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Abstract. The sequence of a genome contains the plans of the possible life of an organism,
but implementation of genetic information depends on the functions of the proteins and
nucleic acids that it encodes. Many individual proteins of known sequence and structure
present challenges to the understanding of their function. In particular, a number of genes
responsible for diseases have been identified but their specific functions are unknown. Whole-
genome sequencing projects are a major source of proteins of unknown function. Annotation
of a genome involves assignment of functions to gene products, in most cases on the basis of
amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the
challenge of structural genomics projects to make structural information available for novel
uncharacterized proteins. Structure-based identification of homologues often succeeds where
sequence-alone-based methods fail, because in many cases evolution retains the folding
pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of
protein function from sequence and structure is a difficult problem, because homologous
proteins often have different functions. Many methods of function prediction rely on identifying
similarity in sequence and/or structure between a protein of unknown function and one or
more well-understood proteins. Alternative methods include inferring conservation patterns in
members of a functionally uncharacterized family for which many sequences and structures are
known. However, these inferences are tenuous. Such methods provide reasonable guesses at
function, but are far from foolproof. It is therefore fortunate that the development of whole-
organism approaches and comparative genomics permits other approaches to function
prediction when the data are available. These include the use of protein–protein interaction
patterns, and correlations between occurrences of related proteins in different organisms, as
indicators of functional properties. Even if it is possible to ascribe a particular function to a
gene product, the protein may have multiple functions. A fundamental problem is that function
is in many cases an ill-defined concept. In this article we review the state of the art in function
prediction and describe some of the underlying difficulties and successes.

1. Introduction 308

2. Plan of this article 312

3. Natural mechanisms of development of novel protein functions 313

3.1 Divergence 313

* Author to whom correspondence should be addressed. A. M. Lesk, Cambridge Institute for Medical

Research, University of Cambridge Clinical School, Wellcome Trust/MRC Building, Hills Road, Cam-

bridge, CB2 2XY, UK. (E-mail : aml2@mrc-lmb.cam.ac.uk)

Quarterly Reviews of Biophysics 36, 3 (2003), pp. 307–340. f 2003 Cambridge University Press 307
DOI: 10.1017/S0033583503003901 Printed in the United Kingdom



3.2 Recruitment 316

3.3 ‘Mixing and matching ’ of domains, including duplication/oligomerization,

and domain swapping or fusion 316

4. Classification schemes for protein functions 317

4.1 General schemes 317

4.2 The EC classification 318

4.3 Combined classification schemes 319

4.4 The Gene Ontology Consortium 321

5. Methods for assigning protein function 321

5.1 Detection of protein homology from sequence, and its application

to function assignment 321

5.2 Detection of structural similarity, protein structure classifications, and structure/function

correlations 326

5.3 Function prediction from amino-acid sequence 327

5.3.1 Databases of single motifs 328

5.3.2 Databases of profiles 329

5.3.3 Databases of multiple motifs 330

5.3.4 Precompiled families 331

5.3.5 Function identification from sequence by feature extraction 331

5.4 Methods making use of structural data 332

6. Applications of full-organism information: inferences from genomic

context and protein interaction patterns 334

7. Conclusions 335

8. Acknowledgements 335

9. References 335

1. Introduction

Much of the evolution of living systems on the molecular level proceeds according to the

cascade :

gene sequence determines amino-acid sequence,

amino-acid sequence determines protein structure,

protein structure determines protein function,

selection acts on function to modify allele frequencies in populations (to close the loop).

Genome sequencing projects produce the full DNA sequences of organisms. Identification of

genes within genomes provides the amino-acid sequences of the organism’s proteins. In struc-

tural genomics projects, X-ray crystallography and NMR spectroscopy aim to determine the

structures of a subset of the proteins from which other structures can be predicted by homology

modelling. Contemporary bioinformatics collects data on sequences, structures, and functions,

and studies the correspondences between them (for general references, see Galperin & Koonin,

2002 ; Lesk, 2001, 2002).

Assignments of function are based either solely on amino-acid sequences (the most common

situation that arises frequently in annotating newly sequenced genomes), on some combination

of sequence and structure, or on some organism-wide data, if available, such as protein–protein
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interaction patterns (von Mering et al. 2003). The problem of predicting protein function arises in

two general contexts. (1) The interest of a research group may be focussed on a gene and its

protein product, and the group may pursue its investigation in detail ; such studies may include

identification of cofactors and post-translational modifications, and even a structure determi-

nation and a check of the phenotypic effect of a knockout. The result is an attempt to assign

function on the basis of a thick dossier of detailed information. In the past this was the paradigm.

(2) However, with increasing frequency we must deal with much sparser information. The largest

sources of proteins of unknown function are complete genome sequences, giving us the chal-

lenge of annotating them (Smith, 1998 ; Eisenberg et al. 2000 ; Stein, 2001 ; Thornton, 2001). In

these cases the data about specific proteins in genomes are often limited to their amino-acid

sequences. The goal of providing at least approximate structural information, for its implications

about function, is an important motivation of structural genomics projects (Burley et al. 1999 ;

Eisenstein et al. 2000 ; Skolnick et al. 2000; Brenner, 2001 ; Chance et al. 2002 ; Gilliland et al. 2002 ;

Zhang & Kim, 2003).

In analysing a novel genome, how well do we understand Nature’s rules in proceeding from

DNA sequence to amino-acid sequence to protein structure to function?

. Starting from a genome sequence, gene identification is still problematic, especially in

eukaryotes where alternative splicing patterns compound the difficulty (Novichkov et al. 2001 ;

Jones et al. 2002).

. The next step is perhaps the safest : Based originally on the experiments of Anfinsen

demonstrating the reversible denaturation of proteins, we know that Nature has strict rules

for determining protein structure uniquely from amino-acid sequences. There are a few

exceptions – notably the prion proteins (Cohen & Prusiner, 1998; Peretz et al. 2002), and

the serpins (Whisstock et al. 1998 ; Gettins, 2002 ; Pike et al. 2002) but this generalization is

among the most robust we have in the field. (Chaperones are only catalytic in this process,

not containing any information specific to the folding of any particular protein.) Although as

yet we do not understand the physical basis of Nature’s folding algorithm in sufficient detail to

predict structure from sequence, progress is being made (Schonbrun et al. 2002 ; Tramontano,

2003). Moreover, the observation that similar sequences determine similar structures (the

‘differential form’ of the folding problem) gives us general confidence in homology modelling.

Much less reliable is the widely held assumption that proteins with very similar sequences

should – by virtue of their very similar structures – have similar functions.

. To reason from sequence and structure to function is to step onto much shakier ground.

Following the reasoning of the previous paragraph, a common way to try to assign function to

a protein is to identify a putative homologue of known function and guess that both share a

common function. It is indeed true that many families of proteins contain homologues with

the same function, widely distributed among species ; for these, reasoning from homology

does assign function correctly. However, the assumption that homologues share function is

less and less safe as the sequences progressively diverge. Moreover, even closely related pro-

teins can change function, either through divergence to a related function or by recruitment

for a very different function (Ganfornina & Sánchez, 1999). In such cases, assignment of

function on the basis of homology, in the absence of direct experimental evidence, will give

the wrong answer, leading to misannotations in databanks. Many authors have called attention

to ‘howlers ’ in annotation (Smith & Zhang, 1997 ; Bork et al. 1998 ; Bork & Koonin,

1998 ; Doerks et al. 1998 ; Karp, 1998 ; Brenner, 1999 ; CODATA Task Group, 2000 ;
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Devos & Valencia, 2000, 2001 ; Gerlt & Babbitt, 2000 ; Jeong & Chen, 2001). Iyer et al. (2001)

have collected cases in which prediction and experiment agree, but both are likely to be wrong !

Indeed, the situation can be even worse. An often-asked question is : ‘How much must a

protein change its sequence before its function changes? ’ The answer is : ‘Not at all ! ’ There

are numerous examples of proteins with multiple functions :

(1) Eye lens proteins in the duck are identical in sequence to active lactate dehydrogenase and

enolase in other tissues, although they do not encounter the substrates in the eye. They have

been recruited to provide a completely unrelated function based on the optical properties of

their assembly. Several other avian eye lens proteins are identical or similar to enzymes. In

some cases residues essential for catalysis have mutated, proving that the function of these

proteins in the eye is not an enzymic one (Wistow & Piatigorsky, 1987). Note that the

coexistence in some species of mutated inactive enzymes in the eye, and active enzymes in

other tissues, implies that the gene must have been duplicated.

(2) Certain proteins interact with different partners to produce oligomers with different func-

tions. In Escherichia coli, a protein that functions on its own as lipoate dehydrogenase is also an

essential subunit of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and the glycine

cleavage complex (Riley, 1997).

(3) Proteinase do functions as a chaperone at low temperatures and as a proteinase at high

temperatures. The logic, apparently, is that under conditions of moderate stress it attempts to

salvage misfolded proteins ; under conditions of higher stress it ‘ gives up ’ and recycles them

(Spiess et al. 1999).

(4) Phosphoglucose isomerase (=neuroleukin=autocrine motility factor=differentiation and

maturation mediator) functions as a glycolytic enzyme in the cytoplasm, but as a nerve

growth factor and cytokine outside the cell ( Jeffery, 1999 ; Jeffery et al. 2000). The structural

origin of the extracellular receptor function is obscure.

These cases imply that even if detailed studies of the classical biochemical type on isolated proteins

in dilute salt solutions do identify a function, we cannot be sure that we know the molecule’s full

repertoire of biological activities.

Conversely, non-homologous proteins may have similar functions. Chymotrypsin and sub-

tilisin, two proteinases that even share a common Ser-His-Asp catalytic triad, are not homolo-

gous, and show entirely different folding patterns (Fig. 1). They are a standard example of

convergent evolution. The Ser-His-Asp triad also appears in other proteins, including lipases and

a natural catalytic antibody. This and other examples show that it is not possible to reason that

if two proteins have different folding patterns they must have different functions.

In summary (see Fig. 2) :

. Similar sequences produce similar protein structures, with divergence in structure increasing pro-

gressively with the divergence in sequence (Chothia & Lesk, 1986).

. Conversely, similar structures are often found with very different sequences. For instance, many proteins

form TIM barrels with no easily detectable relationship between their sequences (Copley &

Bork, 2000 ; Nagano et al. 2002).

. Similar sequences and structures sometimes produce proteins with similar functions, but exceptions abound

(Ponting, 2001 ; an extensive table appears in Rost, 2002).

. Conversely, similar functions are often carried out by proteins with dissimilar structures ; examples

include the many different families of proteinases, sugar kinases, and lysyl-tRNA synthetases

(Doolittle, 1994 ; Galperin et al. 1998).
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Because evolution has so assiduously pushed the limits in its exploration of sequence–structure–

function relationships, many procedures described in the literature on function prediction do not

specify function exactly, but do provide general hints. For instance, a protein known to be TIM

barrel is likely to be a hydrolytic enzyme. Such hints are very useful in guiding experimental

investigations of function, and indeed a sufficient accumulation of hints – based on sequence,

structure, genomics, and interaction patterns – may well allow an expert to make a reasonable

Fig. 1. Chymotrypsin and subtilisin are both proteinases. Although they have entirely different folding

patterns, they share a common mechanism, including the catalytic triad Ser-His-Asp. The similarity of

function and mechanism has arisen by convergent evolution.

SimilarSimilarSimilar
sequencessequencessequences

SimilarSimilarSimilar
     structures     structures     structures SimilarSimilarSimilar

     structures     structures     structures

SimilarSimilarSimilar
sequencessequencessequences

SimilarSimilarSimilar
functionsfunctionsfunctions

SimilarSimilarSimilar
sequencessequencessequences

SimilarSimilarSimilar
functionsfunctionsfunctions SimilarSimilarSimilar

     structures     structures     structures

Fig. 2. Organization of the spaces of protein sequences, structures and functions. Thin solid outlines :

similar sequences produce similar structures, but not all similar structures have recognizably similar se-

quences. Broken outlines : proteins of different sequence and structure can share similar functions. Thick

solid outlines : conversely, proteins of similar sequence and structure can show different functions.
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proposal of a specific function. However, such an approach, relying as it does on human ex-

pertise, is difficult to automate for high-throughput full-genome analysis.

Two examples from the Haemophilus influenzae structural genomics project illustrate the point.

High-resolution crystal structures of the proteins HI1434 (Zhang et al. 2000) and of HI1679

(Parsons et al. 2002) have been determined. Hypothesis of function from evolutionary relation-

ships and detailed examination of the structures, followed by experimental verification of correct

functional assignment, was successful in the case of HI1679 but until now have not yet proved

successful for HI1434.

HI1679 has an a/b-hydrolase fold, with putative remote homology, based on sequence

analysis, to members of the L-2-haloacid dehydrogenase family, the P-domain of Ca2+ ASPase

and phosphoserine phosphatase. It was the first structure of a protein in the L-2-haloacid de-

hydrogenase family to be determined, and one of the motives for selecting it for investigation

was the goal of learning about the structure and the mechanism of function of this family. The

structure was consistent with a phosphatase, and this was confirmed by trying a variety of

potential substrates. The protein cleaved 6-phosphogluconate and phosphotyrosine, confirming

it to be a phosphatase. Addressing the original goal of elucidating the functions of this family of

proteins, observed substrates were modelled into the binding pocket to supply suggestions about

how sequence variation in the active site might affect specificity (Parsons et al. 2002).

HI1434 is related to a region in tRNA synthetases. The structure showed a putative binding

site, a cleft that was conserved in the modelled structures of homologues. The structure itself and

its evolutionary relationships suggest that it binds a nucleotide in its cleft. However, in this case

no specific ligand has so far been identified.

View it in these terms : Inferring protein function from knowledge of the function of a close

homologue is like solving the clue of an American crossword puzzle. Finding the word that

satisfies the definition may be difficult but the task is in principle straightforward. Working out

the function of a protein from its sequence and structure is like solving the clue of a British

crossword puzzle. It is by no means obvious which features of the definition are providing the

real clues, as opposed to misleading ones. Also, for both types of puzzle and for the suggestion

of a protein function, even if your answer appears to fit it may be wrong.

2. Plan of this article

Our goal is to review methods that have been proposed for prediction of protein function from

amino-acid sequence and three-dimensional (3D) structure, and, as far as possible, to evaluate

them. However, it is difficult to state criteria for successful prediction of function, since function

is in principle a fuzzy concept. Given three sequences, it is possible to decide which of the three

possible pairs is the most closely related. Given three structures, methods are also available to

measure and compare the similarity of the pairs. However, in many cases, given three protein

functions, it would be more difficult to choose the pair with the most similar function. For

example, although it is possible to define metrics for quantitative comparisons of different

protein sequences and structures, this is more difficult for different protein functions.

Comparisons of functions could be based on suggested classifications of functions. There are

many such classifications (recently reviewed by Ouzounis et al. 2003). Probably the most widely

known is the Enzyme Commission (EC) scheme, limited of course to that class of functions.

Other protein function classification schemes have been proposed, many in connection with

individual organisms or individual families of proteins. However, a scheme appropriate for one
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organism is not necessarily appropriate for others, and until recently there has been no noticeable

attempt at consistency.

Indeed, even for very well understood proteins, there are different legitimate points of view

about what aspects of function to focus on. The biochemist looks for the process mediated by

the isolated protein in dilute solution. The molecular biologist looks for the significance, in the

overall scheme of the life of the cell, of the process or processes in which the protein participates.

We describe and compare various schemes for classifying protein function and ask whether it is

possible to reconcile the different points of view. We also suggest that the Gene Ontology

Consortium offers the most attractive approach.

If we had a classification of protein functions, we would want to map it onto classifications of

sequence and structure. Classifications of sequence and structure are available, based on evol-

utionary principles. Therefore, to work with an appropriate classification of function, it is useful

to understand how evolving proteins develop different functions. After developing this as

background, we describe and classify the various methods that have been used to predict protein

function and annotate genomes.

3. Natural mechanisms of development of novel protein functions

Information available about how proteins alter existing functions or develop new ones is

abundant, although most of it is more anecdotal than systematic. Observed mechanisms of

protein evolution that produce altered or novel functions include : (1) Divergence, (2) Recruit-

ment and (3) ‘Mixing and matching ’ of domains.

3.1 Divergence

In families of closely related proteins, mutations usually conserve function but modulate speci-

ficity. For example, the trypsin family of serine proteinases contains a specificity pocket : a

surface cleft complementary in shape and charge distribution to the side-chain adjacent to the

scissile bond. Mutations tend to leave the backbone conformation of the pocket unchanged but

to affect the shape and charge of its lining, altering the specificity.

The change in specificity of the proteases illustrates a common theme: Although homologous

proteins show a general drifting apart of their sequences as they accumulate mutations, often a

few specific mutations account for functional divergence (Golding & Dean, 1998), as initially

proposed by Perutz (1983) for haemoglobin. The malate and lactate dehydrogenase (MDH/

LDH) family is a good example. Malate and lactate dehydrogenases are related enzymes cata-

lysing related reactions. Wilks et al. (1988) showed by site-directed mutagenesis that a single

residue change could switch the activity. Their paper may have been read by a trichomonad,

which developed an MDH that, in a family tree of these enzymes, is much more similar to LDH

molecules than to other MDHs, and appears to have arisen by convergent evolution (Wu et al.

1999).

The TIM-barrel structure, or very similar variants, has now appeared in over 100 enzymes of

known crystal structure (Fig. 3). In many cases the sequence similarity is so low that it is im-

possible to say whether the proteins are genuinely related, or whether evolution has discovered

this very stable and useful fold more than once. Conversely, certain enzymes sharing the TIM-

barrel fold, and which are similar enough for us to be confident of their homology, clearly show

the divergent evolution of new functions (Copley & Bork, 2000 ; Anantharaman et al. 2003).
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The enolase superfamily, which exhibits a folding pattern very closely related to TIM-barrel,

contains several enzymes that catalyse different reactions with shared features of their mechan-

isms (Hasson et al. 1998). These include enolase itself, mandelate racemase, muconate lactonizing

enzyme I, and D-glucarate dehydratase. From the point of view of sequence similarity, these

enzymes are fairly close relatives. Mandelate racemase and muconate lactonizing enzyme

I have 25% sequence identity. However, looking only at sequence and structure runs the

risk of overlooking a more subtle similarity. What these enzymes share is a common feature

of their mechanism. Each acts by abstracting a proton adjacent to a carboxylic acid to form

an enolate intermediate (Fig. 4). The stabilization of a negatively charged transition state is

conserved. In contrast, the subsequent reaction pathway, and the nature of the product,

vary from enzyme to enzyme. These enzymes have not only a similar overall structure, a vari-

ant of the TIM-barrel fold, but each requires a divalent metal ion, bound by structurally

equivalent ligands. Different residues in the active site produce enzymes that catalyse different

reactions.

An aspect of divergence important for its implications about function is the distinction be-

tween orthologues and paralogues. Any two proteins that are related by descent from a common

ancestor are homologues. Two proteins in different species descended from the same protein in

an ancestral species are orthologues. Two proteins related via a gene duplication within one

species (and the respective descendants of the duplicates) are paralogues. After gene duplication,

one of the resulting pairs of proteins can continue to provide its customary function, releasing

the other to diverge to develop new functions. Therefore inferences of function from homology

are more secure for orthologues than for paralogues.

The database, Clusters of Orthologous Groups (COGs), is a collection of proteins encoded in

fully sequenced genomes, organized into families (Natale et al. 2000). The COGs database has

been applied to analysis of function and genome annotation.

Comparative analyses of known structures in such families of enzymes illustrate the kinds

of structural features that change and those that stay the same. In some cases, the catalytic

atoms occupy the same positions in molecular space, although the residues that present

them are located at different positions in the sequence. In other cases the positions in space of

the catalytic residues are conserved even though the identities and functions of the catalytic

residues vary. In these cases, there appears to be a set of conserved ‘ functional positions ’ relative

Fig. 3. Spinach glycolate oxidase, one of the many enzymes with the TIM-barrel structure. In this view into

the barrel, the molecule is orientated with the C-termini of the strands nearer the viewpoint. This is the side

of the barrel that in most cases carries the active site.
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to the molecular framework. When functional residues are conserved in this way, in the structure

if not necessarily in the sequence, they can provide a signal from which we can recognize

function.

However, several enzyme families show an even greater degree of divergence, including

variation in the residues responsible for mediating catalysis. For example, the Apurinic/Apyri-

midinic endonuclease superfamily is a large diverse family of phosphoesterases. The family

includes members that cleave nucleic acids (both DNA and RNA). However, the family has

diverged to include lipid phosphatases. The essential catalytic residues vary between different

subfamilies, for example, an essential His in the DNA repair enzyme DNaseI is not conserved in

exonuclease III. In these cases, the conservation patterns from which we could hope to identify

function have disappeared.

In some cases very large divergence has led to very different function. Murzin (1998) and

Grishin (2001) have discussed how far divergence can push the relationships between homology,

structure and sequence divergence, and functional change. Some changes in folding pattern, or

topology, associated with functional changes, are :

(1) Addition/deletion/substitution of secondary structural elements. A dramatic example is the

relationship between luciferase and a non-fluorescent flavoprotein, which, although they

have 30% sequence identity show a standard TIM barrel in the case of luciferase but a

truncated barrel in the non-fluorescent flavoprotein.

(a)

(b)

(c)

Fig. 4. Common mechanism in the enolase family of enzymes : (a) mandelate racemase, (b) muconate

lactonizing enzyme, (c ) enolase. (After Hasson et al. 1998.)
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(2) Circular permutation. An example is NK-lysin, an all-a protein, and an aspartic proteinase

prophytepsin.

(3) Stand invasion and withdrawal. Although insertion of strands at the end of a b-sheet is

relatively simple, it is more difficult to insert a strand into a b-barrel. Lipocalins include the

homologues retinol-binding protein with an 8-stranded b-barrel, and retinoic acid-binding

protein with a 10-stranded b-barrel.

(4) Changing the topology while maintaining the architecture. Aeromonas aminopeptidase and

carboxypeptidase G2 have a common core of secondary structural elements, but are ‘wired

up’ by connecting loops in a different way. The thrombin inhibitor triabin is likely to be

related to the lipocalins, on the basis of similarities in the amino-acid sequences. Both contain

b-barrel folds, but superposing the structures shows that two of the strands have been

swapped.

3.2 Recruitment

The application of enzymes as lens crystallins illustrated another route of evolution: a novel

function preceding divergence. It is more difficult to distinguish divergence and recruitment than it

might first appear. Divergence and recruitment are at the ends of a broad spectrum of changes in

sequence and function. Apart from cases of ‘pure ’ recruitment such as the duck eye lens proteins

or phosphoglucose isomerase, in which a protein adopts a new function with no sequence

change at all, there are examples, not only of relatively small sequence changes correlated with

very small function changes (which most people would think of as relatively pure divergence),

and relatively small sequence changes with quite large changes in function (which most people

would think of as recruitment), but also many cases in which there are large changes in both

sequence and function.

3.3 ‘Mixing and matching ’ of domains, including duplication/oligomerization, and domain

swapping or fusion

Many large proteins contain tandem assemblies of domains which appear in different contexts

and orders in different proteins. (The reader must be aware that there is no universal agreement

about how to define a domain or a module ; one traditional definition is that a domain is a

compact subunit of a protein that looks as if it should have independent stability. Some authors

refer to a compact unit as a module, and reserve the term domain for a unit that stays together as

an evolutionary unit, appearing in partnership with different sets of other domains, or in different

orders along the chain. These authors describe the serine protease structure as a single domain

comprising two modules.) The giant muscle protein titin contains a long concatenation of up to

about 300 modules each of which is homologous to either an immunoglobulin superfamily

domain or a fibronectin III domain (Kenny et al. 1999). Titin is an extreme example ; most

modular proteins contain only a few.

Censuses of genomes suggest that many proteins are multimodular. Serres et al. (2001) report

that of 4401 genes in E. coli, 287 correspond to proteins containing 2, 3 or 4 modules. Teichmann

et al. (2001b, c) have analysed, for enzymes involved in metabolism of small molecules, the

distribution and redistribution of domains. The structural patterns of 510 enzymes could be

accounted for in total or in part by 213 families of domains. Of the 399 which could be entirely

divided into known domains, 68% were single-domain proteins, 24% comprised two domains,
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and 7% three domains. Only 4 of the 399 had 4, 5 or 6 domains. Teichmann et al. (2001b, c) also

showed that there are marked preferences for pairing of different families of domains.

Thus multi-domain proteins present particular problems for functional annotation, because

domains may possess independent functions, modulate one another’s function, or act in concert

to provide a single function. However, in some cases the presence of a particular domain or

combinations of domains is associated with a specific function. For example, NAD-binding

domains appear almost exclusively in dehydrogenases.

4. Classification schemes for protein functions

4.1 General schemes

Several schemes for classification of protein functions have been proposed. We begin with some

fairly general categories.

Andrade et al. (1999) distinguished the functional classes of proteins involved in energy,

information, and communication and regulation. Within these general classes they offered the

subdivisions shown in Table 1. These categories comprise fairly general activities rather than

individual protein functions. For example, biosynthesis of an amino acid often involves a

sequence of reactions catalysed by unrelated enzymes. Despite the differences in the precise

function of these enzymes and in their structure and mechanism, all would fall into a single class

in this scheme.

Other classifications have appeared in connection with genome sequencing projects. It is

interesting to compare an analysis of functional categories suggested for a prokaryotic (E. coli )

(Table 2) with those suggested for a eukaryote (Saccharomyces cerevisiae) (Table 3).

There is a good deal more overlap in these two schemes than first appears. The E. coli classes

contain a much more precise subdivision of metabolic reactions than the yeast scheme. Perhaps

this is an example of the differences in point of view among biochemistry, molecular biology and

cell biology. Nevertheless, for purposes of annotating a genome, most people would hope for

more specific assignments of function than any of these categories. Note also that the different

functions of phosphoglucose isomerase, which is also a neuroleukin, an autocrine motility factor,

Table 1. General classification of protein functions (Andrade et al. 1999)

Energy

. Biosynthesis of cofactors, amino acids

. Central and intermediary metabolism

. Energy metabolism

. Fatty acids and phospholipids

. Nucleotide biosynthesis

. Transport

Information

. Replication

. Transcription

. Translation

Communication and regulation

. Regulatory functions

. Cell envelope/cell wall

. Cellular processes
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and a differentiation and maturation mediator (Jeffery et al. 2000) straddle different classes, so that

it will be impossible in general to assign individual proteins to unique functional classes.

4.2 The EC classification

The best-known detailed classification of protein functions is that of the EC. Naturally, the

EC classification applies only to enzymes. Given our ultimate goal of mapping sequence and

Table 2. Functional groups of proteins for E. coli (Blattner et al. 1997)

Regulatory function
Putative regulatory proteins
Cell structure
Putative membrane proteins
Putative structural proteins
Phage, transposons, plasmids
Transport and binding proteins
Putative transport proteins
Energy metabolism
DNA replication, recombination, modification, and repair
Transcription, RNA synthesis, metabolism, and modification
Translation, post-translational protein modification
Cell processes (including adaptation, protection)
Biosynthesis of cofactors, prosthetic groups, and carriers
Putative chaperones
Nucleotide biosynthesis and metabolism
Amino acid biosynthesis and metabolism
Fatty acid and phospholipid metabolism
Carbon compound catabolism
Central intermediary metabolism
Putative enzymes
Other known genes (gene product or phenotype known)
Hypothetical, unclassified, unknown

Table 3. Functional categories suggested for yeast
(see http://mips.gsf.de/proj/yeast/catalogues/funcat/)

Metabolism
Energy
Cell cycle and DNA processing
Transcription
Protein synthesis
Protein fate (folding, modification, destination)
Cellular transport and transport mechanisms
Cellular communication/signal transduction mechanism
Cell rescue, defense and virulence
Regulation of/interaction with cellular environment
Cell fate
Transposable elements, viral and plasmid proteins
Control of cellular organization
Subcellular localization
Protein activity regulation
Protein with binding function or cofactor requirement (structural or transport facilitation)
Classification not yet clear cut
Unclassified proteins
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structure onto function, it is important to bear in mind the Commission’s emphasis that : ‘ It is

perhaps worth noting, as it has been a matter of long-standing confusion, that enzyme nomenclature is primarily

a matter of naming reactions catalysed, not the structures of the proteins that catalyse them. ’

The origin of the EC classification was the action taken by the General Assembly of the

International Union of Biochemistry (IUB), in consultation with the International Union of

Pure and Applied Chemistry (IUPAC), in 1955, to establish an International Commission

on Enzymes. The EC published its classification scheme, first on paper and now on the web

(see http://www.chem.qmul.ac.uk/iubmb/enzyme/).

EC numbers (looking suspiciously like IP numbers) contain four fields, corresponding to a

four-level hierarchy. For example, EC 1.1.1.1 corresponds to alcohol dehydrogenase, catalysing

the general reaction :

an alcohol+NAD=the corresponding aldehyde or ketone+NADH2:

Note that several reactions, involving different alcohols, would share this number ; but that the

same dehydrogenation of one of these alcohols by an enzyme using the alternative cofactor

NADP would be assigned EC 1.1.1.2.

The first number shows to which of the six main divisions (classes) the enzyme belongs :

Class 1. Oxidoreductases

Class 2. Transferases

Class 3. Hydrolases

Class 4. Lyases

Class 5. Isomerases

Class 6. Ligases.

The significance of the second and third numbers depends on the class. For oxidoreductases the

second number describes the substrate and the third number the acceptor. For transferases, the

second number describes the class of item transferred, and the third number describes either

more specifically what they transfer or in some cases the acceptor. For hydrolases, the second

number signifies the kind of bond cleaved (e.g. an ester bond) and the third number the mol-

ecular context (e.g. a carboxylic ester or a thiol ester). (Proteinases are treated slightly differently,

with the third number including the mechanism: serine proteinases, thiol proteinases and acid

proteinases are classified separately.) For lyases the second number signifies the kind of bond

formed (e.g. C–C or C–O), and the third number the specific molecular context. For isomerases,

the second number indicates the type of reaction and the third number the specific class of

reaction. For ligases, the second number indicates the type of bond formed and the third number

the type of molecule in which it appears. For example, EC 6.1 for C–O bonds (enzymes acylating

tRNA), EC 6.2 for C–S bonds (acyl-CoA derivatives), etc. The fourth number gives the specific

enzymic activity.

Specialized classifications are available for some families of enzymes ; for instance, the

MEROPS database by N. D. Rawlings and A. J. Barrett provides a structure-based classification

of peptidases and proteinases (see http://www.merops.sanger.ac.uk/).

4.3 Combined classification schemes

Rison et al. (2000) have compared functional classifications proposed for genomes. Most are

hierarchical, so that the authors could make an attempt to merge them into a ‘combined

scheme’, from which the various classifications could be compared. Of course the different
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classifications are not entirely mutually consistent, requiring compromises in integrating them.

Their combined scheme is a three-level hierarchy. The top levels are :

(1) metabolism;

(2) process ;

(3) transport ;

(4) structure and organization of structure ;

(5) information pathways ;

(6) miscellaneous.

The intermediate and lower levels are increasingly more specific. However, in most cases even

the lower level is fairly general ; for instance, in the combined scheme of Rison et al. (2000), entry

1.3.1 corresponds to metabolism/small molecules/amino-acid metabolism.

Rison et al. (2000) map different functional classifications onto their combined scheme and

compare coverage. Some gaps are implicit in the design of individual databases. For instance,

functions in the general class ‘ structure ’ are absent from KEGG – The Kyoto Encyclopaedia of

Genes and Genomes (Kanehisa et al. 2002) – leaving large gaps in its mapping onto the com-

bined scheme. Some other gaps arise from problems in mapping individual functional classifi-

cations onto the combined scheme.

Even this combined scheme does not solve the problem of mapping functions to the level of

detail desired for protein annotation. The authors recognize that some of the schemes treated

have much higher functional resolution than theirs, but do not integrate that information. They

mention but do not treat the EC classification.

Given the goal of mapping a functional classification onto sequence and structure classifi-

cations, several problems associated with current functional categorizations are generally rec-

ognized. One is that the function is defined without reference to homology in general and

structure in particular. The EC, for instance, merges non-homologous enzymes that catalyse

similar reactions.

Gerlt & Babbitt (2001), who are among the most thoughtful writers on the subject, pointed

out that ‘no structurally contextual definitions of enzyme function exist ’. They propose a general

hierarchical classification of function better integrated with sequence and structure. For enzymes

they define :

. Family. Homologous enzymes that catalyse the same reaction (same mechanism, same sub-

strate specificity). These can be difficult to detect at the sequence level if the sequence simi-

larity becomes very low.

. Superfamily. Homologous enzymes catalysing similar reaction with either (a) different specificity

or (b) different overall reactions with common mechanistic attributes (partial reaction, tran-

sition state, intermediate) that share conserved active-site residues.

. Suprafamilies. Different reactions with no common feature. Proteins belonging to the same

suprafamily would not be expected to be detectable from sequence information alone.

Another problem, that we have already mentioned, is that the traditional biochemist’s view of

function arises from the study of isolated proteins in dilute solutions, in the presence of carefully

controlled concentrations of substrates. The molecular biologist knows that an adequate defi-

nition of function must recognize the biological role of a molecule in the living context of a cell

(or intracellular compartment) or the complete organism on the one hand, and its role in
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a network of metabolic or control processes on the other (Lan et al. 2002, 2003). (In addition to

the fundamental point of providing a more appropriate definition of function, information about

context is often useful in assigning function.) As a result, there is a generic problem with all

attempts to force functional classifications into a hierarchical format (see comments of Riley,

1998).

4.4 The Gene Ontology Consortium

A more general approach to the logical structure of a functional classification has been adopted by

the Gene Ontology Consortium (2000) (see http://www.geneontology.org). Its goal is a sys-

tematic attempt to classify function, by creating a dictionary of terms and their relationships for

describing molecular functions, biological processes and cellular context of proteins and other

gene products. It supports annotation efforts by providing a set of terms that individual anno-

tators or databases may adopt. (By an ontology they mean a set of well-defined terms with well-

defined inter-relationships ; that is, a dictionary and rules of syntax.)

Organizing concepts of the gene ontology project include the distinctions between :

. Molecular function. A function associated which an individual protein or RNA molecule does

in itself ; either a general description such as ‘enzyme’, or a specific one such as ‘alcohol

dehydrogenase ’. This is function from the biochemists’ point of view.

and

. Biological process. A component of the activities of a living system, mediated by a protein or

RNA, possibly in concert with other proteins or RNA molecules ; either a general term such as

signal transduction, or a particular one such as cyclic AMP synthesis. This is function from the

cell’s point of view.

Because many processes are dependent on location, gene ontology also tracks :

. Cellular component. The assignment of site of activity or partners ; this can be a general term such

as nucleus or a specific one such as ribosome.

An example of the gene ontology classification is shown in Fig. 5. Note that it is more general

than a hierarchy. We feel that of the schemes for classification of function that have been

proposed, only that of the Gene Ontology Consortium has the possibility of linkage to successful

tests of prediction of protein function.

5. Methods for assigning protein function

5.1 Detection of protein homology from sequence, and its application to function assignment

If there is a standard method for predicting protein function, it is the detection of similarity of

amino-acid sequence by database searching, and assuming that the molecules identified are

homologues with similar functions. Search engines such as PSI-BLAST pull out sequences

similar to a query sequence, from general protein sequence databases. The most favourable result

is to find that the query sequence is identical or very closely related to that of a well-characterized

protein. However, as we have seen, even in these cases the assignment of function may not be

correct or complete. The problem of assigning function becomes significantly more complex as

the similarity between the unknown sequence and its (putative) homologue falls, except that in
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some cases specific sequence signature patterns identify active sites, even in proteins with little

overall sequence similarity to homologues of known function. Although the hope is that highly

similar proteins will share similar functions, substitution of a single, critically placed amino acid in

an active-site residue may be sufficient to alter a protein’s role fundamentally.

Several groups have tested correlations between sequence similarity and functional similarity.

One senses a feeling, in the relevant scientific community, that can be roughly stated as, ‘Yes,

we know the collections of horror stories about proteins with very closely related sequences

but different functions, but those are rare exceptions, and the inference of function from

similarity in sequence works fairly well most of the time. ’ Does the evidence support this

assumption?

Shah & Hunter (1997) determined the sequence similarity of proteins within any EC class.

They used a sample of 1327 classes and 15 208 proteins, and tested various similarity thresholds.

Their conclusions were that the errors were dominated by false positives, and that it would be

better to carry out this kind of analysis at the domain level.

Wilson et al. (2000), Todd et al. (2001) and Devos & Valencia (2000) reached similar (although

not identical) optimistic conclusions.

Wilson et al. (2000) conclude that for pairs of single-domain proteins, at levels of sequence

identity o40%, precise function is conserved, and for levels of sequence identity o25% broad

functional class is conserved [according to a functional classification that uses the EC hierarchy

for enzymes, and supplements it for material from FLYBASE (Ashburner & Drysdale, 1994) for

non-enzymes]. Todd et al. (2001) found that for pairs of proteins, both known to be enzymes,

slightly <90% of pairs with sequence identity o40% conserve all four EC numbers. Even

at o30% sequence identity they found conservation of three levels of the EC hiererchy

for 70% of homologous pairs of enzymes. Devos & Valencia (2000) reached very similar

 

(c)

dd

Fig. 5. The Gene Ontology Consortium classification of functions involving DNA metabolism. (From the

Gene Ontology Consortium, 2000; reproduced with permission.)
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conclusions ; they also reported the ability to predict correctly the agreement of FSSP categories

(Holm & Sander, 1999) and SWISS-PROT keywords, as a function of the level of sequence

similarity.

Rost (2002), using a wider definition of pairs of sequences identified for comparison –

including shorter matching regions – reached more pessimistic conclusions, entirely at variance

with those of other investigators. Of pairs of enzymes with >50% sequence identity, he re-

ported that <30% have entirely identical EC numbers. BLAST E values below 10x50 were also

not sufficient to imply identical function. It should be noted that two pairs of proteins with

>50% sequence similarity are expected to have very similar overall structures, <1 Å root-

mean-square deviation of over 95% of their backbone atoms, and the active sites may be even

more similar in structure (Chothia & Lesk, 1986). Even for pairs of proteins with over 70%

residue identity in the optimal alignment (a very close relationship indeed), over 30% do not even

share the first EC number, that is, the general classification ! The implication is that to reason

successfully from sequence similarity to common function, it is essential to require that the

similarity extend over a large enough sector of the sequence, as in the studies of Wilson et al.

(2000), Todd et al. (2001) and Devos & Valencia (2000).

Function prediction from sequence similarity can take advantage of multiple sources of in-

formation to back up the prediction from levels of sequence identity alone, and to improve the

results in cases of lower sequence similarity than the y40% identity confidence threshold

proposed by Wilson et al. (2000), Todd et al. (2001) and Devos & Valencia (2000).

Having identified putative homologues, multiple sequence alignments enable identification of

conserved residues, the literature may provide crucial information about the family as a whole

and the role of conserved residues, and phylogenetic trees can provide information as to whether

an unknown protein clusters with a particular functional grouping (Hannenhalli & Russell, 2000 ;

Gu & Vander Velden, 2002). In general, if an unknown protein shares significant sequence

similarity with a family of known function, possesses the ‘ right essential conserved residues ’

(e.g. active-site residues) then a prediction as to function (proteinase, exonuclease, etc.) can

reasonably be proposed. In addition, if the unknown also forms part of a well-supported func-

tional cluster or clade within a phylogenetic tree then a more detailed level of functional

prediction may be possible.

Hannenhalli & Russell (2000) examined nucleotidyl cyclases. Changing the specificity between

an ATP cyclase and a GTP cyclase requires mutations of only two residues E937K and C1018D.

From a common alignment of ATP and GTP cyclases, they were able to identify residues

correlated with the change in specificity, including the two crucial positions. Given the sequence

of a new enzyme in this family, it could be identified as a family member by overall sequence

similarity, and its specificity could be inferred from the residues occupying the selected positions.

Hannenhalli & Russell (2000) also showed that a similar analysis permitted prediction of speci-

ficity of protein kinases [Motifs were already known that were able to distinguish Ser/Thr from

Tyr kinases (Hanks & Hunter, 1995 ; Hanks et al. 1988)].

As a control, an illustration of a negative inference : an evolutionary tree of myotubularin-

related proteins permitted Nandurkar et al. (2001) to infer that their protein, although related to

active phosphatases, lacked the essential catalytic residues and acts as an adapter rather than an

enzyme.

Even in the event of a smooth path to successful prediction as outlined above, more questions

may be raised than answered. Let us consider an example where we are able to identify an

‘unknown’ protein as a proteinase through sequence similarity. Immediately the question arises
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as to the target of the proteinase (i.e. the physiological substrate), and in addition, what (if any) is

its physiological inhibitor(s) or binding partner(s). It may be possible (if a representative structure

has been determined) to build molecular models of the unknown proteinase and make basic

predictions regarding substrate specificity by examining the nature of the residues lining the

predicted S1 subsite. However, this a far cry from being able to predict accurately the physiological

substrate(s), and thus the biological function. Similar problems exist when attempting to anno-

tate functionally unknown proteins that belong to protein families the primary role of which is to

bind other proteins or small molecules – often it is difficult to predict the nature of the binding

partner. Thus it appears that relatively straightforward function prediction problems can get

bogged down relatively early by questions difficult to answer by common tools of bioinformatics.

Nevertheless, even the basic prediction that an unknown protein is a proteinase is valuable

information that may guide and accelerate experimental study.

More sensitive database searching engines such as PSI-BLAST and SAM3.0 and other algor-

ithms utilizing profile hidden Markov models (HMMs) allow identification of putative distant

homologues. Often these engines are able to detect such similarity in spite of extremely low

primary sequence identity (well below the twilight zone – 10–25% sequence identity – into the

midnight zone, below 10%). At this level of similarity it is crucial to be able to judge whether or

not a match is real and various methods are used to minimize the number of false positives.

Aravind & Koonin (1999) argue that the sequences picked up by sequence similarity sequences

represent genuine homologues, on the grounds that current sequence search methods do not

pick up even all the proteins known (from structural and other considerations) to be genuine

homologues. Of course this is a comment on the state of current sequence searching techniques

and the recommended threshold values applied in their use. It may be that more powerful

sequence similarity detection programs may in the future pick up sequences that fold into similar

structures but are related by convergence rather than homology. The conclusion is that it is

important to keep recalibrating the methods in use and – paradoxically – as they grow more

powerful, to become more cautious in interpreting their results.

If even close relatives often do not share functions, does the identification of distant putative

homologues facilitate functional prediction, or is it a fruitless pursuit ? Again, the answer to this

question depends on the value placed on a particular threshold of statistical significance in

accepting an inference. At best identification of distant similarity to a protein family of known

function may suggest a function and allow identification of active-site residues and assignment of

the unknown to a general functional class. Even if the relationship is genuine, the unknown may

have evolved far from its putative distant homologue. Although it is likely that some general

aspects of the mechanism may be common to an unknown and a distant homologue (particularly

likely if active-site residues are retained), it is quite possible that fundamental changes in the

nature of the substrate may have occurred (e.g. from lipid phosphate to DNA in the case of

the AP endonucleases).

Detection of homologues may provide one or more relatives for which the 3D structure is

known. This provides another level of information and another test of the prediction. Such a

match with a protein of known structure enables a molecular model to be built. Although if the

sequence similarity is low the quality of the model may also be low, even an approximate model

may allow the compatibility of the unknown sequence with the fold to be assessed (Schonbrun

et al. 2002). Furthermore, because the active sites of enzymes often comprise the most highly

conserved and structurally similar regions it may be possible to build a surprisingly detailed

model around the active site, even if overall sequence similarity is low. The two examples given
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in the introduction from the structural genomics ofHaemophilus influenzae illustrate the experience

that this approach sometimes works and sometimes does not.

Even if the results of an experimental structure determination are not available, theoretical

methods of structure prediction may be useful in identifying putative remote homology

(Schonbrun et al. 2002 ; Tramontano, 2003 ; Kinch et al. In Press).

The situation for multi-domain proteins is even more complex. Although it may be relatively

straightforward to predict the role of some of the domains using the methods described, others

may prove more challenging. Thus a complete functional description of a multi-domain protein

of unknown function may be limited if it contains one or more domains that cannot be accu-

rately annotated. Furthermore the possibility of domains acting in concert with one another to

modulate the behaviour of the complete molecule is difficult to predict.

5.2 Detection of structural similarity, protein structure classifications, and structure/function

correlations

It is well known that structure changes more conservatively than sequence during evolution.

There are many cases of distantly related homologues assignable from shared structures with no

recognizable relationship between the sequences. The 3D analogue of sequence alignment is

alignment by structural analogy : establishment of correspondences between pairs of residues

that occupy the same geometric positions in two protein structures. Many algorithms have been

implemented for this task (reviewed by Koehl, 2001).

DALI (Holm & Sander, 1993) is based on the observation that inter-residue contact patterns

are among the best preserved features of protein structures (Lesk & Chothia, 1980). The DALI

web server (see http://www.ebi.ac.uk/dali/) will screen a novel protein structure against the

Protein Data Bank and report the most similar structures and the alignment of the sequences.

DALI is used routinely by X-ray crystallographers and NMR spectroscopists to provide a pre-

liminary classification of each new structure.

Several authors have applied the known structures to infer homology among proteins

too distantly related to be identified as homologues from the sequences alone. They have

created databases merging structures, sequences and the greater reliability of homology detection

and alignment attainable by use of structural information (Holm & Sander, 1999 ; Przytycka

et al. 1999 ; Aloy et al. 2002).

A hierarchical structural classification of protein domains of known structure, based on the

DALI program, is available on the web (Holm & Sander, 1999). Two other major databases of

classifications of protein structures are the Structural Classification of Proteins (SCOP) (Murzin

et al. 1995 ; Lo Conte et al. 2002) and CATH (Pearl et al. 2003). There are many others, tabulated

in Ouzounis et al. (2003). SCOP depends crucially on manual curation by A. G. Murzin. CATH is

based on a structural-alignment program, SSAP (Taylor & Orengo, 1989). Most classification

schemes for sequences and structures are expressed as hierarchical clusterings. The most similar

items are grouped together at the lowest level. The sets of linked items are progressively merged

to form successive levels of the hierarchy. For instance, the SCOP database has as its basis

individual domains of proteins. Sets of domains are grouped into families of homologues, for

which the similarities in structure, sequence, and sometimes function imply a common evol-

utionary origin. Families containing proteins of similar structure and function, but for which

the evidence for evolutionary relationship is suggestive but not compelling, form superfamilies.

Superfamilies that share a common folding topology, for at least a large central portion of
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the structure, are grouped as folds. Finally, each fold group falls into one of the general classes.

The major classes in SCOP are a, b, a+b, a/b, multi-domain proteins, membrane and cell

surface proteins, and miscellaneous small proteins, which often have little secondary structure

and are held together by disulphide bridges or ligands.

Several groups have attempted to correlate protein structure and function (Hegyi & Gerstein,

1999 ; Thornton et al. 1999). Hegyi & Gerstein (1999) correlated the enzymes in the yeast genome

between their fold classification in SCOP (Lo Conte et al. 2002) and their EC functional cat-

egories, via the annotations in SWISS-PROT. They identified 8937 single-domain proteins that

could be assigned both a fold and a function.

The broadest categories of structure were from the top of the SCOP hierarchy, including the

all-a, all-b, a/b, a+b, multi-domain, and small classes. The broadest categories of function

were from the top of the EC hierarchy : oxidoreductases, transferases, hydrolases, lyases, iso-

merases and ligases ; plus an additional category, non-enzymes. There are therefore 6 (structural

classes)r7 (functional classes)=42 possible combinations of highest-level correlates. By using

finer classifications of structure and function (down to the third level of EC numbers) there are a

total of 21 068 potential fold-function combinations. Only 331 of these are observed, among the

8937 proteins analysed.

The observed distribution is highly non-random. Non-enzymic functions account for 59% of

the sequences of which well over half are in the all-a or all-b fold category. Of the enzymes, the

most popular combinations were a/b folds among oxidoreductases and transferases, and all-b

and a+b hydrolases.

Knowing the structure of a domain, what can be inferred about its function? Many folds are

compatible with very different activities. The five most ‘versatile ’ folds are the TIM barrel, axb

hydrolase, the NAD-binding fold, the P-loop-containing NTP hydrolase fold, and the ferredoxin

fold. Conversely, the functions carried out by the most different types of structure are glycosi-

dases and carboxylases. These two functions are carried out by seven different fold types, from

three different fold classes.

What we are looking for, however, are cases where structure provides reliable clues to func-

tion. In their cross table, Hegyi & Gerstein (1999) show several folds that appear in combination

with only one function. These appear to have predictive significance for function. Of course one

cannot tell whether this is just because they are rare folds, and whether the correlation will hold

up as the databases grow.

5.3 Function prediction from amino-acid sequence

Despite the progress in structural genomics projects, most proteins encoded in newly sequenced

genomes are known from their amino-acid sequences alone. A major problem in genome an-

notation is that of assigning their functions. Note that not only are the 3D structures in most

cases unknown, there is generally no information even about cofactors or post-translational

modifications, which are often essential for function.

There are two basic approaches to prediction of protein function from amino-acid sequence

alone, focused on (1) overall sequence similarity and (2) signature patterns of active sites, or

motifs (Bork & Koonin, 1996). We have already discussed the standard method based on the

assumption that in at least many cases evolutionary divergence is slow enough to permit recog-

nition of homologues that may have the same or at least similar structures and functions. Often

the general similarity of sequences reflects a similarity in overall folding pattern, and particular
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residues within the fold may form a localized active site. Clearly the conservation of active-site

residues is important in reasoning from sequence similarity to functional similarity. Indeed, in

some cases it is possible to cut short the reasoning and to recognize the residues comprising the

active site from a specific signature pattern or motif within the sequence. However, although

many motifs do reflect functional active sites, others reflect positions for post-translational

modification (e.g. glycosylation sites), or structural signals (e.g. N and C caps of a-helices), or

signal sequences, with no direct functional implications.

Attwood (2000) has described general methods for deducing sequence patterns. All start with

(or produce) a multiple sequence alignment, and seek to identify common distinctive features of

particular positions of the sequence. These features may involve :

(1) A motif describing a single consecutive set of residues.

(2) Multiple motifs – a combination of several motifs involving separate consecutive sets of

residues.

(3) Profile methods, based on entire sequences and weighting different residue positions ac-

cording to the variability of their contents. Extensions and generalizations of profile

methods, including HMMs, are among the most sensitive detectors of distant homology

based entirely on sequence data that we have.

5.3.1 Databases of single motifs

Motifs may be expressed in terms of uniquely defined sequences, such as

GWTLNSAGYLLGP,

which characterizes the neuropeptide galanin. Or, motifs may contain alternative residues ; for

instance [LIVMF]-T-T-P-P-[FY], the signature of N-4 cytosine-specific DNA methylases. Here

[LIVMF] means that that first position may contain any of the amino acids L, I, V, M, or F,

followed by the unique sequence TTPP, followed by a position that may contain either F or Y.

It is easy to indicate a site which excludes a specific amino acid by bracketing the other 19, or

by using the notation {P} to indicate ‘any amino acid except proline ’. Motifs can contain

‘wild cards ’ (which permit any of the 20 amino acids at a position) and ‘spacers ’; for instance,

L-x(6)-L-x(6)-L-x(6)-L, the signature pattern of the leucine zipper which appears in some

eukaryotic transcription regulator proteins. The pattern specifies four leucines each separated by

six residues each of which may be any amino acid. More generally, a signature pattern may be

specified by a ‘ regular expression’, which allows for a wider range of alternative patterns and

variable distances between residue positions. It is simplest to search for exact matches to the

patterns, but algorithms that allow for some mismatches are available (see e.g. Gusfield, 1997 ;

Crochemore & Rytter, 2003).

Attempts to apply data mining techniques to pattern discovery in biological sequences are by

now a heavy industry with an enormous literature (see e.g. Floratos et al. 2001).

One very important set of results of this kind of work, PROSITE (Sigrist et al. 2002)

contains a collection of motifs covering a wide range of groups of proteins, together with

retrieval software to check a submitted sequence for the presence of one or more motifs.

The motifs are calibrated to indicate the number of false negatives and positives to be expected.

The [LIVMF]-T-T-P-P-[FY] motif detects all N-4 cytosine-specific DNA methylases, but

also picks up false positives. The L-x(6)-L-x(6)-L-x(6)-L motif is least specific, missing one

known leucine zipper (L-myc, which contains a methionine instead of one of the leucines)
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and promiscuously picking up hundreds of other sequences from many different types

of proteins.

Thornton et al. (1999) have investigated the structural implications of conserved sequence

motifs. Typically these are involved in conserved substructures contributing to a common

function. Kasuya & Thornton (1999) have confirmed that PROSITE motifs reflect common 3D

structural patterns by analysis of protein structures in which they appear. Kasuya & Thornton

(1999) found examples among proteins of known structure of 553 of the 1265 PROSITE

patterns available at the time of their work. In most cases the residues matching a given PRO-

SITE pattern in different proteins had similar 3D structures as measured by the root-mean-

square deviation of the Ca atoms. Some of the exceptions observed are biologically interesting.

For instance, among the matches to the 12-residue TRYPSIN_SER pattern that includes the

active-site serine of the trypsin family of serine proteinases

[DNSTAGC]-[GSTAPIMVQH]-x(2)-G-[DE]-S-G-[GS]-[SAPHV]-[LIVMFYWH]

-[LIVMFYSTANQH]

outliers in conformation space included proenzymes, for which it is known that the region

matching the pattern undergoes conformational change upon activation.

Todd et al. (2001, 2002) have collected cases of homologous enzymes, some but not all of

which catalyse the same reaction, in which residues equivalent in their contribution to catalysis

appear at non-equivalent positions in the active site. Examples include human alcohol dehy-

drogenases in classes 1b and IIIx, which have 62% overall residue identity in their sequence

alignment, but in which the active site Thr and His appear in different sequence patterns : 48Thr-

49Asp-50Asp-51His or 47His-48Thr ; and b-lactamases in classes A and C, in which the catalytic

residues appear on different structural elements.

Several authors have sought to extend motif searching to three dimensions. Given that motifs

tend to correspond to regions of conserved structure linked to function, Wallace et al. (1996)

searched known protein structures for the Ser-His-Asp catalytic triad of trypsin-like serine

proteinases. The identified all known serine proteinases in their dataset, plus triglycerol lipases

which share the catalytic triad.

de Rinaldis et al. (1998) derived 3D profiles from a single protein structure or a set of aligned

structures. They applied their results to identifying proteins with matching surface patches.

Analysis of the 3D profiles of ATP and GTP binding P-loop proteins identified a positively

charged phosphate-binding residue (Arg or Lys) in a position conserved in space but not in

sequence.

In a similar approach, Jackson & Russell (2000, 2001) have identified regions with con-

formations similar to those of PROSITE motifs, but not necessarily sharing sequence similarity

with them. They were able to identify serine proteinase inhibitors that contain regions similar in

conformation to the loops in known inhibitors that have a common structure that docks to the

proteinase.

5.3.2 Databases of profiles

Given a multiple sequence alignment, it is usually the case that some positions show high

variability while others show high conservation. To detect other sequences that share the pattern,

a weighted alignment of a target sequence with the alignment table can be carried out, giving
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higher weight to matches at highly conserved positions. Profiles could alternatively be based on

the local regions of high conservation that went into motifs.

Associated with PROSITE is a compendium of profiles characterizing entire domains. Be-

cause the matching of such profiles is sensitive to the sequences of entire domains, it is less likely

to return false positives ; but because the information contained in the most conserved part of

the sequences is eroded, it may lose sensitivity relative to motif matching.

An alternative approach to describing a set of homologous sequences is HMMs (Eddy, 1996).

HMMs represent successive positions in a probabilistic way. They are more general than simple

profiles, and do a better job of discriminating homologues from non-homologues, provided that

they are trained with correct alignments. HMMs currently provide the most sensitive methods

for detecting distant homologues given only the amino-acid sequence of a query protein.

Pfam is a database of multiple alignments of protein domains, and the HMMs built from them

(Bateman et al. 2002). Search software permits detection of whether a query sequence belongs to

any of the families in Pfam.

The Superfamily database is a library of HMMs for all proteins of known structure (Gough

et al. 2001). Its goal is to identify, from protein sequences, domains with folds corresponding to

one or more known structures.

5.3.3 Databases of multiple motifs

We have pointed out that motifs may be more specific than profiles because they focus on well-

conserved active sites. But a weakness of single-motif patterns is that an active site of a protein

may be defined by regions that are distant in the sequence although nearby in space. Single-motif

patterns are also necessarily based on characteristics of single domains, whereas it may be useful

to identify proteins by the presence of more than one domain. Multiple-motif databases aim to

remedy these problems.

BLOCKS (Henikoff et al. 2000) and PRINTS (Attwood, 2002 ; Attwood et al. 2002a, 2003) are

databases of multiple motifs, typically y20 residues long, presented in the form of ungapped

multiple sequence alignments. PRINTS but not BLOCKS contains biological documentation of

the significance of the motifs. Search software can identify matches to individual motifs in a

query sequence. There is flexibility to define how many of the motifs match, to what stringency,

to define a ‘hit ’.

If different sets of sequences match different individual motifs one has the additional possi-

bility of classifying subsets of a family of homologues, and inferring evolutionary trees. For

instance, Attwood (2001, 2002) has used motifs to classify the important family of G protein-

coupled receptors (GPCRs), a large family of cell-surface proteins that detect and signal hor-

mones and growth factors, and mediate the senses of sight and smell. Particular motivation for

classifying subtypes is the fact the GPCRs are common drug targets. Potential for improvements

in specificity would have important clinical consequences.

The PRINTS database contains a seven-motif fingerprint for GPCRs – each motif corre-

sponding to one of the transmembrane helices. Additional sets of motifs identify subfamilies of

GPCRs and receptor subtypes. Some but not all of these motifs overlap the general family

fingerprint. Mapping of the motifs onto the structure of rhodopsin shows what structural

features distinguish the subclasses (Attwood et al. 2002b).

To apply these databases to prediction of protein function, it should be kept in mind that

profiles or HMMs are sensitive to overall folding pattern, sometimes at the expense of focus on

330 J. C. Whisstock and A. M. Lesk



specific active-site residues. Conversely, some motifs are sensitive to active-site residues but in

their insensitivity to features of the sequence as a whole may pick up non-homologous proteins

as false positives.

Among these classes of method, a combination of a profile and motif match would therefore

seem to be the most reliable criterion for function assignment (see Chen & Jeong, 2000).

5.3.4 Precompiled families

Several groups have applied tools for sequence matching to full sequence databases, or used

structural similarity, to classify proteins (Table 4). Note that the exact definitions of the cat-

egories vary among the databases.

InterPro is an umbrella database that attempts to integrate the contents, features, and anno-

tation of several individual databases of protein families, domains, and functional sites (Mulder

et al. 2003). It subsumes, but is not limited to, information from PROSITE, Pfam, PRINTS,

SMART and ProDom databases, and contains links to others including the Gene Ontology

Consortium functional classification. It intends to assimilate additional databases, including

structural databases. Resistance is futile.

An InterPro entry is a description of a protein family, domain, repeat, or site of post-trans-

lational modification, and links to other databanks, and original literature. Annotations from

the source databases are merged. Each entry includes links to relevant terms from the Gene

Ontology Consortium classification schemes.

5.3.5 Function identification from sequence by feature extraction

Although information about function must be contained implicitly in amino-acid sequences, it is

obscure. It can be seen that, even using structure as an intermediate stepping-stone between

Table 4. Some of the databases of protein family classifications

Database Contents Reference

Primarily sequence based
BLOCKS+ Families Henikoff et al. (2000)
COG Families Tatusov et al. (2001)
HSSP Protein families including proteins Holm & Sander (1999)
InterPro Families/domains Mulder et al. (2003)
Pfam HMM-based families Bateman et al. (2002)
PIMA Domains
PIR-ALN Domains, families, superfamiles Srinivasarao (1999)
PRINTS Families Attwood (2002)
iProClass Domains, families, superfamilies Huang et al. (2003)
ProDom Domains Servant et al. (2002)
PROSITE Families Sigrist et al. (2002)
ProtoMap Families Yona et al. (2000)
PROT-FAM Domains, families, superfamilies Mewes et al. (1997)
SBASE Domains of known structure Vlahovicek et al. (2002)

Hierarchical protein structure classifications
SCOP Domains Lo Conte et al. (2002)
CATH Domains Orengo et al. (2002)
DALI domain
dictionary

Domains Dietmann & Holm (2001)
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sequence and function does not satisfactorily resolve the problem. Brunak and his colleagues

have examined an alternative intermediate between sequence and function ( Jensen et al. 2002).

They reasoned that information about function should be contained in a spectrum of features of

proteins, including secondary structure, post-translational modifications, protein sorting, and

general properties of the amino-acid composition such as the isoelectric point. Using neural

networks they predicted the following features from protein sequences, and correlated the results

with functional classes :

. extinction coefficient ;

. grand average hydrophobicity ;

. number of negative residues ;

. number of positive residues ;

. O-glycosylation ;

. serine/threonine phosphorylation ;

. tyrosine phosphorylation ;

. N-glycosylation ;

. PEST-rich regions ;

. secondary structure ;

. subcellular location ;

. low complexity regions ;

. signal peptides ;

. transmembrane helices.

They recognized that the predictions of the features would be imperfect, but this need not fatally

degrade their prediction of function.

The combined networks were trained to recognize a general set of functional classes based on

categories originally defined by Riley (1993), and, within the proteins predicted to be enzymes,

the EC classification. As a measure of the quality of the results, for the general categories, at a

level of thresholding giving 70% correct predictions, the range of false positives varied from

below 10% to below 40%, with most categories giving about 20% false positives. (A sensitivity

of 70 with 20% false positives means that if a large number of novel sequences are submitted to

the procedure, and this set of sequences contains 100 examples of proteins in some functional

class, the network will report that 90 of the proteins are in that functional class ; 70 of the

predictions will be correct and 20 will correspond to proteins outside the functional class.)

By analysing the networks, Jensen et al. (2002) were also able to analyse which particular

combinations of features were the most effective signals for specific functional types.

5.4 Methods making use of structural data

Several groups have developed methods to apply structural information, in most cases in com-

bination with sequence information, to interpret function.

Shapiro & Harris (2000) and Teichmann et al. (2001a) illustrate the power of structure,

including but not limited to identifying distant relationships not derivable from sequence com-

parisons.

(1) Identification of structural relationships unanticipated from sequence can suggest similarity

of function. The crystal structure of AdipoQ, a protein secreted from adipocytes, showed
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a similarity of folding pattern to that of tumour necrosis factor. The inference that AdipoQ

is a cell-signalling protein was subsequently verified.

(2) The histidine triad proteins are a broad family with no known function. Analysis of their

structures indicated a catalytic centre and nucleotide-binding site, identifying them as a

nucleotide hydrolase. Note that this did not depend on detection of a distant homology.

(3) Structural similarity of a gene product of unknown function from Methanococcus jannischii and

other proteins containing nucleotide-binding domains led to experiments showing it to be a

xanthine or inosine triphosphatase (Hwang et al. 1999).

Like most sequence-based methods, these structure-based methods proceed by searching for

homologues. It is well known that distant homology is frequently more easily detectable in

structure than in sequence. However, one must recognize that the more distant the relationship,

the less reliable the inference of common function. In general, structure does not permit un-

ambiguous assignment of a precise function, but can provide guidance to experiments that can

do so.

Several groups have attempted to determine the common functionally active site of a family

of proteins. Lichtarge et al. (1996a) have developed an evolutionary trace method to define bind-

ing surfaces common to protein families. They extract functionally important residues from

sequence conservation patterns and map them onto the protein surface to identify functional

clusters.

Given a set of homologous sequences, and at least one structure, the goal of the evolutionary

trace method is to identify surface sites implicated in function. The assumptions of the

method are :

(1) The set of proteins has a common surface-exposed active site.

(2) The homologous sequences produce similar structures, that retain the location in molecular

space of the active site.

(3) The functional site is less subject to mutation that average surface sites.

(4) Those mutations in the functional site that do occur are not random but create discrete sets

of structures with shifts in function (see also Golding & Dean, 1998; Gu, 1999).

The method begins by forming a multiple sequence alignment, from which the molecules are

hierarchically clustered into a tree. By choosing different levels in the hierarchy, clusters of

different size may be extracted. If different functions are known in the family, the clusters are

chosen to reflect subgroups with different function. By choosing larger or smaller clusters,

grosser or finer resolution in function distinction may be made. For each cluster in the partition,

form a consensus sequence alignment. Then co-align all the consensus sequences. The residues

can be divided into (a) those that are absolutely conserved, (b) those that are conserved within

clusters but differ between clusters, and (c) unconserved positions. By mapping the conserved

residues onto the structure, a pattern is observed that defines a surface patch predicted to

correspond to the active site.

Lichtarge et al. (1996a) applied their method to SH2 and SH3 signalling domains, and the

DNA-binding domain of nuclear hormone receptors. Their results correctly identified the

known functional sites in these molecules. If the evolutionary trace method depended on a

classification induced by known functional divergence, as in these test cases, it would be arguable

that it was really a method for assigning structure to function rather than function to structure.

However, it can be applied using trees from other sources, and the classifications they induce ; for

instance, those based solely on multiple sequence alignments.
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Successful predictions by the evolutionary trace method include identification of the func-

tional surface in families of G protein a-subunits (Lichtarge et al. 1996b) and regulators of G

protein signalling (Sowa et al. 2000, 2001). Both cases were blind predictions subsequently verified

by experiment. The success of the evolutionary trace method has led to its being taken up and

developed by a number of groups (Aloy et al. 2001 ; Lichtarge & Sowa, 2002 ; Madabushi et al.

2002 ; Yao et al. 2003).

Irving et al. (2001) applied the idea that active sites tend to be among the structurally best

conserved parts of a protein, by using superposition methods to extract regions of the lowest

root-mean-square deviation of Ca atoms in a pair of proteins of known structure. They tested

the method on a pair of proteins – YabJ from B. subtilis (PDB entry 1qd9) and YjgF from E. coli

(1qu9) – related to chorismate mutase. Without using any information from chorismate mutase,

their program suggested that YabJ and YjgF share an active site, which occupies a similar region

of their structures as the active site of chorismate mutase.

It should be emphasized that identification of an active site is not per se an identification of

function, but an important step towards one. Once a binding site is targeted, the identification

of a ligand is, computationally, the same problem faced in drug design, for which a great deal of

mature algorithms and software exist (Finn & Kavracki, 1999).

Moreover, the mode of binding of a ligand does not always correlate with sequence or

structural similarity. Cappello et al. (2002) studied the mode of binding of the adenine ring in

different proteins. Their conclusion was that proteins with similar folds can bind adenine in

different ways, and (interesting but less relevant for possible methods for function prediction)

proteins with dissimilar structures and functions can bind adenine in similar ways.

6. Applications of full-organism information: inferences from genomic

context and protein interaction patterns

For proteins encoded in complete genomes, approaches to function prediction making use of

contextual information and intergenomic comparisons are useful (Marcotte et al. 1999 ; Huynen

et al. 2000 ; Huynen & Snel, 2000 ; Kolesov et al. 2001, 2002).

(1) Gene fusion. A composite gene in one genome may correspond to separate genes in other

genomes. The implication is that there is a relationship between the functions of these genes.

(2) Local gene context. It makes sense to co-regulate and co-transcribe components of a pathway.

In bacteria, genes in a single operon are usually functionally linked.

(3) Interaction patterns. As part of the development of full-organism methods of investigation, data

are becoming available on patterns of protein interactions (Xenarios et al. 2002). The network

of interactions reveals the function of a protein.

(4) Phylogenetic profiles. Pellegrini et al. (1999) have exploited the idea that proteins in a common

structural complex or pathway are functionally linked and expected to co-evolve. For each

protein encoded in a known genome, they construct a phylogenetic profile that indicates

which organisms contain a homologue of the protein in question. Clustering the profiles

identifies sets of proteins that co-occur in the same group of organisms. Some relationship

between their functions is expected.

For instance, E. coli ribosomal protein RL7 has homologues in 10 out of 11 eubacterial

genomes, but no homologue appears in an archaeal genome (Pellegrini et al. 1999). Most of the

E. coli proteins that share the phylogenetic profile of RL7 have ribosome-associated functions.
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If the function of RL7 were unknown one could infer that it is associated in some way with the

ribosome. Comparison of keywords in SWISS-PROT annotations affords a general test of

this approach. Of sets of non-homologous proteins with similar phylogenetic profiles had, on

average, 18% of SWISS-PROT keywords in common.

There need be no sequence or structural similarity between the proteins that share a phylo-

genetic distribution pattern. One unusual and very welcome feature of this method is that it is

one of the few that derives information about the function of a protein from its relationship to

non-homologous proteins (Marcotte et al. 1999; Pellegrini et al. 1999).

7. Conclusions

The problem of prediction of function from amino-acid sequence and protein structure is far

from being satisfactorily solved.

Some problems are hard only because they are difficult ; others are hard because they are both

difficult and messy. The prediction of protein structure from amino-acid sequence is difficult, but

we know that nature has an algorithm and all we have to do is find it, and given any procedure we

can easily decide whether the answer is correct or not. The prediction of protein function is

messy, partly because function is a fuzzy and multi-faceted concept, and partly because very small

(or even no) changes in amino-acid sequence are compatible with large changes in function.

It appears that the most general classification of function is that produced by the Gene

Ontology Consortium. Their results have the advantage of being appropriate to both biochem-

istry and biology, at the expense of greater logical complexity.

Many of the methods that have been applied to function prediction work part of the time but

none is perfect. Moreover, the more expert the analysis of the results applied, the better the

predictions are. This makes it difficult to envisage a purely ‘black-box ’ automatic annotation

machine for new whole-genome sequences. In most cases, predictions suggest, but do not

determine, the general class of function. Their most useful effect is to guide investigations in the

laboratory to confirm, or refute, the prediction, and, even if correct, to define the function in

greater detail.

We conclude that predictions are useful but no substitute for work in the laboratory. Indica-

tions from theory may indict, but only experimental evidence can convict.
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