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4.1 Introduction

Very efficient programs for searching atext for a combination of words are avail-
able on many computers. The same methods can be used for searching for patterns
in biological sequences, but often they fail. Thisis because biological *spelling’
is much more sloppy than English spelling: proteins with the same function from
two different organisms are almost certainly spelled differently, that is, the two
amino acid sequences differ. It is not rare that two such homologous sequences
have less than 30% identical amino acids. Similarly in DNA many interesting sig-
nals vary greatly even within the same genome. Some well-known examples are
ribosome binding sites and splice sites, but the list is long. Fortunately there are
usually still some subtle similarities between two such sequences, and the ques-
tion is how to detect these similarities.

The variation in afamily of sequences can be described statistically, and this
is the basis for most methods used in biological sequence analysis, see [1] for a
presentation of some of these statistical approaches. For pairwise alignments, for
instance, the probability that a certain residue mutates to another residue is used
in a substitution matrix, such as one of the PAM matrices. For finding patterns
in DNA, eg. splice sites, some sort of weight matrix is very often used, which
is simply a position specific score calculated from the frequencies of the four
nucleotides at all the positions in some known examples. Similarly, methods for
finding genes use, almost without exception, the statistics of codons or dicodons
in some form or other.

A hidden Markov model (HMM) is a statistical model, which is very well
suited for many tasks in molecular biology, although they have been mostly de-
veloped for speech recognition since the early 1970s, see [2] for historical details.
The most popular use of the HMM in molecular biology is as a*probabilistic pro-
file' of aproteinfamily, whichiscalled aprofile HMM. From afamily of proteins
(or DNA) a profile HMM can be made for searching a database for other mem-
bers of the family. These profile HMMs resemble the profile[3] and weight matrix
methods [4, 5], and probably the main contribution is that the profile HMM treats
gapsin a systematic way.

The HMM can be applied to other types of problems. It is particularly well
suited for problems with a simple ‘grammatical structure,’ such as gene finding.
In gene finding several signals must be recognized and combined into a prediction
of exons and introns, and the prediction must conform to various rules to make it
areasonable gene prediction. An HMM can combine recognition of the signals,
and it can be made such that the predictions always follow the rules of a gene.

Since much of the literature on HMMs is a little hard to read for many biol-
ogists, | will attempt in this chapter to give a non-mathematical introduction to
HMMs. Whereas the little biological background needed is taken for granted, |
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have tried to explain HMMs at alevel that almost anyone can follow. First HMMs
are introduced by an example and then profile HMMs are described. Then an
HMM for finding eukaryotic genes is sketched, and finally pointers to the litera-
ture are given.

4.2 Fromregular expressonsto HMMs

Most readers have no doubt come across regular expressions at some point, and
many probably use them quite alot. Regular expressions are used in many pro-
grams, in particular on Unix computers. In programslike awk, grep, sed, and perl,
regular expressions can be used for searching text filesfor a pattern. With grep for
instance, you can search afilefor al lines containing ‘ C. elegans’ or ‘ Caenorhab-
ditiselegans with theregular expression ‘C[\.a-z]* elegans’. Thiswill match
any line containing a C followed by any number of lower-case letters or “.', then
a space and then elegans. Regular expressions can also be used to characterize
protein families, which is the basis for the PROSITE database [6].

Using regular expressions is a very elegant and efficient way to search for
some protein families, but difficult for other. As already mentioned in the in-
troduction, the difficulties arise because protein spelling is much more free than
English spelling. Therefore the regular expressions sometimes need to be very
broad and complex. Imagine a DNA motif like this:

ACA---ATAG
TCAACTATC
ACAC--AGC
AGA---ATC
ACCG--ATC

(I use DNA only because of the smaller number of |etters than for amino acids).
A regular expression for thisis

[AT] [CG] [AC] [ACGT]* A [TG] [GC] ,

meaning that the first positionis A or T, the second C or G, and so forth. Theterm
‘[ACGT]*’ means that any of the four letters can occur any number of times.

The problem with the above regular expression is that it does not in any way
distinguish between the highly implausible sequence

TGCT--AGG
which has the exceptional character in each position, and the consensus sequence

ACAC--ATC
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Figure4.1: A hidden Markov model derived from the alignment discussed in the
text. The transitions are shown with arrows whose thickness indicate their proba-
bility. In each state the histogram shows the probabilities of the four nucleotides.

with the most plausible character in each position (the dashes are just for aligning
these sequences with the previous ones). What is meant by a‘ plausible’ sequence
can of course be debated, although most would probably agree that the first se-
guence is not likely to be the same motif as the 5 sequences above. It is possible
to make the regular expression more discriminative by splitting it into several dif-
ferent ones, but it easily becomes messy. The alternative is to score sequences by
how well they fit the alignment.

To score a sequence, we say that thereis a probability of 4/5 = 0.8 for an A
inthefirst position and 1/5= 0.2 for a T, because we observe that out of 5 |etters
4 are Asand oneisaT. Similarly in the second position the probability of C is
4/5 and of G 1/5, and so forth. After the third position in the alignment, 3 out
of 5 sequences have ‘insertions’ of varying lengths, so we say the probability of
making an insertion is 3/5 and thus 2/5 for not making one. To keep track of
these numbers a diagram can be drawn with probabilitiesasin Fig. 4.1.

This is a hidden Markov model. A box in the drawing is called a state, and
there is a state for each term in the regular expression. All the probabilities are
found simply by counting in the multiple alignment how many times each event
occur, just as described above. The only part that might seem tricky is the ‘in-
sertion,” which is represented by the state above the other states. The probability
of each letter is found by counting al occurrences of the four nucleotides in this
region of the alignment. The total counts are one A, two Cs, one G, and one T,
yielding probabilities 1/5, 2/5, 1/5, and 1/5 respectively. After sequences 2, 3
and 5 have made one insertion each, there are two more insertions (from sequence
2) and the total number of transitions back to the main line of statesis 3 (all three
sequences with insertions have to finish). Therefore there are 5 transitionsin total
from the insert state, and the probability of making atransitiontoitself is2/5 and
the probability of making one to the next state is 3/5.
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Sequence Probability x100 Log odds

Consensus A CAC--ATC 4.7 6.7
Origind ACA---ATG 3.3 4.9
sequences T CAACTATC 0.0075 3.0
ACAC--AGC 1.2 53
AGA---ATC 33 4.9
ACCG--ATC 0.59 4.6
Exceptional T GCT - -AGG 0.0023 -0.97

Table 4.1: Probabilities and log-odds scores for the 5 sequences in the alignment
and for the consensus sequence and the * exceptional’ sequence.

It is now easy to score the consensus sequence ACACATC. The probability of
the first A is4/5. Thisis multiplied by the probability of the transition from the
first state to the second, which is 1. Continuing this, the total probability of the
consensus is

P(ACACATC) = 0.8x1x0.8x1x0.8x0.6x
04x06x1x1x08x1x0.8
~ 4.7x1072

Making the same calculation for the exceptional sequence yields only 0.0023 x
10~2, which is roughly 2000 times smaller than for the consensus. This way we
achieved the goal of getting a score for each sequence, a measure of how well a
sequence fits the motif.

The same probability can be calculated for the four origina sequences in the
alignment in exactly the same way, and the result is shown in Table 4.1. The
probability depends very strongly on the length of the sequence. Therefore the
probability itself is not the most convenient number to use as a score, and the
log-odds score shown in the last column of the table is usualy better. It is the
logarithm of the probability of the sequence divided by the probability according
to anull model. The null model is one that treats the sequences as random strings
of nucleotides, so the probability of a sequence of length L is 0.25%. Then the
log-odds scoreis

log-odds for sequence S= log (I)D(Z?L =1ogP(S) — L1og0.25.

| have used the natural logarithm in Table 4.1. Logarithms are proportional, so it
does not really matter which one you usg; it is quite common to use the logarithm
base 2. One can of course use other null modelsinstead. Often one would use the
over-all nucleotide frequencies in the organism studied instead of just 0.25.
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Figure 4.2: The probabilities of the model in Fig. 4.1 have been turned into
log-odds by taking the logarithm of each nucleotide probability and subtracting
log(0.25). The transition probabilities have been converted to simplelogs.

When a sequence fits the motif very well the log-odds is high. When it fits
the null model better, the log-odds score is negative. Although the raw probability
of the second sequence (the one with three inserts) is amost as low as that of
the exceptional sequence, notice that the log-odds score is much higher than for
the exceptional sequence, and the discrimination is very good. Unfortunately,
one cannot always assume that anything with a positive log-odds score is *a hit,
because there are random hitsif oneis searching alarge database. See Section4.5
for references.

Instead of working with probabilities one might convert everything to log-
odds. If each nucleotide probability is divided by the probability according to
the null model (0.25 in this case) and the logarithm is applied, we would get
the numbers shown in Fig. 4.2. The transition probabilities are also turned into
logarithms. Now the log-odds score can be calculated directly by adding up these
numbers instead of multiplying the probabilities. For instance, the calculation of
the log-odds of the consensus sequenceis

log-0dds(ACACATC) = 1.16+0+1.16+0+1.16—0.51+
0.47—-0.51+139+0116+0+1.16
= 6.64.

(Thefinite precision causes the little difference between this number and the one
inTable4.1.)

If the alignment had no gaps or insertions we would get rid of the insert state,
and then al the probabilities associated with the arrows (the transition probabili-
ties) would be 1 and might as well be ignored completely. Then the HMM works
exactly as aweight matrix of log-odds scores, which is commonly used.
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Figure 4.3: The structure of the profile HMM.

4.3 ProfileHMMs

A profile HMM is a certain type of HMM with a structure that in a natural way
allows position dependent gap penalties. A profile HMM can be obtained from a
multiple alignment and can be used for searching adatabase for other members of
the family in the alignment very much like standard profiles[3]. The structure of
themodel isshown inFig. 4.3. The bottom line of states are called the main states,
because they model the columns of the alignment. In these states the probability
distributionisjust the frequency of the amino acids or nucleotides as in the above
model of the DNA motif. The second row of diamond shaped states are called
insert states and are used to model highly variable regionsin the aignment. They
function exactly like the top state in Fig. 4.1, although one might choose to use a
fixed distribution of residues, e.g. the overall distribution of amino acids, instead
of calculating the distribution as in the example above. The top line of circular
states are called delete states. These are a different type of state, called a silent
or null state. They do not match any residues, and they are there merely to make
it possible to jump over one or more columns in the aignment, i.e., to model the
situation when just afew of the sequences have a‘—' in the multiple alignment at
aposition. Let usturn to an example.

Suppose you have a multiple alignment as the one showninFig. 4.4. A region
of this alignment has been chosen to be an ‘insertion,” because an alignment of
this region is highly uncertain. The rest of the alignment (shaded in the figure)
are the columns that will correspond to main states in the model. For each non-
insert column we make a main state and set the probabilities equal to the amino
acid frequencies. To estimate the transition probabilities we count how many
sequences use the various transitions, just like the transition probabilities were
calculated in the first example. The model is shown in Fig. 4.5. There are two
transitionsfrom amain state to a del ete state shown with dashed linesin thefigure,
that from begin to the first delete state and from main state 12 to delete state
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Figure 4.4: An aignment of 30 short amino acid sequences chopped out of a
alignment of the SH3 domain. The shaded areas are the most conserved and were
chosen to be represented by the main states in the HMM. The unshaded areawith

lower-case | etters was chosen to be represented by an insert state.
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Figure 4.5: A profile HMM made from the alignment shown in Fig. 4.4. Transi-
tion lines with no arrow head are transitions from left to right. Transitions with
probability zero are not shown, and those with very small probability are shown
as dashed lines. Transitions from an insert state to itself is not shown; instead the
probability times 100 is shown in the diamond. The numbersin the circular delete
states are just position numbers. (This figure and Fig. 4.6 were generated by a
program in the SAM package of programs.)



Figure 4.6: Model obtained in the same way as Fig. 4.5, but using a pseudocount
of one.

13. Both of these correspond to dashes in the alignment. In both cases only one
sequence has gaps, so the probability of these delete transitionsis 1/30. The fourth
sequence continues deletion to the end, so the probability of going from delete 13
to 14 is1 and from delete 14 to theend isa so 1.

43.1 Pseudocounts

It is dangerous to estimate a probability distribution from just a few observed
amino acids. If for instance you have just two sequences with leucine at a certain
position, the probability for leucine would be 1 and the probability would be zero
for al other amino acids at this position, athough it is well known that one often
sees for example valine substituted for leucine. In such a case the probability of
a whole sequence may easily become zero if a single leucine is substituted by a
valine, or equivalently, the log-odds is minus infinity.

Thereforeitisimportant to have some way of avoiding this sort of over-fitting,
where strong conclusions are drawn from very little evidence. The most com-
mon method is to use pseudocounts, which means that one pretends to have more
counts of amino acids than those from the data. The simplest isto add 1 to all the
counts. With the leucine example it would mean that the probability of leucine
would be estimated as 3/23 and for the 19 other amino acids it would become
1/23. In Fig. 4.6 a model is shown, which was obtained from the alignment in
Fig. 4.6 using a pseudocount of 1.

Adding one to all the counts can be interpreted as assuming a priori that all
the amino acids are equally likely. However, there are significant differencesin
the occurrence of the 20 amino acids in known protein sequences. Therefore, the
next step is to use pseudocounts proportional to the observed frequencies of the
amino acidsinstead. Thisisthe minimum level of pseudocounts to be used in any
real application of HMMs.

Because a column in the alignment may contain information about the pre-
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ferred type of amino acids, it is also possible to use more sophisticated pseudo-
count strategies. If a column consists predominantly of leucine (as above), one
would expect substitutions to other hydrophobic amino acids to be more probable
than substitutions to hydrophilic amino acids. One can e.g. derive pseudocounts
for a given column from substitution matrices. See Section 4.5 for references.

4.3.2 Searching adatabase

Above we saw how to calculate the probability of a sequence in the alignment
by multiplying all the probabilities (or adding the log-odds scores) in the model
along the path followed by that particular sequence. However, this pathis usually
not known for other sequences which are not part of the original alignment, and
the next problem is how to score such a sequence. Obvioudly, if we can find a
path through the model where the new sequence fits well in some sense, then we
can score the sequence as before. We need to ‘align’ the sequence to the model.
It resembles very much the pairwise alignment problem, where two sequences
are aligned so that they are most similar, and indeed the same type of dynamic
programming algorithm can be used.

For a particular sequence, an alignment to the model (or a path) is an assign-
ment of states to each residue in the sequence. There are many such alignments
for a given sequence. For instance an alignment might be as follows. Let us |abel
the amino acids in aprotein as A1, A, As, etc. Similarly we can label the HMM
states as M1, M», M3, etc. for match states, 14, 12, I3 for insert states, and so on.
Then an alignment could have A1 match state M1, A and Az match 11, A4 match
M2, As match Mg (after passing through three del ete states), and so on. For each
such path we can calculate the probability of the sequence or the log-odds score,
and thus we can find the best alignment, i.e., the one with the largest probability.
Although there are an enormous number of possible alignmentsit can be done effi-
ciently by the above mentioned dynamic programming algorithm, which is called
the Viterbi algorithm. The algorithm also gives the probability of the sequence for
that alignment, and thus a score is obtained.

The log-odds score found in this manner can be used to search databases for
members of the same family. A typical distribution of scores from such a search
isshown in Fig. 4.7. Asis also the case with other types of searches, thereis no
clear-cut separation of true and false positives, and one needs to investigate some
of the sequences around alog-odds of zero, and possibly include some of them in
the alignment and try searching again.

An alternative way of scoring sequences is to sum the probabilities of all pos-
sible alignments of the sequence to the model. This probability can be found
by a similar algorithm called the forward agorithm. This type of scoring is not
very common in biological sequence comparison, but it is more natural from a
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Figure 4.7: The distribution of log-odds scores from a search of Swissprot with
a profile HMM of the SH3 domain. The dark area of the histogram represents
the sequences with an annotated SH3 domain, and the light those that are not
annotated as having one. Thisis for illustrative purposes only, and the sequences
with log-odds around zero were not investigated further.

probabilistic point of view. However, it usually gives very similar results.

4.3.3 Model estimation

As presented so far, one may view the profile HMMs as a generalization of weight
matrices to incorporate insertions and deletions in a natural way. There is how-
ever one interesting feature of HMMs, which has not been addressed yet. It is
possible to estimate the model, i.e. determine al the probability parameters of it,
from unaligned sequences. Furthermore, a multiple alignment of the sequences
is produced in the process. Like many other multiple alignment methods this is
donein an iterative manner. One starts out with a model with more or lessrandom
probabilities, or if a reasonable alignment of some of the sequences are available,
a model is constructed from this alignment. Then, when all the sequences are
aligned to the model, we can use the alignment to improve the probabilitiesin the
model. These new probabilities may then lead to a slightly different alignment.
If they do, we then repeat the process and improve the probabilities again. The
process is repeated until the alignment does not change. The aignment of the
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sequences to the final model yields a multiple alignment.

Although this estimation process sounds easy, there are many problems to
consider to actually make it work well. One problem is choosing the appropri-
ate model length, which determines the number of inserts in the final alignment.
Another severe problem is that the iterative procedure can converge to suboptimal
solutions. It is not guaranteed that it finds the optimal multiple alignment, i.e. the
most probable one. Methods for dealing with these issues are described in the
literature pointed to in Section 4.5.

4.4 HMMsfor genefinding

One ability of HMMs, which is not redlly utilized in profile HMMs, is the ability
to model grammar. Many problemsin biological sequence analysis have a gram-
matical structure, and eukaryotic gene structure, which | will use as an example,
isone of them. If you consider exons and introns as the ‘words' in alanguage, the
sentences are of the form exon-intron-exon-intron...intron-exon. The * sentences
can never end with an intron, at least if the genes are complete, and an exon can
never follow an exon without an intron in between. Obvioudly this grammar is
greatly simplified, because there are several other constraints on gene structure,
such as the constraint that the exons have to fit together to give a valid coding
region after splicing. In Fig. 4.8 the structure of a geneis shown with some of the
known signals marked.

Formal language theory applied to biological problemsis not anew invention.
In particular David Searls [7] has promoted this idea and used it for gene finding
[8], but many other gene finders use it implicitly. Formally the HMM can only
represent the ssimplest of grammars, which is called a regular grammar [7, 1], but
that turns out to be good enough for the gene finding problem, and many other
problems. One of the problems that has a more complicated grammar than the
HMM can handle is the RNA folding problem, which is one step up the ladder of
grammars, because base pairing introduces correlations between bases far from
each other in the RNA sequence.

| will here briefly outline my own approach to gene finding with the weight on
the principles rather than on the details.

1Another dightly different method for model estimation sums over al alignments instead of
using the most probable alignment of a sequence to the model. This method uses the forward
algorithminstead of Viterbi, and it is called the Baum—Welch a gorithm or the forward-backward
algorithm.
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Figure 4.8: The structure of a gene with some of the important signals shown.

4.4.1 Signal sensors

One may apply an HMM similar to the ones already described directly to many
of the signals in a gene structure. In Fig. 4.9 an alignment is shown of some
sequences around acceptor sites from human DNA. It has 19 columns and an
HMM with 19 states (no insert or delete states) can be made directly from it.
Since the alignment is gap-less, the HMM is equivalent to a weight matrix.
There is one problem: in DNA there are fairly strong dinuclotide preferences.
A model like the one described treats the nucleotides as independent, so dinu-
cleotide preferences can not be captured. Thisis easily fixed by having 16 prob-
ability parameters in each state instead of 4. In column two we first count all
occurrences of the four nucleotides given that there is an A in the first column
and normalize these four counts, so they become probabilities. Thisisthe condi-
tional probability that a certain nucleotide appears in position two, given that the
previous one was A. The same is done for al the instances of C in column 1 and
similarly for G and T. This gives atotal of 16 probabilities to be used in state two
of the HMM. Similarly for all the other states. To calculate the probability of a
sequence, say ACTGTC.. ., wejust multiply the conditional probabilities

P(ACTGTC...) = po(A) x p2(C|A) % pa(T|C) x pa(G|T) x ps(T|G) x pe(C|T) ...

14



CTCCCTGTGTCCACAGGCT
TATTGTITTTCITITACAGGGC
GTTCCTTTGTTTCTAGCAC
TGCCTCTCTTTTCAAGGGT
TCCTATATGTTGACAGGGT
TTCTGTTCCGATGCAGGGC
TTGGGTITTCTTTGCAGAAC
CACTTTGCTCCCACAGCGT
CCCATGTGACCTGCAGGTA
TATTTATTTAACATAGGGC
ATGTGCATCCCCCCAGGAG
TTTTCCTTTTCTACAGAAT
TCGTGTIGTCTCCCCAGCCC
TTCCATGTCCTGACAGGTG
ACGACATTTTCCACAGGAG
GTGCCTCTCCCTCCAGATT

Figure 4.9: Examples of human acceptor sites (the splice site 5’ to the exon). Ex-
cept in rare cases, the intron ends with AG, which has been highlighted. Included
inthese sequences are 16 bases upstream of the splice site and 3 bases downstream
into the exon.

Here p; is the probability of the four nucleotides in state 1, py(X|y) is the condi-
tional probability in state 2 of nucleotide x given that the previous nucleotide was
y, and so forth.

A state with conditional probabilities is called a first order state, because it
captures the first order correlations between neighboring nucleotides. It is easy to
expand to higher order. A second order state has probabilities conditioned on the
two previous nucleotides in the sequence, i.e., probabilities of the form p(x|y, z).
We will return to such higher order states below.

Small HMMs like this are constructed in exactly the same way for other sig-
nals: donor splice sites, the regionsaround the start codons, and the regionsaround
the stop codons.

4.4.2 Codingregions

The codon structure is the most important feature of coding regions. Bases in
triplets can be modeled with three states as shown in Fig. 4.10. The figure also
shows how this model of coding regions can be used in a simple model of an
unspliced gene that starts with a start codon (ATG), then consists of some number
of codons, and ends with a stop codon.

Since a codon is three bases long, the last state of the codon model must be at
least of order two to correctly capture the codon statistics. The 64 probabilitiesin
such a state are estimated by counting the number of each codon in a set of known
coding regions. These numbers are then normalized properly. For example the
probabilities derived from the counts of CAA, CAC, CAG, and CAT are

P(A|CA) = C(CAA)/[c(CAA)+c(CAC)+ c(CAG) + c(CAT))

15
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Figure 4.10: Top: A model of coding regions, where state one, two and three
match the first, second and third codon positions respectively. A coding region of
any length can match this model, because of the transition from state three back to
state one. Bottom: a simple model for unspliced genes with the first three states
matching a start codon, the next three of the form shown to the left, and the last
three states matching a stop codon (only one of the three possible stop codons are
shown).

p(C|ICA) = c(CAC)/[c(CAA)+Cc(CAC)+c(CAG)+ c(CAT)]
P(G|CA) = c(CAG)/[c(CAA)+c(CAC)+c(CAG)+ c(CAT)]
P(T|CA) = c(CAT)/[c(CAA)+c(CAC)+c(CAG) +c(CAT)]

where c(xyz) is the count of codon xyz.

One of the characteristics of coding regions is the lack of stop codons. That
is automatically taken care of, because p(A|TA), p(G|TA) and p(A|TG), corre-
sponding to thethree stop codons TAA, TAG and TGA, will automatically become
zero.

For modeling codon statistics it is natural to use an ordinary (zeroth order)
state as the first state of the codon model and a first order state for the second.
However, there are actually also dependencies between neighboring codons, and
therefore one may want even higher order states. In my own gene finder, | use
three fourth order states, whichisinspired by GeneMark [9], in which such mod-
els were first introduced. Technically speaking, such a model is called an inho-
mogeneous Markov chain, which can be viewed as a sub-class of HMMs.

4.4.3 Combining themodels

To be able to discover genes, we need to combine the models in away that satis-
fies the grammar of genes. | restrict myself to coding regions, i.e. the 5 and 3’
untranslated regions of the genes are not modeled and also promoters are disre-
garded.
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Ixxxxxxxx ATG cccl—>{ ccc —{ccc TAA xxxxxxxx

inter- region around coding region around
genic start codon region stop codon

Figure4.11: A hidden Markov model for unspliced genes. In thisdrawing an ‘X’
means a state for non-coding DNA, and a ‘¢’ a state for coding DNA. Only one
of the three possible stop codons are shown in the model of the region around the
stop codon.

Intron models

Donor model ﬂ Acceptor model
e [CToooocx ] e B OOCOOOXX XX XXXAG

@)

[ccc e [CToocoaax ] e b [ OOOX X XXX XX X_AG

@)

[cccca[Coooooad e b hooooaaoooaxaxxx x AGH[c_ccc

Coding model
To stop model T

From start model
Figure 4.12: To alow for splicing in three different frames three intron models

are needed. To get the frame correct ‘ spacer states are added before and after the
intron models.
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First, let us see how to do it for unspliced genes. If we ignore genes that are
very closely spaced or overlaps, amodel couldlook like Fig. 4.11. It consists of a
state for intergenic regions (of order at least 1), a model for the region around the
start codon, the model for the coding region, and a model for the region around
the stop codon. The model for the start codon region is made just like the acceptor
model described earlier. It models eight bases upstream of the start codon,? the
ATG start codon itself, and the first codon after the start. Similarly for the stop
codon region. The whole model is one big HMM, although it was put together
from small independent HMMs.

Having such a model, how can we predict genes in a sequence of anonymous
DNA? That is quite smple: use the Viterbi algorithm to find the most probable
path through the model. When this path goes through the ATG states, astart codon
is predicted, when it goes through the codon states a codon is predicted, and so
on.

This model might not always predict correct genes, but at least it will only
predict sensible genes that obey the grammatical rules. A gene will always start
with a start codon and end with a stop codon, the length will always be divisible
by 3, and it will never contain stop codons in the reading frame, which are the
minimum requirements for unspliced gene candidates.

Making a model that conforms to the rules of splicing is a bit more difficult
than it might seem at first. That is because splicing can happen in three different
reading frames, and the reading framein one exon has to fit the onein the next. It
turns out that by using three different models of introns, one for each frame, this
ispossible. In Fig. 4.12 it is shown how these models are added to the model of
coding regions.

The top line in the model is for introns appearing between two codons. It has
three states (labeled ccc) before the intron starts to match the last codon of the
exon. The first two states of the intron model match GT, which is the consensus
sequence at donor sites (it is occasionally another sequence, but such cases are
ignored here). The next six states matches the six bases immediately after GT.
The states just described model the donor site, and the probabilities are found as
it was described earlier for acceptor sites. Then follows asingle state to model the
interior of the intron. | actually use the same probability parametersin this state as
in the state modeling intergenic regions. Now follows the acceptor model, which
includes three states to match the first codon of the next exon.

The next line in the model is for introns appearing after the first base in a
codon. The difference from the first is that there is one more state for a coding

2/ similar model could be used for prokaryotic genes. In that case, however, one should model
the Shine-Dalgarno sequence, which is often more than 8 bases upstream from the start. Also,
one would probably need to alow for other start codons than ATG that are used in the organism
studied (in some eukaryotes other start codons can also be used).
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base before the intron and two more states after the intron. This ensures that the
framesfit in two neighboring exons. Similarly in the third line from the top there
are two extra coding states before the intron and one after, so that it can match
introns appearing after the second base in a codon.

There are obviously many possible variations of the model. One can add more
states to the signal sensors, include models of promoter elements and untranslated
regions of the gene, and so forth.

4.5 Further reading

A genera introduction can be found in [2], and one aimed more at biological
readersin [1]. Thefirst applications for sequence analysisis probably for model-
ing compositional differences between various DNA types [10] and for studying
the compositional structure of genomes [11]. The initial work on using hidden
Markov models (HMMs) as ‘probabilistic profiles’ of protein families was pre-
sented at a conference in the spring of 1992 and in a technical report from the
same year, and it was published in [12, 13]. The idea was quickly taken up by
others [14, 15]. Independently, some very similar ideas were also developed in
[16, 17]. Also the generalized profiles [18] are very similar.

Estimation and multiple alignment is described in [13] in detail, and in [19]
some of the practical methods are further discussed. Alternative methods for
model estimation are presented in [14, 20]. Methodsfor scoring sequences against
aprofile HMM were given in [13], but these issues have more recently been ad-
dressed in [21]. The basic pseudocount method is aso explained in[13], and more
advanced methods are discussed in [22, 23, 24, 25, 26].

A review of profile HMMs can be found in [27], and in [1] profile HMMs are
discussed in great detail. Also [28] will undoubtedly contain good material on
profile HMMs.

Some of the recent applications of profile HMMs to proteins are: detection of
fibronectin type 111 domains in yeast [29], a database of protein domain families
[30], protein topology recognition from secondary structure [31], and modeling
of aprotein splicing domain [32].

There are two program packages avail abl e free of charge to the academic com-
munity. One, developed by Sean Eddy, is called hmmer (pronounced ‘hammer’),
and can be obtained from his web-site (http://genome.wustl.edu/eddy/hmm.html).
The other one, called SAM (http://www.cse.ucsc.edu/research/compbio/sam.html),
was developed by myself and the group at UC Santa Cruz, and it is now being
maintained and further devel oped under the command of Richard Hughey.

The gene finder sketched above is called HMMgene. There are many details
omitted, such as special methods for estimation and prediction described in [33].
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Itisstill under development, and it is possible to follow the development and test
the current version at the web site http://www.cbs.dtu.dk/services HMMgene/.

Methods for automated gene finding go back along time, see [34] for areview.
Thefirst HMM based gene finder is probably EcoParse developed for E. coli [35].
VEIL [36] is arecent HMM based gene finder for for human genes. The main
difference from HMMgene is that it does not use high order states (neither does
EcoParse), which makes good modeling of coding regions harder.

Two recent methods use so-called generalized HMMs. Genie [37, 38, 39]
combines neural networks into an HMM-like model, whereas GENSCAN [40] is
more similar to HMMgene, but uses a different model type for splice site. Also,
the generalized HMM can explicitly use exon length distributions, which is not
possible in astandard HMM. Web pointersto gene finding can be found at
http://www.cbs.dtu.dk/krogh/genefinding.html.

Other applications of HMMs related to gene finding are: detection of short
protein coding regions and analysis of translation initiation sites in Cyanobac-
terium [41, 42], characterization of prokaryotic and eukaryotic promoters [43],
and recognition of branch points [44].

Apart from the areas mentioned here, HMM s have been used for prediction of
protein secondary structure [45], modeling an oscillatory pattern in nucleosomes
[46], modeling site dependence of evolutionary rates [47], and for including evo-
lutionary information in protein secondary structure prediction [48].
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