ondary structure corresponding to the higher of the two
values was predicted. The cutoff was experimentally deter-
mined for each training set, in order to maximize the sum
of the Matthews correlation coefficients8 for the prediction
of helix, strand, and coil. In this study, the cutoff method is
compared to the estimated accuracy method of decoding
the outputs, described below.

Hidden layers of several sizes were tested. For the
largest hidden layer tested, containing 40 units, the fully
connected network contains 15,082 independent variables
(weights and biases). Because this number is small com-
pared to the size of the training set, there were no
problems with over-training, or ‘‘memorizing’’ specific char-
acteristics of the training set at the expense of prediction
set accuracy.19

A second-level network is used to refine the results
produced by the primary network. Like the primary net-
work, the second-level network examines a window on the
primary sequence and predicts the secondary structure of
the central residue in the window, encoding the output in
two units H and E. At each position in the window, the H
and E outputs from the primary network are used as
input, rather than supplying the network with sequence
information directly. In a previous study on a database of
318 proteins, an input layer which examined 19 consecu-
tive residues was found to be optimal (Chandonia and
Karplus, unpublished results). Hidden layers of several
sizes were tested to determine the optimal size for the new
database. The H and E outputs can be translated directly
into predictions using the cutoff method, or they can be
used in the estimated accuracy algorithm described below.
An overview of the second level network is shown in
Figure 2.

Structural Class Prediction

Quantitative definitions for a system of four structural
classes have been proposed by Kneller and colleagues,20

based on examination of typical proteins from the Levitt
and Chothia9 classes. Details are given in a previous
paper.12 The data set contained 102 chains in the All-a
class, 104 All-b chains, 274 a/b chains, and 201 other
chains. All-a proteins contained an average of 56% helix,

3% strand, and 41% coil. All-b proteins averaged 4% helix,
40% strand, and 56% coil. Proteins in the a/b class
averaged 34% helix, 20% strand, and 46% coil. Other
proteins averaged 18% helix, 28% strand, and 54% coil,
and were too small or contained insufficient helix and
strand to fit any of the other classes.

The class prediction networks used here have been
described previously.12 The input layer consists of 20 units
to encode the amino acid content of the protein, 1 unit for
sequence length, 4 units to encode predicted secondary
structure content, and 1 unit to encode the predicted
number of alternations between alpha helix and beta
strand. Each sequence in the profile of aligned sequences
contributed equally to the amino acid content. As before,
two types of networks were studied: networks that contain
four outputs, one for each class; and specialized networks
with only one output for predicting each class individually.

To compare the importance of different inputs, several
modified networks were tested. Three groups of networks
were created in which a set of inputs was removed. In one
group, the 20 units encoding amino acid content were
removed. In the second group, all 5 units containing
predicted information on secondary structural content
were removed, leaving networks with information only on
length and amino acid content. Similar networks have
been shown to be highly accurate at distinguishing pro-
teins belonging to 4 specific folds: 4-helix bundles, parallel
(a/b)8 barrels, nucleotide binding fold, and immunoglobu-
lins.21 However, when tested on a database of 62 proteins,
such networks could distinguish proteins belonging to 4
broad folding classes with only 62% accuracy.12 In the third
group of networks tested, the two units encoding ‘‘strong’’
helix and strand predictions were removed, to determine
whether this additional information is redundant for the
purpose of class prediction. Finally, a fourth group of

Fig. 2. Second level secondary structure prediction network. Units in
the network are represented by ellipses, connections between units by
solid lines. In the input layer, shown at the bottom of the figure, clusters of
2 units are used to input information about each residue in a continuous
stretch of sequence surrounding a given residue, i, for which the
secondary structure is being predicted. These units are used to enter the
H and E values output by the first level network at each positon. All input
units are connected to every unit in the hidden layer, each of which is
connected to both output units, H and E. Most units and connections are
not shown for clarity.

295ACCURATE PREDICTION OF SECONDARY STRUCTURE



networks was tested, in which the units encoding strong
helix predictions and the units encoding amino acid con-
tent were removed.

Measurements of Accuracy

Three-way percent accuracy (Q3) and correlation coeffi-
cients8 for prediction of helix (CH), strand (CE), and coil
(CC) were used to evaluate accuracy; details are given in a
previous paper.12 For evaluating the accuracy of structural
class prediction, correlation coefficients for each class (Ca,
Cb, Ca/b, and CO) were used; the overall four-way percent
accuracy (Q4) was also calculated for the 4-output network.

Determining the Optimal Stopping Point
for Training Class Prediction Networks

Although the secondary structure prediction networks
are provided with enough training data to prevent over-
training, the class prediction networks contain a number
of weights (252 for a four-output network with a hidden
layer size of 8 units) comparable to the number of training
examples (about 640). Because over-training of class predic-
tion networks has been observed in previous trials,6 an
unbiased procedure to estimate the optimal stopping point
was introduced.

To estimate the optimal stopping point for a given
training set, a second jackknife procedure is used. The
original training set is divided into multiple training and
prediction subsets, and separate networks are trained on
each training subset, then tested on the corresponding
prediction subset. The optimal stopping point is chosen as
the number of steps at which average accuracy of these
prediction subsets is highest. This is used as the stopping
point for networks trained on the full training set. As long
as sequences in the training and prediction sets are
unique, the procedure is unbiased, because no information
about the prediction set is used in determining when to
stop training. Because the training subsets created in this
procedure contain fewer proteins that the original training
set, and because proteins in the prediction subsets are not
homologous to any in the original prediction set, this
procedure can only obtain an estimate of the optimal
stopping point. However, it has been shown that the
accuracy of class prediction falls off gradually near the
optimal stopping point,6 so such an estimate is useful for
preventing significant under-training or over-training of
class prediction networks. It should be noted that because
the original training set itself results from a jackknife over
the entire data set, this procedure is computationally
expensive. It requires a total number of trained networks
on the order of the square of the number of sequences in
the data set.

Reduced Training Set Method

The method for producing optimized training sets based
on class prediction has been described in a previous
paper.12 Because the class prediction networks rarely
mispredict All-a proteins as All-b, or vice versa, a predic-

tion of either for a tested protein means the other class is
eliminated as a possible candidate. Proteins belonging to
the eliminated class can then be removed from the training
set for secondary structure prediction, and networks
trained on the resulting ‘‘reduced’’ training set can be used
to re-predict the secondary structure of the protein.

Estimated Accuracy Method

The estimated accuracy method allows network outputs
to be translated into predictions, while providing an
estimate of the probability of finding the three types of
secondary structure at each position in a sequence. A
neural network is tested on a large set of proteins of known
structure, not including the prediction set. Two dimen-
sional density matrices Nhelix (H,E), Nstrand (H,E), and Ncoil

(H,E) are then constructed containing the number of
residues in the set with a given secondary structure, as a
function of the predicted H and E. A grid size of 0.01 3 0.01
is used to separate the predictions into bins, resulting in
100 3 100 density matrices. For sparse regions of the
density matrices, predictions from neighboring bins are
combined to provide at least 100 samples in each bin. This
is done to ensure that bins contain a statistically signifi-
cant number of predictions without having to reduce the
level of detail of the matrices. From the density matrices,
the frequency of each type of secondary structure can be
expressed as a function of H and E, by dividing the number
of occurrences of each structural type by the total number
of residues:

phelix(H, E) 5
Nhelix(H, E)

Nhelix(H, E) 1 Nstrand(H, E) 1 Ncoli(H, E)

and correspondingly for the matrices pstrand (H,E) and pcoil

(H,E). Probabilities of finding a given type of secondary
structure at every residue in the prediction set are found
by looking up the network outputs H and E for that residue
in the corresponding frequency matrix. The method implic-
itly produces a structure prediction, the category corre-
sponding to the highest of the 3 probabilities.

The predictions used to build the density matrices Nhelix

(H,E), Nstrand (H,E), and Ncoil (H,E) (the ‘‘matrix set’’) can be
made by testing the neural network on its own training
set. This method is referred to as the ‘‘training set esti-
mated accuracy method.’’ Another method which can be
used when performing multiple cross-validated trials is to
construct the matrix set from the union of all prediction
sets other than the one currently being tested. Although
this encompasses the same set of proteins as the training
set, the H and E values used for each protein are obtained
when that protein is part of a prediction set rather than a
training set. This is referred to as the ‘‘prediction set
estimated accuracy method.’’ Both methods were tested to
determine how accurately the estimated frequencies corre-
sponded to observed probabilities of finding each type of
secondary structure.
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In multiple cross-validated trials, proteins in every
prediction set are used in training the neural networks
used to make predictions on the other sets. Therefore, in
the prediction set estimated accuracy method, proteins
from the prediction set were included in all of the training
sets of networks used to produce the matrix set. To test
whether this biases the method, we did a double jackknife
in which two sets of proteins were excluded from the
training set at all times. Results in which the prediction
set proteins were included in the training sets of networks
used to create the matrix set did not vary significantly
from results in which they were excluded (data not shown).

Estimated Accuracies for Sequences

The estimated accuracy method can be used to estimate
the overall accuracy for a prediction of a given sequence. To
do this, the estimated accuracy of the prediction at each
residue in the sequence (corresponding to the highest of
the three predicted probabilities) is averaged over the
length of the chain.

Jury Decisions Using Estimated Accuracies

At each residue, the helix, strand, and coil probabilities
are predicted independently by every network in the jury,
using the prediction set estimated accuracy method. The
jury decision is made by taking an unweighted arithmetic
average of the probabilities for helix, strand, and coil over
all the networks in the jury. The secondary structure
corresponding to the highest of the three resulting prob-
abilities is taken as the combined prediction.

To determine how the jury accuracy scales with the
number of separate networks included in the jury, juries
composed of all 2N-1 possible subsets of N networks were
tested. The results were sorted by the number of networks
included in the jury, and the mean and standard deviation
in results (Q3 and correlation coefficients) were computed
for juries of all sizes from 1 to N.

Juries of structural class prediction networks were also
tested. Because there are insufficient data to apply the
estimated accuracy method and obtain estimated probabili-
ties of a protein belonging to each class, jury decisions
were made by averaging the raw network outputs of all
networks in the jury. The averaged outputs were converted
to predictions in the same manner as for individual
networks: by choosing the class corresponding to the
highest of four outputs for the 4-output networks, and by
comparison with a cutoff for the single-output networks.

RESULTS

Secondary Structure Prediction

Accuracy of the primary network with a larger
database

The optimal neural network topology for a representa-
tive set of proteins available in the structural database
from 1994 was examined in a previous study.6 It was
shown that as the size of the database increases, increas-
ing the size of the input layer had little effect, and could
decrease prediction performance. We therefore tested pri-

mary networks with the same size residue window (17) as
was found to be optimal in the previous study. Since the
current procedure for selecting a representative set of
sequences uses a more stringent sequence identity cutoff
(25% instead of 30%) than that used before, we re-tested
primary networks with various hidden layer sizes (HLS)
on a representative set of proteins from the 1994 study
that were selected according to the new procedure. Results
are shown in Table I.

On the smaller database, prediction set accuracy usually
increases as additional units are added to the hidden layer.
Training set accuracy increases more rapidly, indicating
that learning of patterns present only in the training set is
increasingly likely with larger hidden layer sizes. These
effects have also observed on a small database of proteins
without multiple sequence information.6 Because accuracy
on the prediction set is observed to be greatest at the
largest hidden layer size tested, these results suggest that
networks should be given the largest hidden layer which is
computationally feasible, at least until the number of
weights and biases in the network approaches the number
of examples in the training set. Therefore, for tests on the
larger database, a hidden layer of 30 units was used;
training a single network required approximately 30 CPU
hours on a IRIX R10000 or 500 Mhz DEC Alpha machine,
or 100 CPU hours on a HP 735/100. Networks were trained
for 1,000 steps using the Scaled Conjugate Gradient
procedure,22 pausing every 5 steps to check accuracy on the
prediction sets. Prediction set accuracy (Q3) increased
from 72.87% to 73.34% relative to the best results on the
smaller set, while Matthews correlation coefficients for
helix (0.666 to 0.671), strand (0.527 to 0.533), and coil
(0.506 to 0.517) all increased slightly.

Training set accuracy (Q3) on the larger protein set was
75.82%. The fact that training set Q3 is only 2.5% higher
than prediction set Q3 indicates that little ‘‘memorization’’
of specific features of the training set took place. The

TABLE I. First Level Networks on the 258
Protein Database†

HLS
Training
Set Q3

Prediction
Set Q3 CH CE CC

2 69.78% 68.44% 0.552 0.445 0.466
5 74.20% 71.64% 0.634 0.506 0.498
6 74.74% 71.74% 0.640 0.506 0.498
7 75.45% 71.74% 0.641 0.508 0.495
8 76.19% 72.04% 0.649 0.512 0.497

10 77.12% 72.12% 0.652 0.514 0.498
15 79.47% 72.44% 0.661 0.519 0.500
20 80.35% 72.65% 0.663 0.523 0.503
25 80.95% 72.74% 0.665 0.519 0.505
30 82.42% 72.51% 0.663 0.521 0.498
35 82.52% 72.54% 0.666 0.518 0.502
40 82.38% 72.87% 0.666 0.527 0.506

†First level secondary structure prediction networks were tested on
the database of 258 proteins. Networks with several hidden layer sizes
(HLS) were tested. Networks were trained for 1,000 steps using the
Scaled Conjugate Gradient method. Combined results of 13-fold cross
validation trials are shown.
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results on the smaller database suggest that, if sufficient
computational resources were available, networks with
much larger hidden layers could be used with the large
database before any over-training effects would be ob-
served. As seen in Table I, prediction set accuracy (Q3) on
the smaller database improves by about 1% as the training
set Q3 increases from 75% to 82%; however, this small
improvement requires over a 5-fold increase in the hidden
layer size and network training time.

The increase in accuracy as the database size increases
might be attributed to two effects: the accidental addition
of more easily predicted sequences to the database, or
better predictive patterns learned by the networks trained
on more sequences. To distinguish between the two effects,
sequences present in both databases (with at least 70%
sequence identity) were identified. For these 205 se-
quences, prediction set accuracy measured during cross
validation tests using networks with a hidden layer size of
40 on the 258 protein database was 72.70%, with Mat-
thews correlation coefficients of 0.66, 0.52, and 0.50 for
helix, strand, and coil predictions. In cross-validation tests
using networks with a hidden layer size of 30 on the 681
protein database, prediction set accuracy on these 205
sequences was 74.47%, with Matthews correlation coeffi-
cients of 0.69, 0.55, and 0.53 for helix, strand, and coil.
Because the improvement in accuracy is greater for the
205 common sequences than for the database as a whole,
the increased accuracy can be entirely attributed to the
more accurate networks: the additional sequences in the
larger database are slightly more difficult to predict than
the average sequence in the smaller database. Therefore,
exposing the networks to more sequences during training
enables them to make more accurate predictions on unre-
lated proteins.

For the 205 common sequences, raw H and E network
outputs correlated very well (R 5 0.92) between tests
conducted on the small and large databases. The increase
in accuracy observed when networks were trained on
larger training sets was due mainly to improvements in
poorly predicted sequences. In the 33% of the sequences
with the lowest prediction accuracy, average accuracy
improved by 3.9%, from 65.4% to 69.3%. For the middle
third, average accuracy improved by only 0.9%, from
72.9% to 73.8%. For the sequences predicted most accu-
rately, average accuracy decreased slightly, from 79.9% to
79.8%.

Second level network

Rost and Sander5 found that a second level network can
improve prediction accuracy by about 1%. We tested
networks with a window of 19 residues amd a hidden layer
ranging in size from 15 to 20 units. In a previous study on a
database of 318 proteins, the window width of 19 residues
was found to be optimal (Chandonia and Karplus, unpub-
lished results). Output from the primary network (after
1,000 steps of training) was applied to the second level
networks, which were trained for an additional 1,000
steps. Combined results of 15-fold cross validation are
shown in Table II.

Results showed little variation with hidden layer size,
although the networks with a hidden layer of 18 units were
slightly more accurate. Accuracy on the prediction set
increased from 73.34% to 74.31%, while Matthews correla-
tion coefficients for helix (0.66 to 0.67), strand (0.52 to 0.54)
and coil (0.51 to 0.52) all increased.

Class Prediction

Networks with hidden layers of several sizes were
tested. Results for four-output networks are shown in
Table III, and results for single-output networks are
shown in Table IV. As a result of the optimal stopping point
procedure and the larger database, accuracy improved
significantly, from 80% to about 83%. Because the optimal
stopping point procedure prevented over-training, the
results show little variation with hidden layer size, as was
observed in previous studies.6 Tests were repeated 5 times
to measure variation in the results. When network train-
ing and testing are repeated with different initial random
weights, Q4 for class prediction varies by 60.7% (estimated
standard deviation), and correlation coefficients vary by
60.01. Therefore, none of the results vary significantly
with hidden layer size. The four-output version of the
network is more accurate than the single-output networks,
in agreement with earlier work.6,12 As with smaller data-

TABLE II. Second Level Network Results†

HLS
Training
Set Q3

Prediction
Set Q3 CH CE CC

16 76.99% 74.23% 0.683 0.548 0.534
17 76.96% 74.25% 0.684 0.548 0.534
18 76.98% 74.31% 0.685 0.549 0.535
19 76.98% 74.28% 0.684 0.548 0.535
20 76.98% 74.29% 0.683 0.550 0.535

†Second level secondary structure prediction networks were tested on
the database of 681 proteins. Networks with several hidden layer sizes
(HLS) were tested. Results from the first level network (with predic-
tion set accuracy of 73.34% and Matthews correlation coefficients of
0.66, 0.52, and 0.51 for helix, strand, and coil) were used as input for
all networks. Networks were trained for 1,000 steps using the Scaled
Conjugate Gradient method. Combined results of 15-fold cross valida-
tion trials are shown.

TABLE III. Structural Class Prediction
Using 4-Output Networks†

HLS Training Q4 Prediction Q4 Ca Cb Ca/b CO

4 87.4 82.4 0.72 0.71 0.81 0.71
5 88.0 83.1 0.72 0.73 0.82 0.72
6 88.7 82.7 0.72 0.73 0.82 0.71
7 87.5 83.3 0.73 0.73 0.83 0.72
8 88.4 82.9 0.74 0.72 0.81 0.72
9 87.9 82.8 0.73 0.72 0.81 0.72

10 88.2 82.6 0.72 0.72 0.81 0.71
†Secondary structure predictions were produced using second level
networks with a HLS of 18 units. Network training times were
optimized for each hidden layer size using the optimal stopping point
procedure. Correlation coefficients are shown for the prediction set.
Combined and averaged results of five separate 15-fold cross valida-
tion trials are shown.
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bases, the networks demonstrated the ability to eliminate
classes very accurately in all tests. No protein in the All-a
class was misclassified as All-b, and only one protein in the
All-b class was predicted to be All-a. This protein, wheat
germ lectin (9wgaA), contains only 9% helix and 9%
strand, but is placed in the All-b class by the Kneller20

automatic classification method.

Importance of class network inputs

To understand which information is important for class
prediction, we tested networks in which some groups of
inputs were eliminated. Results for four-output networks
are shown in Table V. Results for single-output networks
were similar, although slightly lower (data not shown).

Information on predicted secondary structure content is
necessary to predict the class of a protein with optimum
accuracy. Although networks given only information on
amino acid content and sequence length produced more
accurate results on the current database than on previous,
smaller databases (Q4 increased from 62% to 73%, relative
to results on 69-chain database used in previous work12),

information on amino acid content is redundant if a
reliable secondary structure prediction has been made. It
is interesting to note that networks lacking inputs for
amino acid composition were able to correctly classify the
9wgaA protein, due to an accurate (81%) secondary struc-
ture prediction; for this protein, an amino acid composition
similar to proteins in the All-a class leads to an error if the
composition inputs are present. Information on ‘‘strong’’
helix and strand predictions also appears redundant;
results are not significantly different if the information is
excluded. All inputs are important if the class prediction
networks are trained on smaller databases,12 possibly
because the secondary structure predictions are signifi-
cantly less reliable.

Networks without an input for sequence length were not
tested, because this information is always available and
known to be important in the definitions of the structural
classes. Networks were observed to misclassify several
sequences that were smaller than the minimum length for
proteins of the predicted class. This frequently occurred
because no shorter protein belonging to the class was
present in the training database, preventing the networks
from learning the exact length cutoff. If corrections are
made based only on the known sequence length, the
prediction accuracy increases from 82.7% (averaged among
all four-output networks except for the ones lacking infor-
mation on predicted secondary structure) to 84.8%. All
Matthews correlation coefficients also increase: the coeffi-
cient for prediction of All-a proteins increases from 0.727
to 0.767; All-b from 0.726 to 0.740; a/b from 0.811 to 0.828;
and Other from 0.719 to 0.768.

The information on predicted secondary structure and
length can also be used to identify the structural class
directly. Secondary structure predictions made on the
large database using second level networks with a hidden
layer of 18 units and 15-fold cross validation were used to
estimate the helix and strand content of each protein in
the database. This was done by dividing the number of
residues predicted to be helix and strand by the total
number of residues in the protein. The average estimate of
the helix content was off by 5.8% 6 5.7%. The average
estimate of strand content was off by 6.3% 6 6.3%. Pearson
correlation coefficients for predicted vs. actual content are
0.92 for helix, and 0.81 for strand. These estimates com-
pare favorably to predictions made using the method of
Rost and Sander,5 which can estimate helical content to
within 8.5% error (0.87 correlation coefficient) and strand
content to within 7.5% error (0.74 correlation coefficient).
Estimates of structural content are comparable to a statis-
tical method which combines data from vibrational circu-
lar dichroism, electronic circular dichroism and Fourier
transform infrared spectroscopic techniques.23 For 19 pro-
teins not used in parameterizing the algorithm, this
method predicts both helix and strand content with approxi-
mately 5% average error. The predicted helix and strand
percentages can be used in the Kneller20 class definitions
to produce class predictions without using a specialized
neural network. On average, these predictions are more
accurate than predictions made by the class prediction

TABLE IV. Structural Class Prediction
Using Single-Output Networks†

HLS Ca Cb Ca/b CO

4 0.69 0.67 0.78 0.72
5 0.70 0.69 0.77 0.70
6 0.70 0.69 0.81 0.71
7 0.69 0.68 0.78 0.72
8 0.71 0.68 0.78 0.70
9 0.70 0.69 0.79 0.71

10 0.71 0.69 0.79 0.71
†Network training times were optimized for each hidden layer size
using the optimal stopping point procedure. Correlation coefficients
are shown for the prediction set. Combined and averaged results of
five 15-fold cross validation trials are shown.

TABLE V. Importance of Class Network Inputs†

Inputsa
Training

Q4

Prediction
Q4 Ca Cb Ca/b CO

All (HLS 9) 87.9 82.8 0.73 0.72 0.81 0.72
AA, L (HLS 9) 76.9 73.6 0.46 0.51 0.71 0.66
AA, 2ary,

L (HLS 9) 87.4 82.7 0.72 0.73 0.81 0.73
2ary, L (HLS 9) 85.7 82.5 0.74 0.73 0.80 0.71
2ary, Strn,

L (HLS 9) 86.6 83.1 0.75 0.73 0.81 0.72
All (HLS 4) 87.4 82.4 0.72 0.71 0.81 0.71
2ary, L (HLS 4) 86.1 82.5 0.72 0.72 0.81 0.72
†Secondary structure predictions were produced using second level
networks with a HLS of 18 units. Structural class prediction was done
using 4-output networks with some groups of inputs eliminated; those
inputs that were present are shown in the first column. Network
training times were optimized for each hidden layer size using the
optimal stopping point procedure. Correlation coefficients are shown
for the prediction set. Combined and averaged results of five separate
15-fold cross validation trials are shown.
aKey: AA: 20 units encoding amino acid content, 2ary: 3 units;
predicted helix and strand content and alternations, Strn: 2 units;
‘‘strong’’ predictions of helix and strand, L: 1 unit; sequence length.
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network, with a Q4 of 85.9% and Matthews correlation
coefficients of 0.759, 0.786, 0.837, and 0.788 for All-a,
All-b, a/b, and Other proteins.

Juries of class prediction networks

Juries of several class prediction networks were tested,
in which multiple networks were used to predict the class
of each protein. For each protein, the raw outputs of
several networks were averaged before translating to a
prediction. Fifteen class prediction networks (five each
with hidden layer sizes of 5, 7, and 9) were used. Juries
composed of each of 215-1 possible subsets of these 15
networks were tested, and results were sorted by the
number of networks involved. Prediction accuracy for each
jury size is shown in Figure 3.

The average accuracy of the jury increases as the
number of networks in the jury increases. Although there
is some variation caused by particular combinations of
networks, the juries with more members were more accu-
rate on average than juries with fewer networks. Random
variations in accuracy, resulting from testing networks
trained using different initial weights, are greatest for
single networks. As the number of networks in the jury
increases, the random variation in prediction accuracy
caused by particular combinations of individual networks
decreases, because juries containing a large number of
networks sample both the most and least accurate of the
individual networks. Although only one of the 15 networks
was more accurate than the non-network method de-
scribed above, a jury containing all 15 networks is slightly
more accurate, with a Q4 of 86.0% and Matthews correla-
tion coefficients of 0.781, 0.748, 0.851, and 0.787 for All-a,
All-b, a/b, and Other proteins.

Reduced training sets

In previous studies, the reduced training set algorithm
improved results on proteins in the All-a and All-b classes.6

We applied the training set reduction method to proteins
which were predicted as belonging to the All-a or All-b
classes. First level networks with a hidden layer size of 30
units were trained for 1,000 steps on the reduced training
sets. Predictions made at the end of training were pre-
sented to second level networks with a hidden layer size of
18 units, which were trained for an additional 1,000 steps.
Results are shown in Table VI.

For all proteins, including the ones for which the algo-
rithm could not produce a specialized training set, average
accuracy increased by a small but significant amount, from
74.31% to 74.37%. This increase is almost entirely due to
improved prediction of beta strand in proteins in the All-b
class. While accuracy on proteins of other classes increased
or decreased only slightly, accuracy on proteins in the All-b
class increased by 0.4% due to more accurate predictions of
both beta strand and coil. The reduced training set method
was significantly less effective on this data set than on a
smaller set containing only single sequence information;6

for the latter data set, accuracy for proteins in both the
All-a and All-b classes improved by 1%. The decreased
effectiveness is probably due to the smaller proportions of
All-a and All-b proteins in the current database than in
previous databases; elimination of either of these groups
from the training sets does not change the composition of
the training set as much as in previous studies.

Estimated Accuracies

The training set estimated accuracy method produces an
estimate of the probabilities of finding each type of second-
ary structure at all residues in the sequence, while produc-
ing a new prediction corresponding to the highest of the
three probabilities. The new predictions improve the Q3

relative to the results after training set reduction (from
74.37% to 74.58%) while increasing coil prediction slightly
at the expense of helix and strand (CH decreases from
0.685 to 0.683, CE decreases from 0.551 to 0.549, CC

increases from 0.536 to 0.546).

Fig. 3. Jury decisions with class prediction networks. Fifteen class
prediction networks containing all input units (five each with hidden layer
sizes of 5, 7, and 9) were used to predict the class of each protein
independently, using 15-fold cross validation. Jury decisions were made
by averaging the raw outputs from several of the networks. All 215-1
possible combinations of networks were tested. Results were sorted into
sets according the number of networks averaged in the jury decision. The
mean and standard deviation in Q4 for each set are shown.

TABLE VI. Reduced Training Sets†

Test Set
Full

Set Q3

Reduced
Set Q3 CH CE CC

All-a proteins 76.49% 76.45% 0.607 0.251 0.571
All-b proteins 71.77% 72.16% 0.334 0.503 0.480
a/b proteins 74.93% 74.92% 0.684 0.566 0.544
‘‘Other’’ proteins 72.73% 72.75% 0.649 0.505 0.499
All Proteins 74.31% 74.37% 0.685 0.551 0.536
†Secondary structure prediction using reduced training sets, from
which All-a and All-b proteins were potentially eliminated. Results are
summarized by the actual class of the proteins tested (the test set).
Tests were done using first level networks with a HLS of 30 units, and
second level networks with a HLS of 18 units, each of which was
trained for 1,000 steps. Combined results of 15-fold cross validation
are shown.
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To test the validity of the predictions, all residues were
clustered by predicted helix probability into bins of 5%
width. The real helix frequency was calculated for each
bin, and compared to the median expected probability of
the bin. A similar procedure was done for strand and coil
probabilities. The method was found to systematically
overestimate the real frequency when the estimated prob-
ability was above 40–45%. For coil, the overestimate is
approximately 2%; for helix and strand, the overestimate
is approximately 5%. At estimated probabilities below
40%, the method underestimates the frequencies to a
similar degree. This is a result of using statistics derived
from testing neural networks on their own training set; as
shown in Table II, the training set results are slightly
(2.7%) more accurate due to some memorization of the
sequences.

Correcting for the systematic errors in the training set
estimated accuracy method would result in more accurate
frequency estimates. However, the type of secondary struc-
ture predicted (and thus, accuracy measures such as Q3 or
correlation coefficients) would only change if two of the
predicted frequencies were similar, and corrected by differ-
ent amounts. In the region in which the two highest
frequencies might be similar (33%–50%) the systematic
errors are small. Furthermore, such a corrective procedure
might be biased by using information on the prediction set.
Therefore, rather than correcting systematic errors in the
training set estimated accuracy method, the prediction set
estimated accuracy method was developed to replace it.

The prediction set estimated accuracy method, while
slightly more difficult to implement, produces more accu-
rate probability estimates. Like the training set estimated
accuracy method, it increases the Q3 from 74.37% to
74.58%. This method also increases coil prediction slightly
(CC increases from 0.536 to 0.547) at the expense of helix
(CH decreases from 0.685 to 0.680) and strand (CE de-
creases from 0.551 to 0.543). The estimated accuracy
method produces estimated probabilities which correlate
extremely well (R 5 0.99) with the actual probabilities in
each bin; no systematic overestimates or underestimates
of accuracy were observed for any of the bins.

Estimated accuracies were also computed for every
sequence. These are compared with the actual accuracies
in Figure 4. While the predicted accuracies have fair
correlation (R 5 0.52) with the actual accuracy of the
prediction, significant variance and some overestimates of
accuracy also occur. The degree of variation at the level of
individual proteins is much higher than in the previous
(bin) test, because each bin contained tens of thousands of
predictions, several orders of magnitude more than the
length of a typical protein.

Juries of secondary structure prediction networks

Juries of multiple secondary structure prediction net-
works were also tested. For each residue, the estimated
probabilities of helix, strand, and coil were computed using
several methods; the probabilities were averaged and
translated to a prediction. One prediction was made using
the reduced training set method described above. Seven

additional predictions were made using the second level
secondary structure prediction networks shown in Table
II; two second level networks with hidden layer size of 19
units, and single second level networks with hidden layer
sizes of 15, 16, 17, 18, and 20 units were used. All
predictions were made using the prediction set accuracy
method and validated with 15-fold cross validation. Juries
were tested containing each of the 28-1 possible subsets of
these 8 predictions; results were sorted by the number of
predictions in each subset. Results are shown in Figure 5.

As was the case with class prediction networks, juries of
secondary structure networks provide significantly better
accuracy than single networks. Accuracy varies signifi-
cantly with the particular choice of networks in the jury,
but increasing the number of networks increases the
average accuracy. The jury using all 8 predictions scored
74.76% accuracy, with Matthews correlation coefficients of
0.684, 0.544, and 0.550 for helix, strand, and coil. The most
accurate jury of the 255 tested achieved 74.81% accuracy
using four of the networks. However, there appears to be
no a priori method of picking those particular four predic-
tions; when tested independently, two of the networks had
lower than average accuracy. It is interesting to note that
results obtained using the reduced training set method
were included in every jury (10 of the 255) scoring above
74.8%. This suggests that more diverse results in the jury
may lead to higher accuracy. Rost and Sander5 observed
over a 1% increase in accuracy in a single jury test using 12
networks with more varied accuracy. However, as seen in
Table II, results on our database using two levels of
networks do not vary as significantly with hidden layer
size as in previous studies on smaller databases.6

Fig. 4. Prediction set estimated accuracy method, by protein. Second-
ary structure was predicted using the reduced training set procedure. The
prediction set estimated accuracy method was used to calculate the
probabilies of finding helix, strand, and coil at each postion (results
obtained using the cutoff method to make predictions are shown in Table
VI). Estimated accuracy for each protein was calculated by averaging the
highest of the three secondary structure probabilities at each position in
the sequence. The estimated accuracy for each sequence is compared to
the actual accuracy of the prediction.
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Accuracy of second-best predictions

In addition to making a secondary structure prediction
at every position in a sequence, the predicted probabilities
of finding helix, strand, or coil can be used to rank the
secondary structures in order of expected likelihood of
occurrence. The accuracy of the second-highest predictions
made by the jury of 8 networks was measured and
compared to the expected accuracy that could be obtained
by chance. In cases where the highest prediction was
incorrect (40,161 of 158,428 residues, or approximately
25% of the database), accuracy of the second-best predic-
tion was 79.24%, with Matthews correlation coefficients of
0.59, 0.63, and 0.82 for helix, strand, and coil. Although
this accuracy is greater than that for the highest predic-
tion, this is expected because the number of possible
secondary structure candidates has been reduced from
three to two. Randomly choosing one of the two remaining
candidates in accordance with the observed database
frequencies (30% helix, 22% strand, and 48% coil) produces
an accuracy of only 52.98%, with correlation coefficients of
0.18, 0.16, and 0.57 for helix, strand, and coil. The second-
best predictions produced by the jury of neural networks
contain significantly more accurate information; such infor-
mation may be useful in situations where experimental
evidence indicates that the best network prediction is
incorrect, or for other cases in which a user of the method
wishes to make manual corrections to the prediction.

If the highest and second-highest predictions are com-
bined, by scoring a prediction as correct in cases where
either of the top two predicted frequencies corresponds to

the actual secondary structure, accuracy reaches 94.74%,
with correlation coefficients of 0.90, 0.87, and 0.96 for
helix, sheet, and coil. Secondary structure types correspond-
ing to the lowest of the three predicted frequencies only
occur at 5.26% of the residues in the database, and
therefore can be eliminated with high accuracy.

Prediction accuracy varies with helix/strand length

Secondary structure predictions made by the jury of 8
networks were sorted by the actual length of the helix or
strand element being predicted; the percent of correctly
predicted residues in these elements are shown in Table
VII.

Helix prediction accuracy increases with the length of
the helix; strand prediction accuracy peaks with beta
strands of length 5 or 6. Similar results have been ob-
served previously28 when prediction accuracy is measured
on a per-segment, rather than per-residue basis. The drop
in strand prediction accuracy for longer strands may be
due to the hydrogen bond partner for each residue being
outside the window of residues presented to the network.
For strands of length 5 or 6, residues in other strands of
the same beta sheet are sometimes present in the window.
Although increasing the size of the input window might
produce more accurate predictions for longer strands,
previous studies have shown that the Matthews correla-
tion coefficient for overall strand prediction does not
increase with a larger window.6,12

The shortest elements of secondary structure defined by
DSSP (helices of length 4, and strands of length 2) are the
most difficult to predict. If they are redefined as coil,7 the
apparent prediction accuracy increases. When the jury of 8
networks described above was tested on the database
using a minimum helix length of 5 and a minimum strand
length of 3, prediction accuracy increased from 74.76%
(using the DSSP length cutoffs) to 75.67%. All networks
used were trained on a database using the standard DSSP
definitions of secondary structure; networks trained on
databases using the longer length cutoffs might produce

Fig. 5. Jury decisions with secondary structure prediction networks.
Eight combinations of networks were used to predict the secondary
structure of each protein independently, using 15-fold cross validation.
One prediction was made using the reduced training set method (results
are shown in Table VI); the other predictions were made using the second
level networks shown in Table II. For all 8 predictions, the prediction set
estimated accuracy method was used to produce estimated probablilities
of finding helix, strand, and coil at each residue. Jury decisions were
made by averaging the predicted probabilities from several of the
networks. All 28-1 possible combinations of networks were tested. Results
were sorted into sets according the number of networks averaged in the
jury decision. The mean and standard deviation in Q3 for each set are
shown.

TABLE VII. PredictionAccuracy Varies
With Helix/Strand Length†

Helix/strand
length

Helix %
correct

Strand %
correct

2 N/A 31.6
3 N/A 50.5
4 32.7 62.9
5 40.8 71.5
6 52.3 71.5
7 67.3 67.3
8 71.2 65.5
9 75.8 62.3

10 78.2 54.5
111 83.9 51.3

†Secondary structure predictions for residues in helices and strands
are sorted by the correct length of the helix or strand being predicted.
The percent of correctly predicted residues are shown for each length.
The minimum length of helices (as defined by DSSP) is 4 residues; the
minimum length for a strand of beta strand is 2.
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more accurate results, in accord with the results of Frish-
man and Argos.7

Predictions made by the jury of 8 networks also repro-
duce the length distributions of helices and strands ob-
served in the correct structures. For lengths of 6 residues
or greater, the number of predicted helices of a given
length varies from the correct number by an average of
only 12%. Both the distributions of correct and predicted
helix lengths have maxima at a helix length of 10 residues.
The distribution of strand lengths is also very similar to
the correct distribution for strands of length 3 to 7
residues; for longer strands (which are relatively rare) the
prediction underestimates the number of strands by a
factor of two to five. For short helices (4 or 5 residues) and
strands (2 residues), both types of secondary structure are
under-represented in the jury prediction. Because the
predictions made by the jury are not filtered to remove
short segments of helix and strand, elements of secondary
structure as short as a single residue are sometimes
predicted; DSSP classifies these as coil. Although previous
studies6,12 filtered these short elements of secondary struc-
ture out of the prediction by treating them as coil, it is
unclear whether such a filter should be applied to the
probabilities produced by the estimated accuracy method.

Analysis of accuracy

The secondary structure predictions made by the jury of
8 networks on each of the 681 sequences were analyzed to
determine factors that affect the accuracy of predictions on
individual sequences. Predictions were obtained using the
prediction set accuracy method, and validated by 15-fold
cross validation. Several subsets of the database were
analyzed, and the average accuracy (without weighting by
sequence length) and variance in accuracy for each subset
were calculated. For all 681 sequences, the average accu-
racy is 74.89%, with a standard deviation of 8.17%. Results
for several subsets of the database are shown in Table VIII.

Secondary structure predictions are slightly more accu-
rate for medium length sequences. For the shortest 1/3 of
the database, containing sequences of 35 to 130 residues
with an average length of 89 residues, average accuracy
was 74.46%. For the medium length sequences (131 to 280
residues, with an average length of 196), average accuracy
was 75.49%. For longer sequences (283 to 905 residues,
with an average length of 413), accuracy was only 74.71%.
The higher variation in accuracy on shorter sequences is a
consequence of the fact that each residue predicted makes
more of a difference in the overall accuracy of the se-
quences.

As shown in both Tables VI and VIII, predictions are
most accurate for proteins in the All-a class, but are also
good on mixed a/b proteins. The higher accuracy on All-a
proteins and a/b proteins is a result of the higher alpha
helix content of these proteins; as shown by the Matthews
correlation coefficients, helix prediction is more accurate
than prediction of strand or coil. The standard deviations
in accuracy on the four classes reflect the average sequence
length of the proteins; a/b proteins are longer on average,
and proteins in the Other class are shorter.

The accuracy of predictions varies somewhat for pro-
teins with extreme proportions of charged (H, Q, E, K, and
R) and nonpolar (A, V, L, I, P, F, W, M, and C) residues.
Accuracy on the 100 proteins with the highest fraction of
charged residues (from 29% to 49%) is over 3% higher than
accuracy on the 100 proteins with the lowest fraction of
charged residues (9% to 19%). Proteins with many hydro-
phobic residues (47% to 61%) are similar to the average for
all proteins, while proteins with few hydrophobic residues
(26% to 38%) score slightly below average. The differences
can be explained in terms of the class of the proteins.
Almost one third of the proteins (32 of 100) with many
charged residues belong to the All-a class, which is pre-
dicted with the highest accuracy of the four classes, while
only a few of the sequences (3 of 100) belong to the All-b
class, which is predicted with the lowest accuracy. Proteins
with few charged residues are more likely (38 of 100
sequences) to be members of the All-b class. Half of the
proteins with few hydrophobic residues are members of
the Other class, which is also predicted with below average
accuracy.

The results also confirm the importance of multiple
sequence data. For the 32 proteins for which only one

TABLE VIII.Analysis ofAccuracy†

Subset

Number
of

Proteins
Mean
Q3 (%)

Standard
deviation
of Q3 (%)

All proteins 681 74.89 8.17

Shortest third of sequences 227 74.46 10.48
Middle third of sequences 226 75.49 7.55
Longest third of sequences 228 74.71 5.76

All-a proteins 102 77.78 6.98
All-b proteins 104 72.60 7.00
a/b proteins 274 75.84 5.77
‘‘Other’’ proteins 201 73.30 10.99

Many charged residues 100 76.46 9.68
Few charged residues 100 73.19 8.68
Many hydrophobic residues 100 74.88 8.93
Few hydrophobic residues 100 73.77 9.45

1 sequence in HSSP profile 32 69.65 7.46
2 sequences 25 70.94 6.61
3 sequences 37 71.39 9.15
4 sequences 28 74.63 6.11
5 sequences 21 74.86 7.46
4 or more sequences 587 75.56 8.01

Integral membrane proteins 11 67.01 7.77
Viral coat proteins 20 68.54 8.67

Proteins containing heme 41 77.88 6.93
Structures determined by NMR 27 72.90 13.01
†Secondary structure predictions made by the jury of 8 networks on
each of the 681 sequences are divided into several subsets according to
characteristics of each protein. The average and standard deviation of
the prediction accuracy (Q3) are given for each subset. Results are not
weighted by sequence length.
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sequence was available in the HSSP profile, average
accuracy is 5% lower than the average for the entire
database. Prediction accuracy increases steadily as the
number of sequences in the profile increases. For the 587
proteins for which at least four sequences are aligned in
the HSSP profile, average accuracy is almost 1% higher
than the average for the entire database. These results are
similar to those of Rost and Sander,11 who found that
networks trained on multiple sequence profiles performed
with 7% lower accuracy when tested on single sequences.

The method also performs poorly for integral membrane
proteins, including porins and parts of the photosynthetic
reaction center. As the networks are trained on data sets
containing mostly soluble proteins, they are presumably
unable to learn predictive patterns which can be applied to
integral membrane proteins, due to the differing native
environments of the proteins. Neural network methods
specialized at predicting transmembrane helices and topol-
ogy of membrane proteins have been more successful.24,25

Another set of poorly-predicted proteins are viral coat
proteins. The relatively low accuracy (68.54%) is possibly
due to a greater influence of tertiary contacts on the
secondary structure of these proteins, although most of the
proteins also belong to the All-b or Other classes, for which
the average accuracy is slightly below 73%. Both the viral
coat proteins and integral membrane proteins contain
many sequences in their HSSP profiles, indicating that the
lower accuracy is not caused by a lack of multiple sequence
information.

The presence of prosthetic groups does not significantly
affect accuracy, possibly because these contacts have no
more effect on secondary structure than other tertiary
contacts. Proteins containing heme groups average 77.88%
accuracy, similar to the accuracy of the method for other
proteins containing large amounts of alpha helix. Struc-
tures determined by NMR are also predicted with similar
accuracy to proteins of similar size and secondary struc-
ture content for which the structure was determined by
X-ray crystallography.

For 552 proteins in the database which are not integral
membrane proteins or viral coat proteins, and contain at
least four aligned sequences in the profile, secondary
structure prediction accuracies form a normal distribution
with a mean of 75.93% and a standard deviation of 7.91%.

Prediction of Rost and Sander test set

A database of 126 non-homologous protein chains with
multiple sequence information assembled by Rost and
Sander5 has frequently been used for comparison of second-
ary structure prediction methods.7,27 To eliminate bias due
to homology with proteins in our training sets, we first
calculated the sequence identity of the 126 proteins with
all proteins in our database. Eleven proteins were found to
have no significant sequence homology (as defined by
Sander and Schneider;3 i.e., 25% sequence identity over
lengths of 80 residues or more) with any proteins in our
database. The secondary structure of these proteins was
predicted using a jury of all networks described above. One
hundred and twelve (112) proteins were homologous to a

single sequence in one of our 15 prediction sets used for
cross validation. These proteins were each tested with the
jury of 8 networks used for cross validation tests on the
corresponding prediction set. Three additional proteins
(1fxi_A, 1r09_2, and 2ltn_B) were homologous to se-
quences in two of our 15 sets. Because our cross validation
procedure involved removing one set at a time from the
database, no networks were trained on sets from which
both homologous proteins were simultaneously removed.
Training additional juries of networks to test these three
proteins would be computationally expensive. Therefore,
each of the three proteins was tested along with the
prediction set including the sequence with the higher
degree of homology. However, because one other protein
with significant homology to the one being tested (28%
identity over .80 residues for both 1fxi_A and 1r09_2, 40%
identity over 47 residues for 2ltn_B) could not be elimi-
nated from each of the training sets, statistics on these
three proteins were compiled separately.

For the remaining 123 protein chains, the overall three-
state accuracy (Q3) of the jury prediction was 76.6%, with
Matthews correlation coefficients of 0.71, 0.57, and 0.57 for
helix, strand and coil. If the additional three proteins are
included, Q3 drops to 76.5%; correlation coefficients are
unchanged. For comparison, Rost and Sander5 obtained
71.6% accuracy on the same set, with correlation coeffi-
cients of 0.61 and 0.52 for helix and strand. Salamov and
Solovyev27 obtained 73.5% accuracy, with correlation coef-
ficients of 0.65 and 0.53 for helix and strand. Frishman
and Argos7 reported 74.6% accuracy, with correlation
coefficients of 0.61, 0.45, and 0.44 for helix, strand, and
coil. The increase in Q3, without an improvement in
correlation coefficients, was obtained by treating short
helices and strands as coil.7 In addition, the two latter
groups7,27 excluded two chains of hemagglutinin (3hmg)
from the data set. Accuracy of the jury prediction on these
two chains is 65.6%, a performance typical for membrane
proteins (Table VIII). If these chains are excluded from our
statistics, Q3 increases from 76.5% to 76.7%.

Prediction of CASP2 target b-cryptogein

The target b-cryptogein (1beo) was identified as a particu-
larly difficult target in the CASP2 study,14 with only 53% of
the secondary structure correctly classified by the PHD
server.5,11 We predicted the secondary structure of 1beo
from the sequence profile in the HSSP database3 using a
jury of all networks described above. This prediction was
correct at 61 of 98 (62%) residues. The improvement in
accuracy over the PHD prediction largely resulted from a
completely correct prediction of the first helix (residues
5–19), which was predicted as a helix followed by a strand
by PHD. As in the PHD prediction, the second (residues
22–31) and last (residues 84–96) helices were completely
missed. All residues in the second helix were predicted to
be coil, with a maximum helical probability of 24%. In the
last helix, the first three residues were predicted to be an
extension of the strand at residues 81–82, while all other
residues were predicted to be coil; the maximum helical
probability in this region was 26%. The jury also predicted
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a short strand at residues 35–38 which is not observed in
the structure; PHD predicted a strand at a similar loca-
tion, from residues 33–39.

As described above, the level of error observed for
b-cryptogein is more common for short sequences. Of the
proteins in the shortest third of our database, 31 of 227
(14%) were predicted with Q3 accuracies lower than that
for b-cryptogein. In the case of b-cryptogein, the estimated
accuracy of the prediction (66%) may be helpful in indicat-
ing to the user of the algorithm that this prediction is
somewhat less accurate than average.

DISCUSSION

The increase in accuracy observed as the database size is
increased from 258 to 681 proteins, without changes in the
algorithm, indicates that neural networks are able to learn
more useful predictive patterns from larger databases
even without additional hidden units. Accuracy on se-
quences common to both databases improved by 1.8% due
to this effect alone. Results on training set accuracy
suggest that accuracy can be improved further with the
addition of more hidden units, before significant memoriza-
tion of the training set occurs. Expected improvements in
computer speed should make larger networks practical in
the near future. Additional increases in accuracy were
made by applying new algorithms such as second level
networks, juries, and the estimated accuracy method.
Together, these improved accuracy by an additional 1.4%.

The estimated accuracy method not only produces
slightly more accurate results, but also allows reliably
predicted regions of the sequence to be identified. Although
reliably predicted regions of proteins have been identified
previously,5,13 expression of secondary structure predic-
tions as probabilities facilitates combination of this predic-
tion algorithm with other methods. Reliably predicted
regions of secondary structure should be useful for tertiary
structure prediction algorithms which rely on an accurate
knowledge of secondary structure.5,13 Expression of the
secondary structure predictions as probabilities also al-
lows an accurate second prediction to be made in cases
where experimental evidence suggests that the first predic-
tion is incorrect.

Increased accuracy resulting from jury decisions has
been observed before11 but never systematically investi-
gated. Averaging several predictions of similar accuracy is
almost certain to result in a prediction higher than any of
the individual predictions, and the average accuracy in-
creases as the number of predictions added to the jury
increases. If all networks made similar predictions, the
average accuracy would remain the same if several were
averaged in a jury decision, although variation in the
results would decrease. However, if the networks vary in
which predictions are incorrect, the majority of the net-
works will override incorrect predictions made by an
individual network. The increase in the average accuracy
as networks are added to a jury indicates that networks
with similar accuracies tend to vary somewhat in their
correct and incorrect predictions. This is supported by an
examination of the weights of similarly sized networks

after training. When networks are trained starting with
different initial random weights, the resulting weights
between the input layer and any of the hidden units rarely
correlate well between networks, even for networks of the
same size. Patterns learned by the hidden units appear to
be arbitrary, and chosen randomly from a large pool of
predictive patterns. Although networks achieve similar
accuracy after training, the particular patterns learned by
each one are different, allowing a jury to attain higher
accuracy than any of the individual networks. This sug-
gests that different prediction methods which achieve
similar accuracy, yet make correct and incorrect predic-
tions in different places, would be extremely useful in a
jury-based method.

The rather low increase in accuracy resulting from the
reduced training set algorithm relative to previous applica-
tions6,12 is probably a result of the relative scarcity of All-a
and All-b sequences in the larger database. Due to in-
creased accuracy in prediction of the helix and strand
content of proteins, and the increase in the size of the
database, it may be possible to create reduced training sets
which are similar in helix and strand content to a pre-
dicted protein, yet are still large enough to include pro-
teins with some range of helix and strand content in case
the predicted content is wrong. It may also be useful to
treat each domain of large a/b proteins individually, in
cases where single domains could be identified and classi-
fied as All-a or All-b.

Increases in the accuracy of secondary structure predic-
tion have made the current class prediction network
nearly obsolete. Class superfamilies can be directly identi-
fied from the predicted secondary structure content and
the sequence length without training specialized net-
works. Specialized networks may still be useful for distin-
guishing between particular folds with similar secondary
structure content.

Anticipated improvements in the speed of computers
and the size of sequence and structural databases should
lead to increases in the accuracy of neural network predic-
tions in the near future. Larger hidden layer sizes, which
will be feasible with a several fold increase in computer
speed, are expected to produce approximately a 1% in-
crease in the accuracy of the algorithm using the current
database. As the number of sequenced genomes continues
to increase, we expect that multiple homologous sequences
will be discovered for most proteins in the database;
proteins with at least four homologous sequences are
predicted with approximately 1% greater accuracy than
the current average. Neural network-based algorithms
also achieve higher accuracy as the number of structures
increases, as demonstrated by the improvement in accu-
racy as the database size was increased from 258 to 681
proteins. This trend should continue as the number of
unique structures continues to increase, provided multiple
sequences are also identified for each structure. An im-
proved reduced training set algorithm may lead to further
increases in accuracy, in addition to providing diverse
predictions for use in a jury-based method. Additional
diverse predictions can be obtained by varying the hidden
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layer size of the first level secondary structure prediction
network (Chandonia and Karplus, unpublished data).
Although this is currently computationally expensive on
large data sets, improvements in computer speed should
make this procedure feasible in the near future. Rost and
Sander5 have shown that a more diverse jury can lead to
improvements in accuracy of over 1%. Feature selection
algorithms may also provide more accurate predictions by
eliminating irrelevant inputs to the neural networks.
Frishman and Argos7 suggest that more accurate local
alignment methods than those used in compiling the
HSSP database will lead to additional improvements in
accuracy. Together, these anticipated improvements should
lead to predictions of over 80% average accuracy within
several years, without explicit consideration of the effects
of tertiary contacts.

CONCLUSIONS

New techniques for processing and decoding protein
sequence data with neural networks, combined with a
larger training database, improves the average accuracy of
secondary structure prediction by 3.2% (to 74.8%) relative
to previous studies. The algorithm produces an estimate of
the overall accuracy of the prediction for each protein, and
allows reliably predicted regions of the sequence to be
identified. Structural class prediction accuracy improves
by 6% (to 86%), mostly due to improved accuracy in the
secondary structure prediction algorithm. The results
suggest directions for future research in secondary struc-
ture prediction which may lead to over 80% average
accuracy.

AVAILABILITY

Alignments of multiple sequences can be submitted for
secondary structure and structural class prediction at the
WWW URL http://www.cmpharm.ucsf.edu/,jmc/pred2ary/.
The web site features a Java applet for making predictions
online, and a Java version of the software which can be
downloaded for use in most Java-compatible operating
environments. Predictions can be made using a single
network, or the juries of networks described in this paper.
All predictions are made using the prediction set esti-
mated accuracy method. Results obtained using the soft-
ware currently available on the web site should therefore
be comparable in accuracy to results described in the
‘‘Analysis of Accuracy’’ section of this paper. As the juries or
the method are updated in the future, further details will
be made available on the web site.
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