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ABSTRACT
Current computer simulations of biomolecules typically make use of classical
molecular dynamics methods, as a very large number (tens to hundreds of thou-
sands) of atoms are involved over timescales of many nanoseconds. The method-
ology for treating short-range bonded and van der Waals interactions has matured.
However, long-range electrostatic interactions still represent a bottleneck in simu-
lations. Inthis article, we introduce the basic issues for an accurate representation
of the relevant electrostatic interactions. In spite of the huge computational time
demanded by most biomolecular systems, it is no longer necessary to resort to
uncontrolled approximations such as the use of cutoffs. In particular, we discuss
the Ewald summation methods, the fast particle mesh methods, and the fast mul-
tipole methods. We also review recent efforts to understand the role of boundary
conditions in systems with long-range interactions, and conclude with a short
perspective on future trends.
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INTRODUCTION

The explosive growth of computer power over the past two decades has led to
the development of large-scale simulation techniques whose aim is to directly
reproduce or simulate processes on a molecular level. Molecular dynamics
(MD) simulations, of both a classical and quantum nature, have proven to
be invaluable in elucidating the structural, mechanical, electrical, and chemi-
cal properties of diverse sets of materials. For example, MD simulations have
been used to study the liquid state, the bulk solid, diffusion, wetting phenom-
ena, phase transformations, polymers, and protein dynamics, to name several
examples. Indeed, it may be argued that MD simulations [and variants (1)] rep-
resent the future of theoretical endeavors in the fields of physics, chemistry, and
molecular biology.

The simulation of biologically active molecules poses its own unique set of
problems to the computational scientist. When contemplating an MD simula-
tion of biomolecules, one would ideally like to carry out a quantum mechanical
calculation, based for example on the density functional theory approach (DFT).
Schemes such as the Fast-Fourier transform based Car-Parrinello technique (2)
or other real-space multigrid methods (3) have reached maturity. These meth-
ods are known to be reliable, with truly predictive powers. Indeed, they have
provided us with some of the most accurate theoretical descriptions of materials
to date. However, they require substantial computational investments. With
state-of-the-art parallel supercomputers, it is now possible to simulate hundreds
of atoms over picosecond timescales. Clearly, such simulations are as yet im-
practical for biomolecular systems, which typically contain many thousands
of atoms with relevant timescales of nanoseconds to seconds. Hence, classi-
cal MD methodology is the technique of choice for simulating biomolecules.
With current technology, classical simulations of systems consisting of tens of
thousands of atoms and with running times of tens of hanoseconds are rapidly
becoming common.

In classical MD simulations, the trajectories of a group of interacting atoms
are calculated through a discretization of Newton’s laws. Forces are gener-
ated by atom-atom interactions, which are usually given in terms of an em-
pirical potential. Parameters for the potential are usually obtained by fitting to
either ab initio calculations or experimental data. A typical empirical force field
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formulation of the potential energy fdf atoms at positions,, ..., ry, can be
written as:
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whererij = |ri —rj| (4). In this expression, the first three terms deal with the

specific internal degrees of freedom within molecules. The first term is a har-
monic potential between bonded atoms that gives the contribution to the energy
when the bond length deviates from the equilibrium valdg. Similarly, the
second term is a harmonic potential in the valence angles of the molecules. The
third term is a torsional potential describing the periodic variation in energy due
to bond rotations. Low-order Fourier series in the dihedral angiee used,
whereV, represents the barrier height andhe phase shift of the-fold term.

The last two terms represent nonbonded interactions. The fourth contribution is
a Lennard-Jones potential representing the van der Waals interactions, and the
last term is the Coulomb electrostatic potential. Note that the first four terms
deal with mainly short-ranged interactions. There are successful methods for
treating these short-range terms, although more sophisticated and computa-
tionally challenging formulations will be required in the future (5-7). These
short-range interactions will not be discussed here. Rather, we will concentrate
on the treatment of the long-range electrostatic potentials, which is where the
current challenges lie.

The need for a correct treatment of long-range electrostatic forces in simu-
lations of biomolecular systems has been clearly established in the last decade.
Historically, long-range forces were mainly ignored in macromolecular simula-
tions, being truncated with the use of artificial, nonbonded cutoffs. The reasons
for this were basically twofold. First, there was insufficient computer power
available to perform th®(N?) calculation necessary to evaluate all nonbonded
pairs in macromolecular systems. Second, while all would agree that full pair
evaluation is correct for isolated systems, many workers have felt that full eval-
uation of Coulombic interactions in periodic boundary conditions would lead
to substantial artifacts when simulating solution phase systems. Improvements
in computer speed together with improved algorithms have now eliminated the
first objection to including long-range interactions. These can now be included
at a cost not much more than that of a typical cutoff calculation. The use of these
methods has led to radically improved results in many cases, particularly with
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respect to nucleic acid simulations. These developments are reviewed more
fully by Auffinger & Westhof (8) and Cheatham et al (9).

The use of cutoffs has been shown to lead to severe artifacts in simulations
of peptides and nucleic acids (10, 11). Although the most sophisticated cutoff
methods (12) can yield stable DNA simulations, at least on the nanosecond
time scale (13), even these have been shown to fail for interfacial and mem-
brane simulations (14). On the other hand, the second objection above to the
use of full electrostatics in periodic boundary conditions with highly polar or
charged systems continues to be raised (15). In liquid simulations, long-ranged
electrostatics have long been treated fully, using Ewald summation, and peri-
odicity artifacts were shown to be minimal in this context. Recently, several
groups have examined the artifacts due to Ewald summation in charged or polar
systems of biological relevance. The results so far point to minimal periodicity
artifacts, at least for systems in high dielectric solvents. Below we discuss these
results more completely.

This article is organized as follows: Inthe next section, we introduce the basic
issues involved in accurately representing the electrostatic potential and forces
due to a charge distribution, pointing out the physical problems associated with
finite system size, and the formidable computational problems due to the size of
relevant biomolecular systems. Next, we discuss Ewald summation and the fast
particle mesh—based approximations toit. In the next section, we discuss the fast
multipole method (FMM) and related tree algorithms. Following this, we review
current efforts to understand the effect of long-range boundary conditions on
simulation results. Finally, we offer a concluding perspective.

ELECTROSTATICS: A MATHEMATICAL
AND COMPUTATIONAL PROBLEM

In this section we consider specifically the electrostatic interactions in a system
of particles. These particles can be atoms, small molecules (e.g. water), protein
residues, etc. We assume that all nonelectrostatic forces between the particles,
such as chemical bonding and attractive van der Waals forces, are known. In
principle, these may be computed by fitting a model potential to experimental
or ab initio data. To complete the entire physical description of the problem,
we therefore need to concern ourselves primarily with the long-range elec-
trostatic interactions between the particles. We do not attempt to describe the
long-range induction interactions here, although these are of increasing interest
in biomolecular simulations. However, we note that calculation of induction
effects depends on a correct description of the electrostatic interactions.
Intrinsic to the electrostatic problem is the question of how charge may be
distributed in space and how such a distribution is described mathematically.
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A charge distribution can be either continuous or discrete. At the most fun-
damental level, quantum mechanics teaches us that while the positive nuclear
charge may be considered discrete on the atomic scale, the negative electronic
charge is distributed continuously in the electronic clouds or orbitals, as dic-
tated by the solutions of the electronic Sakdlaiger equation. Since the size
of biomolecules generally precludes quantum mechanical molecular simula-
tions, this basic continuous distribution is forsaken in favor of a discrete set of
point charges, dipoles, and perhaps higher-order multipoles, all characterized
by vanishingly small dimensions. The total electrostatic potegtile to the
charge distribution is then expressed as a sum of successive multipolar poten-
tials: a monopolar potential, a dipolar potentiap,, a quadrupolar potential
¢2, etc. In principle, such a “distributed multipole” description can exactly
describe the potentigt due to the true charge density, at points distant from
the expansion centers where “penetration” effects are negligible (7). In prac-
tice this expansion is truncated, usually at low order, and often at the monopole
levelin currentforce fields. The distributed monopoles are usually referredto as
partial charges, since they need not have integral values. The long-range
effects are most pronounced for the monopolar potegtiaand thus, for the
rest of this review, only the monopolar potential is considered; the extension to
higher-order multipolar interactions proceeds along similar lines to the treat-
ment of the monopolar term; see, for instance, the treatment of point multipoles
in the context of Ewald summations by W Smith (16).

The energy of a system of partial charges, that produce the monopolar
electrostatic potentiap, is given by:

N N

18 1 00
E = — E i i) = = E T —— 2.

where ¢o(ri) is the monopolar potential acting on chargat positionr;,
produced by all the other charges, with j # i. Physically, Equation 2
represents a well-posed electrostatic problem: By knowing all the partial
chargesy, and their positions;, one can compute the electrostatic interac-
tions, no matter how complicated the configurations of charges may be. In
practice, such computation is far from trivial, due to two main computational
considerations:

1. Finite system size: The treatment of infinitely long-range interactions in a
sample offinite size isalong-standing technical issue. Finite-size constraints
being inescapable, the infinite range of the interactions, as well as other
guantities that characterize the properties of the systemin the thermodynamic
limit, are dealt with through boundary conditions.



160 SAGUI & DARDEN

2. Molecular size: Biomolecules (e.g. DNA strands, proteins, membranes,
enzymes, etc.) range in size from a few tens to millions of atoms. System
sizes currently simulated with MD techniques range fromitb00* atoms,
excepting the rare Platom simulation. Equation 2 represents a sum over
N(N —1)/2 pairs; i.e. it is arO(N?) calculation, which becomes too costly
asN grows larger than 10

Boundary conditions may be conveniently divided into periodic boundary
conditions (PBC) and nonperiodic boundary conditions (NPBC). The latter
include vacuum simulations, in which solventis ignored completely, and the so-
called continuum methods, which treat the solvent implicitly. They also include
intermediate approaches, models with minimal explicit solvation, in which the
solute is surrounded by a thin layer of explicit waters. On the other hand, PBC
mainly include simulations involving explicit solvent molecules (though this
is not always the case; for instance, the reaction field methods use PBC while
treating neighboring solvent explicitly and distant solvent through continuum
methods). Although both NPBC and PBC have been criticized, because they
can introduce serious artifacts in the simulations, there is growing consensus on
the soundness of PBC in the treatment of long-range forces. We review recent
work on this problem in the section on artifacts due to Ewald summations.

With respect to the second problem, two major approaches have proved to
give satisfactory and consistent reproduction of the electrostatic interactions,
as well as feasible computer times:

1. Ewald summation and other lattice summation techniques: In periodic
boundary conditions, these methods consider the potential due to the partial
charges of a system, together with all of their periodic images. By using
the decomposition/& = erfc(gr)/r + erf(gr)/r, one splits the Coulomb
interaction into a short-range term, handled exactly in the direct sum, plus
a long-range, smoothly varying term, handled approximately in the recip-
rocal sum by means of Fourier methods. Note that important, close-range
interactions such as those in hydrogen-bond pairs are partially calculated
in the approximate reciprocal sum, which is a possible limitation of these
methods, particularly with regard to multiple time-step implementations.
However, the splitting of the Coulombic interactions involves a smooth
function ofr and thus, these approaches yield very well behaved MD sim-
ulations. These methods include the original Ewald summation (17), the
particle-particle particle-mesh method (18, 19), and the particle-mesh Ewald
algorithm (20, 21).

2. Fast multipole methods: These methods treat Coulombic interactions ex-
actly for particles within the same or neighboring subcells of the simulation
cell, and evaluate the potential for more distant particles through multipolar



LONG-RANGE ELECTROSTATIC EFFECTS 161

expansions. Note that close-range interactions are handled exactly, unlike
those in the lattice sums. However, the splitting of the Coulombic interac-
tions is not a smooth function of and thus, these methods may suffer in
comparison to lattice sum methods in their simulation behavior (22). While
the original FMM (23, 24) uses NPBC; more recently it has also been im-
plemented for PBC (19, 25).

We review both approaches in the next two sections.

EWALD SUMMATION AND OTHER LATTICE
SUMMATION TECHNIQUES

Two Approaches to Ewald Summation

In PBC, the system to be simulated comprises a unit simulatiorcelhose
edges are given by the vectas a, andag, not necessarily orthogonal. The
volume ofU is given byV = a; - a, x az. The Coulombic potential under PBC

can be treated in two similar, but not identical ways. (We ignore cutoff and
reaction field treatments, which do not explicitly treat electrostatics with full
periodicity.) The firstway considers that the potential due to the charges is given
by the solution of Poisson’s equation in PBC. For simplicity, assume that there
is a single chargg in the unit cell, situated at the origin, and the potengial)

is desired at another point£ 0. To arrive at a tractable expression (26, 27), a
smoothly varying screening charge distribution (typically a Gaussian), centered
atthe origin, is added to the point chaggguch that the total charge of this cloud
(given by the integral of the distribution over all space) exactly cangelfius,

the electrostatic potential ats produced entirely by the fraction gthat is not
screened. This fraction decays very rapidly with distance. Because a screening
charge cloud has been added to the point charge, one must add an exactly
compensating charge distribution. This second distribution varies smoothly in
space and acts as a source term for the solution of Poisson’s equation in PBC,
which can be expressed as a rapidly convergent Fourier series. However, since
the solution for Poisson’s equation in PBC is undefined for non-neutral unit
cells (otherwise, the zeroeth-order term for the potential would be infinite), a
uniform density having total chargeq, referred to as a uniform neutralizing
plasma, is added to the source term. This fixes the problem with the zeroeth-
order term, without disturbing the higher-order terms. This approach to solving
the Poisson problem givesgr) forr # 0. The potential at the origin is obtained

by removing the direct Coulombic contribution before taking the limit—> 0.

This defines the Wigner or self potential

: 1
¢= J'To(")(” - r>. 31
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In cubic unit cells, wherey, a,, andaz are mutually orthogonal with length
¢ isgiven byc &~ —2.837297L. The potential at due to the chargeg atr; is
given byqi¢ (r —r;), and the energy of the unit cell consisting of point charges

Qi, ..., Qn at positiong 4, ..., ry is given by
¢
Zq.q, ori —1)) + Zq.- 32
I#J

Forces are obtained by differentiating the energy with respect to particle po-
sitions, and the virial part of the pressure tensor is obtained by differentiating
with respect to the cell vectoes, a, andas (28). As noted above, the Ewald
sum may readily be extended to multipolar interactions. In molecular systems
there is an additional consideration. Bonded atoms, such as atoms belonging
to the same water molecule, do not usually interact electrostatically and thus
should not feel the full potentigl. Typically the direct Coulomb interaction is
removed from the periodic potenti@| analogous to the process leading to the
self potentiak .

The second approach (29-31) to treat Coulombic interactions in PBC is
to model the system as a large but finite array of copies of the unitJgell
which is then immersed in a dielectric medium. Each pariic position
r; within the cell has a number of image particles at positions n, with
n = n1a; + N2a, + nzaz andny, Ny, ng integers. The interaction of particie
with j in periodic boundary conditions is evaluated by summing the interaction
of i with j and with all images of. Particlei also interacts with its own peri-
odic images. Finally, particleinteracts with the reaction field induced in the
surrounding dielectric medium. In the limit as the array size tends to infinity,
this implementation of the PBC leads to infinite lattice sums, and the monopole
potentialgg(ri) acting on chargedue to the array of copies &f is given by

¢O(r)_zz|r.—r,+n| 3.3

where the prime indicates that terms wiith- ] andn = 0 are omitted.

Unfortunately, the Coulomb interactions do not decay fast enough to pro-
vide for an absolutely converging series. To appreciate the problems involved,
consider the simple lattice sum

1
> e 34
n#0

where the lattice vectors are defined as above. jif > 3, this sum converges,
whereas ifp < 3, itdiverges. This result is the origin of the distinction between
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short-range and long-range interactions. Thus, if there were only a single
positive charge in the unit cell, replicated by periodic boundary conditions, the
unit cell electrostatic energy would be infinite even though, by symmetry, the
particle would experience no force. Similarly, if the unit cell were not neutral,
the sum in Equation 3.3 would diverge. Oddly enough, the forces actually
converge (conditionally) in this case, although they are long ranged as well.

If the unit cell is neutral, the sum in Equation 3.3 converges, albeit only
conditionally. This latter statement means that the result obtained depends on
how the limit to infinity is taken. A simple example of a conditionally convergent
series is the one-dimensional series 1/2+ 1/3 —-1/4+1/5+ ---. The
series converges, meaning the sequence of its partial sums converges to some
number. However, if the series is rearranged as followst 1/3 — 1/2 +
1/5+4+1/7 - 1/4 + ---, that is, two positive terms followed by a negative
term, then it can be shown (32) that it now converges to a different limit. This
peculiar result cannot happen if a series is absolutely convergent, that is, if the
series with all terms replaced by their absolute values were to converge. The
same kind of problem can be expected for the sum in Equation 3.3, since it
is not in general absolutely convergent, by the above criterion Equation 3.4,
i.e. Coulombic interactions are long ranged. If, for example, you perform the
summation by slabs, making the outer sum, and first taking the infinite sum
overn; andn, for each fixechs, you will not, in general, get the same answer
as if you compute the sum by gathering the lattice pairitgo spherical shells
and summing this way. The forces will not agree either.

Ewald first tackled the problem of long-range interactions between particles
and their infinite periodic images in 1921 (17). He transformed the slowly,
conditionally convergent sum for the Coulomb potential into two sums that
converge rapidly and absolutely: the direct and the reciprocal sums. The Ewald
sum agrees with the resultin Equation 3.2. Note that a conditionally convergent
sum cannot be transformed into an absolutely convergent sum without losing
something. DeLeeuw et al (29) showed that the lattice sum in Equation 3.3 can
be re-expressed as the Ewald sum in Equation 3.2 plus a term that depends on
the dipole moment of the unit cdll, the dielectric constant of the surrounding
medium, and the order of summation; that is, on the asymptotic shape of the
array of copies olJ. Thus, the second way of treating electrostatics in the
context of PBC does not yield identical results to the first. If the surrounding
medium has infinite dielectric (tin-foil boundary conditions), the extra term in
the treatment of DeLeeuw et al vanishes, leaving the Ewald sum for energies
and forces. However, Smith (30) showed that the pressure tensor is different
from that for Ewald summation, even in tin-foil boundary conditions. The
above second term of DeLeeuw et al is only rarely used, however; Boresch &
Steinhauser have recommended its use in calculations of the dielectric constant
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of the sample (33). Note that this second term is computationally inexpensive,
compared with the rest of the Ewald sum.

Note that with the second approach, the self-enefggs a natural interpreta-
tion. Itisthe potential acting on a charge due to its own periodicimages, together
with the neutralizing plasma. A similar interpretation can be given to the cor-
rections for bonded pairs in molecules. Thus, the second approach has a more
physical interpretation in terms of crystals, at least for static configurations.
However, the array of periodic images of atoms must be perfectly correlated
dynamically, which does not correspond to a real crystal. Recently, this second
approachto Coulombicinteractionsin PBC has been used to formulate the quan-
tum mechanical Hamiltonian in PBC (34). Itis possible that ab initio treatment
of crystals and other condensed-matter systems may provide a test to decide
which of the two ways of treating electrostatics in PBC is more physically sound.

The Ewald direct sum is given by the sum of screened interactions, using
Gaussian screening functions centered at each point charge. The reciprocal sum
is given by the Fourier series representation of the solution to Poisson’s equation
in PBC, using the sum of the compensating Gaussians, again centered at each
point charge, as a source distribution. The terms in this Fourier series can be
expressed analytically. By varying the width of these Gaussian distributions, the
relative contributions and computational cost of the direct and reciprocal sum
can be varied without affecting the total energy, forces, etc. If the Gaussians are
chosen to vanish (within a prescribed tolerance) at a cutoff of half the cell size,
the direct sum is over all minimum image pairs, and thu®{#?), while the
number of terms needed in the reciprocal sur®{4), and thus the reciprocal
sum isO(N). If, on the other hand, the width is taken so that the Gaussian
vanishes at a standard cutoff distance independeNt obnventionally taken
to coincide with the cutoff of the Lennard-Jones interactions, the direct sum is
O(N), but the number of terms needed in the reciprocal sué\(i¥), so that
the reciprocal sum becom@sN?) (21). By varying the cutoff with the square
root of the cell size, it can be shown that both the direct and reciprocal sum are
O(N%?2), which is optimal (35).

Thus, the Ewald sum, while immensely faster than explicit evaluation of the
lattice sum in Equation 3.3, is computationally expensive for large systems.
This cost can be alleviated by replacing the Gaussian screening functions by an
optimal screening function (36) or by multiple time-step approaches wherein
local Coulomb interactions are calculated every time step, with full Ewald per-
formed only every several steps (37). The latter approach, using the r-RESPA
methodology (38), provides a four- or more-fold speedup for large systems
while conserving energy and reproducing the density of states. However, even
with these optimizations, Ewald summation remains costly compared to con-
ventional cutoff schemes.
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Particle Mesh—Based Approaches to Lattice Summation

The particle mesh—based approaches all attempt to accelerate the solution of
Poisson’s equation in PBC, using the profound advantages of the fast Fourier
transform (FFT) for calculating discrete Fourier transforms. As stated above,
when a fixed cutoff is applied to the direct Ewald sum, the number of terms
needed in the reciprocal sum @(N). Since each such term is nominally

of orderN to calculate, the reciprocal sum @(N?). Similarly, the discrete
Fourier transform oN coefficients is an ordeN? calculation. However, the

FFT performs this task i@ (N log N) operations. All the particle mesh—based
approaches reduce the calculation of the reciprocal sum to a sum over coeffi-
cients of the discrete Fourier transform of a gridded charge distribution, which
is then accelerated to @ (N log N) calculation using the three-dimensional
FFT. The methods differ in how they transform the continuous charge density
due to the sum of compensating Gaussians onto a regular three-dimensional
grid and in how they compensate for the loss of accuracy introduced in this
process. These methods have been carefully studied and compared in the recent
literature (19, 39-41). Here we attempt to briefly review the similarities and
differences of the different variants of the particle-mesh method, pointing out
the strengths and weaknesses of each.

Hockney & Eastwood (18) first developed the particle-mesh method, wherein
the Coulombic potential at particles was obtained by solving Poisson’s equa-
tion in periodic boundary conditions. The charges were interpolated onto a
regular grid, and the discretized Poisson’s equation was solved by expanding
in a discrete Fourier transform. For a regular grid, this transform is evaluated
using the FFT, resulting in a very efficient algorithm. However, the interactions
between nearby particles were poorly represented. Subsequently they devel-
oped the particle-particle particle-mesh approach (PPPM or P3M), wherein
the interaction is split into short- and long-range contributions using switching
functions and the long-range potential is obtained by gridding the charges and
employing the FFT as above. Note that the switching function, analogous to
the Gaussian screening and compensating distributions in Ewald summation,
leads to a smoother charge density to interpolate onto grids. Higher accuracy is
achieved by using an optimal Green'’s function, obtained through a least-squares
approach. A readable account of this least-squares optimization of the Green’s
function is given by Ferrell & Bertschinger (42).

As noted above, the original particle-mesh method, although appropriate
for collisionless systems such as plasmas, was not accurate enough for MD
of molecular systems (43, 44). Furthermore, in their published work on P3M,
Hockney & Eastwood discuss only low-order implementations of their
method, which again are insufficiently accurate for molecular simulations. In
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addition, the connection with the well-understood Ewald summation was not
clear, probably because the authors did not apply Gaussian screening functions.
Indeed, Ewald summation is hardly mentioned in their book. Probably for these
reasons, the particle-mesh—-related approaches were overlooked by the molec-
ular simulation community for many years in favor of the multipole expansion
approaches such as FMM (44). Recently, variants of this approach have been
taken up by various groups (19-21, 45, 46), and it currently appears to be the
most popular approach to efficiently approximate the Ewald sum.

Assuming the usual Gaussian screening function, leading to the Ewald direct
and reciprocal sum, the direct sum is handled precisely as in the Ewald sum,
i.e. usually along with the other nonbond terms, using a Verlet list of neigh-
bors. The steps in the particle-mesh algorithm for the reciprocal sum are as
follows:

1. Charge assignment: Charge is smoothly interpolated to neighboring grid
points, using a weighting function. The cost of this ste@idN p®), where
pis the order of the weighting, e.g. cubic interpolation is order 4.

2. Grid transformation: The Fourier space representation of the discrete
charge distribution is obtained via the FFT. The cost of this st€(§ log
K), whereK is the number of grid points. For condensed-matter systems
with density near that of wate is linearly proportional toN.

3. Multiplication by the optimized influence function: The components of the
transformed charge grid are multiplied by a type of Green’s function that, in
the absence of optimization, would be the normal expression in the reciprocal
Ewald sum. At this point, forces may be calculated in Fourier space, as in
the Ewald sum. This approach (referred to as force interpolation), which
leads to three grids to transform back by FFTs, is favored by Pollock &
Glosli (19). The original approach, which was implemented by Shimada
et al (45) and Luty et al (46), fills only one grid. In either case, the cost of
this step isO(K).

4. Transformation back to real space: Either one or three grids are transformed
back. The cost of this step is agad(K log K).

5. Force assignment: In the force interpolated case (19), the three components
of the force from the three transformed grids are interpolated onto the atoms,
using the same weighting functions as in step 1. Alternately, the force at grid
points is approximated by finite differencing the potential on the transformed
grid (45, 46). The three components of the approximate force are then inter-
polated onto atoms as in the force interpolation case. In either case, the cost
of this step iSO(N p?).
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Thus, in either variant of P3M, the overall cost@g N log N), sinceK is
proportional ta\. The finite difference approach to forces requires fewer FFTs
(two versus four); however, Deserno & Holm (41) showed that it is significantly
less accurate than the force interpolation approach.

The PME algorithm (20, 21) approaches the problem from a very different
philosophy, although the resulting algorithm is very similar to that of P3M.
In the PME, the basic form of the Ewald sum is taken as a given. Rather
than approximating the Gaussian source density by the weighting function, in-
terpolating charge onto grid points, and then adjusting the Green’s function,
the complex exponentials appearing in the reciprocal sum are approximated
by local polynomial interpolation. In the original implementation (20), local
Lagrange interpolation was used. In the smooth PME (21), the Euler spline
interpolation, based on B-splines, was used. The original implementation used
force interpolation, resulting in four total FFTs. The smooth PME took advan-
tage of the smoothness of the B-splines, together with recursion formulas for
their analytic derivatives, to arrive at forces through analytic differentiation in
real space, using only two FFTs. The actual steps in the algorithm are quite close
to the P3M outlined above and can be described using the same five steps. The
smooth PME differs in the last step in that the potential is first interpolated
onto the atom, using the Euler spline weighting functions, and that the resulting
potential is differentiated with respect to atomic position to give the electric
field and hence the forces.

The weighting functions used in the P3M are also B-splines, although that
does not seem to have been noted until recently. Thus the P3M is even closer
to the PME than previously noted. Darden et al (40) compared the accuracy
of the smooth PME and a force-interpolated variant of the smooth PME (i.e.
forces obtained by interpolating the Ewald forces, but using Euler splines),
with the force-interpolated version of P3M implemented by Pollock & Glosli
(19), using a program kindly provided by E Pollock. They found that the
Pollock implementation was more accurate than the smooth PME or its force-
interpolated variant. This difference in accuracy, when testing actual molecular
systems, was found to be marginal for cutoffs and overall accuracies typically
employed in simulations (e.g. A cutoff, RMS force error o~~10~4), and in
these cases the smooth PME (forces via analytic differentiation) could achieve
equal or higher accuracy by using one higher order of interpolation. Since the
smooth PME uses half as many FFTs as the force-interpolated P3M, it is more
efficient in situations where the cost of the FFT becomes an issue, such as in
highly parallel implementations (the cost dependence on spline order is in steps
1 and 5 above, which parallelize well, whereas the FFT does not). Nonethe-
less, it was of interest to trace the difference in accuracy between the PME and
P3M.
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Note that the optimal P3M influence function is obtained by assuming that
charges are randomly and independently distributed in the cell. This suggested
that the smooth PME could be improved by using least-squares spline approx-
imation of the complex exponentials, rather than spline interpolation. Since
there is an exact Fourier series representation of the Euler spline, the coeffi-
cients of the least-squares approximation can be obtained analytically using
the well-known orthogonality properties of Fourier series (40). The resulting
optimized force-interpolated PME gave the same accuracy as the Pollock &
Glosli implementation. However, the resulting Green'’s function is different
(with PME computationally cheaper, although this cost is minor) than that in
P3M. The difference between the two is that the P3M attempts a least-squares
fit to the exact Ewald sum, whereas the optimal PME can be re-expressed as
a least-squares fit to the truncated Ewald sum, expressed as the sum over the
reciprocal vectors on the grid. The two give the same accuracy because the
error in the Ewald sum due to this truncation is very small compared to the er-
ror introduced by approximating the terms in the truncated series. That is, the
truncated Ewald sumis far closer to the exact Ewald sum than the particle-mesh
approximations are to either.

Later, Deserno & Holm (41, 41a) have more thoroughly compared the PME
methods with the above two implementations of the P3M, although they did
not consider the optimal force-interpolated PME in their comparison. Other-
wise, their conclusions are similar. The most accurate algorithm is the force-
interpolated P3M. The finite-difference implementations of P3M also use half
as many FFTs as the force-interpolated variant and thus enjoy the same cost
advantages as the smooth PME, but Deserno & Holm showed they are less
accurate than the smooth PME, which uses analytic differentiation rather than
the finite-difference approximation to arrive at forces. Thus, the overall con-
clusions from these two studies would be that the force-interpolated P3M and
the optimized force-interpolated PME are the most accurate for a given grid
size and spline order. In cases where it is less expensive to use a higher-order
spline than to perform the extra two FFT’s, the smooth PME is preferable. The
cost advantages of using the analytic differentiation approach to forces and
fields will increase when force fields involving point dipoles and higher-order
multipoles are considered.

Another variant of the particle-mesh approach is the fast Fourier Poisson
method, proposed by York & Yang (47). This method directly samples the
compensating Gaussians onto the grid and avoids loss of accuracy from inter-
polation by use of a clever identity. Due to the cost of sampling the Gaussians,
this method is not competitive for the modest accuracies appropriate for current
force fields, but it appears to be more efficient than the above methods for high-
accuracy requirements that might be expected in future ab initio calculations.



LONG-RANGE ELECTROSTATIC EFFECTS 169

FAST MULTIPOLE METHOD

Description of the Method

In this section we review the fast multipole method of Greengard and Rokhlin
(23,44,48,49). The method can be discussed in terms of a number of con-
tributing developments.

MULTIPOLE EXPANSIONS The FMM relies on standard multipole expansions
for the electrostatic potential as described, for instance, in Jackson (50). The
multipoles are expressed in terms of spherical coordinaiés«) rather than
Cartesian coordinates, since expansions in the spherical harm@riés «)

are far more efficient at higher order. If the distance to chafgis ri =

Iri], the radial expansion is performed in powe}$r'+1 (“multipolar” ex-
pansion) whem > maxr;} and in powers'/r;'*! (“local” expansion) when

r < min{r;j}. It can be shown that the infinite seried in themarpultipole expan-

sion can be truncated with a cut-@ffo an accuracy%max('ir—)p“, withC =

SNl

OCTAL TREE CONSTRUCTIONS There are several previous methods, known as
tree algorithms, that are based on the recursive grouping of distant particles into
multipoles. These methods, as first introduced by Appel (51) and Barnes &
Hut (52), are based on a hierarchical tree approach to calculating the energies
and forces in a system of particles. Although many of these algorithms were
originally developed for astronomical simulations (53), where the monopole
term plays an important role, they are easily modified for a system of charges,
where higher-order expansions are necessary due to approximate local charge
neutrality. The FMM uses a similar hierarchical tree construction.

The tree method starts by successively dividing the initial cell into self-similar
subcells, known as children. Thus, if the initial cell (level zero) is a cube, the
first division produces eight equal cubes (level 1), the second division produces
64 cubes (level 2), and thedivision produces'8cubes. The cells at levehre
the parents of cells at leve}- 1 and the children of cells at level- 1. The cells
at the finest subdivision level are called the leaves. Generally, the refinement
process stops at logg N number of levels, which means that there @reN)
leaves containin@ (1) particles. The FMM allows a larger number of particles
in the leaf cells, to optimize efficiency.

Two cells at the same level are nearest neighbors if they share a boundary
point, and are well separated when they are not nearest neighbors. Obviously
at level 0 and 1, all cells are nearest neighbors. For each aelevell, there
is an interaction list formed by other cells at leV#¢hat are the children of the
nearest neighbors o parent and are well separated frontor each celi at
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levell, a multipole expansion is performed about the cell center. The expansion
represents the far field created by the particles inside the cell.

The key ofthe tree methods is to compute interactions between well-separated
clusters through multipole expansions with rigorous bounds on the error. For
a given precisior, it is necessary to usp = —log s;(€) terms in the ex-
pansion (49). The interactions between particles contained in each cell with
those contained in well-separated cells is computed recursively by evaluating
the multipole expansion corresponding to c¢eit the position of every patrticle
in the interaction list of celi.

At this stage, a tree algorithm is of ordé(N log N). Each particle con-
tributes to p? expansion coefficients, so that all expansions are created in
Np? operations. For each particle, the maximum size of the interaction list
is 189. Thus, the total number of evaluations is Ni§8. This must be repeated
at each tree level, resulting in 18®?logg N evaluations. At the finest level,
there are nearlil leaves withO (1) particles each, so that the interactions be-
tween nearest neighbors, which are calculated without approximation, require
27N operations. The total cost is approximately Mg# logg N + 27N. As
it stands, the method is still very costly; for high precision ahd- 10°, the
order of expansiomp ~ 20 is so big that the method is only two to three times
faster than the direct Coulomb sum (49).

TRANSLATION OPERATORS FOR TRANSFORMATION OF MULTIPOLE EXPANSIONS
The FMM reduces the asymptotic cost of the previous tree algorithm through
three translation operators: a translation of a multipole expansion, a conver-
sion of a multipole expansion into a local expansion, and a translation of a
local expansion. The implementation of the original FMM involves a two pass
procedure.

In the first or upwards pass, multipole moments are computed for every leaf
cell. For all the other levels, the multipole translation operator is used to shift the
center of expansion of a multipole moment from a cell’s center to that of its par-
ent. The contributions of the eight children, weighted by the translation operator
coefficients, are summed together to give the multipole moments of the parent.

In the second or downward pass, the expansion atliéwetelli (with | going
downwards from level 2 to the leaves), is given by the sum of two contributions.
With the use of the conversion operator, the multipole expansion corresponding
to each cell in the interaction list of celis transformed into a local expansion
around the center of celll The sum of the converted local expansions due to
all the members of the interaction list gives the first term in the potential of cell
i. The second term is obtained by shifting the local expansiols parent ta
itself, with the use of the local operator.

Finally, for each patrticle in each leaf cell, one evaluates the local expansion
potential at the particle position and computes the interactions with particles in
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near neighbor cells directly. (Their contribution is not in the local expansion
coefficients, because they do not belong to the interaction list.)

An evaluation of the number of operations in thisimplementation of the FMM
gives an estimate that apparently would beat that of the other tree algorithms.
Unfortunately, the order of expansipmeeded for a given precision in the latter
is smaller than that needed in the FMM. The major hurdle in the FMM scheme
is the conversion of multipole to local translations in the downward pass, a
transformation that requires approximately Ny# operations. Considerable
effort has gone into developing fast translations schemes that reQqpé)
operations. However, most of these schemes suffer from numerical instabilities.

COMBINE MULTIPOLE EXPANSIONS WITH PLANE WAVE EXPANSIONS The most
recent algorithm for the three-dimensional case combines multipole expansions
with exponential or plane wave expansions, which diagonalize the translation
operators. Apparently this new method does not have numerical instabilities and
requiresO(p?) operations. Unfortunately, it introduces further mathematical
complications related to the six plane-wave expansions (one for every face of the
cube) and the expansion of the appropriate Green’s function. With a convenient
choice of the average number of particles contained in the leaf cells, the total
operation count becomes 18@ + 5N p?. The reader is referred to Ref. (49)

for further details.

BOUNDARY CONDITIONS The original FMM was developed for a single,
nonperiodic cell. Schmidt & Lee (54) extended the FMM to periodic boundary
conditions by combining it with Ewald techniques. At the end of the upward
pass, all multipole expansions at all refinement levels of the unit cell are calcu-
lated. To implement the PBC, the unit cell is surrounded by image cells that, by
definition, have the same multipole expansion around their centers. To proceed
with the downward pass, one needs local expansions of the image cells. This is
achieved through a multipole to local translation, which is implemented by an
Ewald sum formulation. After this, the local expansions of all periodic image
cells are available to evaluate the local expansion of the unit cell. The down-
ward pass then proceeds as before. Lambert (55) derived an alternate approach,
where the electrostatic potential and forces due to a finite periodic array of
copies of the unit cell are evaluated by continuing the upward pass past the root
cell to the successively larger set of copies. This can be considered a numerical
implementation of the procedure of Smith (30).

Comparing the FMM with the Ewald Sum

and Particle Mesh—Based Approaches

The relative efficiency of FMM versus Ewald summation and the various
particle-mesh approaches has been the subject of some controversy. To our
knowledge, the best study is that reported by Pollock & Glosli (19), because
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they are the only group to attempt fully optimized implementations of each
approach. They conclude that both P3M and FMM are more efficient than
Ewald summation for macroscopic systems but that the P3M approach is sig-
nificantly more efficient than FMM for any conceivable system size, despite the
superior asymptotic scaling of the latt€@(N) versusO(N log N)]. They also
discuss other advantages of th#vPmethod, the most obvious one being the
ease of coding. Also, noncubic periodic cells can be easily implemented with
the particle-mesh methods, but not (easily) with the FMM. Finally, they point
out that P3M can be used for nonperiodic systems by using a filter function in
Fourier space, a fact that does not seem to be widely appreciated.

A few further comments are, however, warranted. First, the new methods in-
troduced by Greengard & Rokhlin (49) may lead to substantial improvements
in efficiency, although at the cost of even greater code complexity. Parallel
implementations of FMM scale better than P3M or PME with the number of
processors (J Board, personal communication). This is due to problems in ef-
ficiently parallelizing the FFT. The FMM may integrate better with multiple
time-step methods (25), since the Ewald reciprocal sum involves neighbor-
ing high-frequency atom-atom interactions. The FMM approach is also better
suited to problems involving highly nonuniform particle density because the
tree approach lends itself well to an adaptive approach (57), whereas in these
cases the grid sizK in the P3M (see above) will grow faster than linearly
with the number of particles. On the other hand, as noted above, FMM suf-
fers from a lack of energy conservation unless very high accuracy is employed
(22), whereas we will see below that PME has very good energy conservation
properties. There are many other variants of the FMM, or of the particle-mesh
methods, or combinations of both methods, that aim at improving efficiency.
The reader is referred to Reference (39) for a review.

ARTIFACTS DUE TO EWALD SUMMATION

As discussed in the previous section, the use of Ewald summation and the
particle mesh—based approximations has led to dramatic improvements in sta-
bility of biomolecular simulations. A concern voiced by many workers is that
somehow the long-range periodicity artifactually stabilizes the system, i.e. that
conformational fluctuations are inhibited by Ewald. Often, the lower root mean
square (RMS) deviation from experimental structure seen in Ewald MD simu-
lations, when compared to simulations using cutoffs, is accompanied by lower
RMS fluctuations, although this is not always true. In a set of crystal simula-
tions of the HIV-1 protease unit cell, York et al (58) compared the use of PME
with that of short () and long (18A) cutoffs. The short cutoff led to an un-
stable simulation, with the RMS deviation from the crystal structure increasing
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monotonically with simulation time. The large cutoff led to a stable simulation,
with RMS deviations only slightly larger than with PME. However, the RMS
fluctuations were actually larger, and in better agreement with experimental
B-factors, in the simulation using PME.

More recently, Smith & Pettitt (59, 60) have studied dynamical artifacts due
to Ewald summation. They focused on the question of the size of barriers to free
rotation of dipoles, due to long-range periodicity. Imagine a single ideal dipole
at the origin of the unit cell, which is then replicated periodically, as discussed
above. The potential energy of the system will depend on the dipole orientation,
which is not appropriate for solution studies of biomoleculars. However, Smith
& Pettitt showed that the rotational barriers are negligible for dipolar molecules
in high dielectric solvents at room temperature, with typical simulation cell
sizes. It will be interesting to see similar studies in low dielectric solvents.

As multiple-nanosecond simulations become routine, it will be possible to
compare the time scale of simulated conformational transitions in peptides and
flexible regions of proteins with those observed experimentally. Arecent exam-
ple of this type of study was given by Mohanty et al (61), who also employed the
“locally enhanced sampling” method to accelerate conformational sampling of
peptides. The results seeninthese types of studies will depend on the force field,
the integration algorithms used, including the methods used to control temper-
ature and pressure, as well as possibly on the boundary conditions used. It will
obviously be pointless to improve the agreement with experiment by tuning the
force fields unless the otherissues are understood, atleast on the time scale under
study. Schlick etal (72) have recently reviewed the various approaches to accel-
erating MD simulations by means of longer time steps. They point outanumber
of possible problems related to resonance phenomena. Artifactsin sampling due
to subtle deficiencies in integration schemes may appear in long simulations.

Recently, Harvey et al (62) have pointed out severe artifacts due to tempera-
ture-control schemes in molecular dynamics. These can lead to loss of kinetic
energy in certain degrees of freedom over the nanosecond time scale. Earlier,
the phenomenon of hot solvent, cold protein was discovered and treated by
means of separate temperature scaling. This phenomenon was later seen to be
the result of cutoff artifacts, and separate temperature scales for solvent and
solute are no longer necessary with Ewald summation techniques. However, an
even more dramatic artifact emerged in an early implementation of the PME al-
gorithm. The internal degrees of freedom cooled off monotonically, whereas the
temperature scaling eventually caused the center of mass to acquire all of the ki-
netic energy. This gave origin to the “flying block ofice.” In simulations of pure
water, this is seen as a dramatic change in the diffusion coefficient as a function
of time, which unfortunately is not apparent in short (subnanosecond) simula-
tions. This artifact was traced to the incorrect treatment of attractive dispersion
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interactions. When these are treated with cutoff through Verlet lists, it is impor-
tant that the list be updated (effectively) every time step. This can be effected by
using a list with a larger cutoff evaluating only those atom pairs within the real
cutoff and updating the list when it is no longer valid due to atom movements.
In Figure 1, we show the results of a set of 5-nanosecond simulations of
pure water with no temperature or pressure control (the NVE ensemble). The
systems consisted of 216 SPC water molecules in cubic cells at standard density.
The nonbonded cutoff waswithout a switching function, electrostatics were
handled by PME using cubic interpolation, a grid densitythf,& and an Ewald
coefficient of~0.35. The (leapfrog) Verlet time step was 2 femtoseconds, and
an analytic version of SHAKE (63) was used. All simulations were performed
using AMBER version 4.1 (64), modified to explore the effect of various list
update strategies. The average temperature over 10-picosecond subintervals is
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Figure 1 Effect of the nonbond list update time on system temperature in PME simulations of
SPC water without temperature control (NVE). The running time average of temperature over 10
picosecond windows is plotted versus simulation time. The results are for update eveppbtep (
line), every 5 stepsdashed ling every 10 stepsl¢ng dashed ling and every 20 stepsi¢tted

line). The integration time step was 2 femtoseconds.
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shown. Clearly, when the effective list was updated in every time step, there is
no visible drift in the temperature over the 5 nanoseconds. This demonstrates
that PME yields very good energy conservation. The total energy did, however,
exhibit a small change of about 2 kcals mbbut of about—1750 kcals mot*

over this time. When a one-femtosecond time step was used, the energy drift
over 5 nanoseconds was reduced to about 0.6 kcals!njdata not shown),

in agreement with the expected quadratic dependence of the error of the Verlet
integrator on time step. In addition, as expected, the diffusion constant, when
calculated over 100-picosecond windows, exhibited no apparent drift over the
course of the simulation (data not shown). In contrast, when the nonbonded list
is not correctly updated, the energy decreases dramatically. These results do not
reflect an artifact of Ewald summation or PME, since the results are even more
dramatic when pure Lennard-Jones fluids are simulated (data not shown). Itis
easy now to see how the “flying block of ice” can arise if temperature control
through velocity scaling is introduced into this system. These results also
demonstrate the importance of energy conservation as a criterion of simulation
quality. Iftemperature control is used to correct for lack of energy conservation,
artifacts are almost certain to arise over long simulations.

Recently, several groups have studied the effect of boundary conditions on
calculated free energies. A recent review is given by Levy & Gallicchio (65).
lonic charging free energies are particularly interesting. Due to the simplicity of
the system, sampling limitations can be completely overcome, and agreement
on force field parameters allow quantitative comparison between different ap-
proaches, unlike the more complex case of biomolecular simulations involving
different force fields. By including the self energyin Ewald calculations,
Hummer et al (66) demonstrated remarkable system size consistency of ionic
charging free energies. Note that the self energy need not be calculated in
Monte-Carlo simulations; however, it is automatically included in typical im-
plementations of Ewald summation in MD, such as with PME. Thus, in high
dielectric solvents, standard Ewald summation results are only very weakly
dependent on simulation cell size. Recently, Figuerido et al (56), Hummer et al
(67), and Sakane et al (68) have derived finite size corrections for ionic charging
in low dielectric solvents. These corrections are large, in contrast to the case in
water.

Unfortunately, size consistency, while necessary, is not sufficient for a cor-
rect calculation. Size-consistent ionic charging free energies were reported
earlier by Aqvist (69) using spherical cluster boundary conditions, with the
SCAAS boundary potential (70). Recently, Darden et al (71) compared the
charging free energies in water, obtained using Ewald (PME) in PBC, to those
obtained in spherical boundary conditions. Size-consistent results were ob-
tained in both cases, but the results differed substantially. For example, using
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the Agvist parameters for sodium-water interactions, a charging free energy of
~—85 kcals mot! was obtained with Ewald summation, whereas with spher-
ical boundary conditions, no cutoff of electrostatics, and inclusion of a Born
correction a result of—98 kcals mot? was obtained, close to the Aqvist re-
sult of ~—100 kcals mot*. A priori, the spherical boundary conditions would
seem more appropriate. However, the difference between the two sets of results
was traced to the electric potential drop across the vacuum-water interface, an
effect that is not accounted for by current boundary potentials. Using Gauss’
law together with the spherical symmetry, a rigorous treatment of the charging
process in cluster interiors is possible. The results using this treatment are in
guantitative agreement with those using Ewald summation. This agreement
was shown to hold for a variety of simple ions. Results using this treatment for
ions in clusters of model low dielectric solvents were also in agreement with
Ewald summation, if the above system size corrections were applied.

From the above study (71), we can infer that ionic charging free energies are
not only size consistent, but correct, if Ewald summation is used. That is, the
free energy is a correct function of the ion-water interaction potentials. These
can now be fit appropriately to the experimental values. On the other hand, if
spherical clusters are used, the surface potential of water must be accounted
for. It will be interesting to see the effect of boundary conditions on solvation
energies of more complex solutes.

PERSPECTIVE

With the continued growth of computer power and the advent of new algorithms
for efficient treatment of long-range electrostatics, it is no longer necessary to
resort to uncontrolled approximations such as the use of cutoffs. In the near
future, the simulations using explicit solvents will most commonly be done us-
ing PBC with Ewald summation, some fast lattice summation or FMM approx-
imation to Ewald summation, or perhaps some reaction-field treatment, where
appropriate. Another popular choice will be the use of nonperiodic boundary
conditions, such as spherical boundary conditions, with perhaps a reaction field
to account for the missing bulk solvent beyond the sphere. The electrostatics for
these isolated systems can be treated either by FMM, or as pointed out above,
by the particle-mesh approach, using a filter in Fourier space.

Future computationally oriented studies will likely focus on the need for
efficient parallel implementations of FMM and particle-mesh approaches.
However, even more interesting work remains to be done to fully character-
ize the effects of long-range boundary conditions on biomolecular dynamics
and energetics. As the study of force fields becomes more sophisticated, with
the long-range goal of truly ab initio dynamics, the lessons learned about the



effect of boundary conditions will be of lasting value, since the long-range
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effects depend only on Coulomb’s law.
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