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Abstract

Despite advances in protein engineering, the de novo design of small proteins or

peptides that bind to a desired target remains a difficult task. Most computational

methods search for binder structures in a library of candidate scaffolds, which can

lead to designs with poor target complementarity and low success rates. Instead of

choosing from pre-defined scaffolds, we propose that custom peptide structures

can be constructed to complement a target surface. Our method mines tertiary

motifs (TERMs) from known structures to identify surface-complementing frag-

ments or “seeds.” We combine seeds that satisfy geometric overlap criteria to gen-

erate peptide backbones and score the backbones to identify the most likely

binding structures. We found that TERM-based seeds can describe known binding

structures with high resolution: the vast majority of peptide binders from 486 pep-

tide-protein complexes can be covered by seeds generated from single-chain struc-

tures. Furthermore, we demonstrate that known peptide structures can be

reconstructed with high accuracy from peptide-covering seeds. As a proof of con-

cept, we used our method to design 100 peptide binders of TRAF6, seven of which

were predicted by Rosetta to form higher-quality interfaces than a native binder.

The designed peptides interact with distinct sites on TRAF6, including the native

peptide-binding site. These results demonstrate that known peptide-binding struc-

tures can be constructed from TERMs in single-chain structures and suggest that

TERM information can be applied to efficiently design novel target-

complementing binders.
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1 | INTRODUCTION

The ability to design custom binders of novel protein tar-
gets would greatly facilitate the development of new

medicines and tools for research.1,2 Protein-based
binders, such as antibodies or peptides, are currently
obtained by directed evolution, a resource-intensive pro-
cess that can only consider a limited number of designs.3
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Structure-based computational design can complement
experimental methods by exploring a much larger num-
ber of candidates and by providing interpretable struc-
tural models of the designed proteins.4 Computational
methods have been used to design binders with impor-
tant properties including site-specific interaction5 and
paralog specificity.6,7 Despite these achievements, the
vast majority of computationally designed binders do not
show any measurable affinity for their target, motivating
the development of new methods.

The majority of methods for constructing de novo
protein backbones, such as parametric equations,8,9 frag-
ment assembly protocols,10–12 and deep-learning halluci-
nation methods,13 are geared towards designing
structures that are likely to fold, but these structures may
not be optimal for performing biological functions such
as binding. Pioneering design efforts have repurposed
natural and de novo protein structures as binders by
docking them to the target protein and scoring the poten-
tial binding modes to identify top candidates.14,15 This
approach has a consistently low success rate and must be
coupled with high-throughput experimental screening to
identify leads and optimize affinity.5,14,16 While it is diffi-
cult to diagnose all of the factors that contribute to the
low success rates, it is likely that designed binders do not
form sufficiently complementary interfaces. Indeed, ana-
lyses of designed binders have found that unsuccessful
designs generally make fewer contacts with the target
protein surface, compared to successful designs.17 In con-
trast, natural, high-affinity protein–protein and peptide-
protein interfaces are consistently well-packed,18,19 and
binders designed by expanding upon experimentally vali-
dated binding motifs exhibit higher success rates.20,21

These observations suggest that methods for de novo
binder design should prioritize structures with high inter-
face complementarity, that is, structures able to make
extensive, well-packed interactions with the target.

Analysis of the Protein Data Bank (PDB) has shown
that protein structure exhibits remarkable degeneracy at
the level of small structural motifs, such as rotamers and
simple backbone fragments.22,23 Many advances in pro-
tein design have harnessed these structural motifs, moti-
vating us to consider whether motifs could also be
applied to the problem of binder design. In particular, we
considered whether tertiary motifs (TERMs), which are
recurring, compact structural elements that can include
residues distant in the protein sequence,24 could be used
to generate peptide structures that make favorable inter-
actions with the target protein. Repeating instances of
TERMs, in evolutionarily unrelated proteins and different
contexts, effectively capture the relationship between
sequence and structure. This observation is the basis of
the sequence-design method dTERMen.25 dTERMen has

been applied to successfully design new high-affinity
BCL-2 protein-binding peptides and to redesign the sur-
face of mCherry, in both cases by generating sequences
compatible with a pre-defined backbone structure.25,26

More recently, TERMs have been used to construct new
protein structures, as demonstrated by Mackenzie et al.,
who converted large multi-segment TERMs into compact
mini-proteins.27 Previous work has applied TERMs to
peptide-protein docking,28,29 as well as peptide design,30

by using them to generate candidate peptide binding
poses.

Building on the success of TERM-based approaches,
in this article we consider a new strategy for designing
binders of a protein target: computational assembly of
peptide backbones from target-complementing protein
fragments. Our method uses TERMs that match part of
the protein surface to generate target-complementing
interface seeds. Sets of overlapping seeds are joined
together to create longer peptide backbones, which are
then scored to assess their compatibility with the pro-
tein target. The success of this approach requires that
the PDB contain appropriate structural elements that
can be identified and then positioned to construct
native-like peptide-protein interfaces. To evaluate this
premise, we first tested whether TERMs from single-
chain protein structures can describe interfaces from
high-resolution structures of known peptide-protein
complexes.31 We analyzed seeds generated around the
peptide-binding sites of 486 proteins and found that
TERM-based seeds can cover and reconstruct known
peptide backbone structures with sufficient accuracy to
support the design of native-like sequences. We present
a computational proof-of-concept in which we used
this approach to design novel peptide binders of the
human protein TRAF6. The top candidate binders were
predicted by Rosetta to form plausible interfaces with
the known binding site as well as new sites on the tar-
get protein. Our study provides insights into similari-
ties between structural motifs in single-chain
structures and peptide-protein interfaces and estab-
lishes the feasibility of using TERM-based approaches
for interface design that can now be carried forward to
experimental testing.

2 | RESULTS

We first present a brief summary of our method for pep-
tide design and then describe a series of computational
benchmarks using known peptide-protein structures. We
conclude with a demonstration of our approach in an
application to de novo design. All technical details are
described in the Supplementary Methods.
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2.1 | A computational method for de
novo peptide design

We devised a method to generate surface-complementing
peptide backbone structures from TERMs. The backbone
design process proceeds in three steps. First, surface-
complementing protein fragments, which we dub interface
seeds, are generated around the target protein using TERMs.
Second, peptide backbones are generated by combining

seeds that satisfy geometric overlap criteria. Finally, peptide
backbones are ranked by scoring the interface formed with
the target protein. Existing methods, such as dTERMen or
Rosetta, can then be used to select a peptide sequence that
stabilizes the peptide-protein interaction for the highest-
ranked backbones.25,32,33

Seeds are extracted from known structures that contain
structural motifs matching the target protein by the follow-
ing procedure (Figure 1a,b). The user-specified candidate

FIGURE 1 A computational method for de novo peptide design (a) Seeds are generated around a target protein by extracting related

tertiary fragments from the PDB. (b) A seed is extracted from a structural match. (I) a binding-site fragment is defined around a residue in

the target protein (PDB: 1LB6), (II) a match is identified in another protein in the database, (III) seed residues with the potential to contact

the central residue of the match are used to generate seeds, (IV) the seeds are placed in the target protein binding site. (c) A binding site is

defined by selecting residues on the target protein and seeds are generated around it. In this example, a small sample (�30) of all seeds is

shown and colored by secondary structure assigned by STRIDE. (d) Overview of the peptide design method

SWANSON ET AL. 3 of 18
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binding site is defined by selecting target protein surface res-
idues. A binding-site fragment is defined around each resi-
due by including flanking residues in the chain and, in
some cases, spatially proximal residues. A database of
known structures is searched for matches to the binding-site
fragment that satisfy a pre-determined root-mean-square-
deviation (RMSD) cutoff over backbone atoms. When a
match is identified, the structure containing the match is
searched for residues with the potential to contact the cen-
tral residue of the match. Each of these residues, along with
its flanking residues in the chain, is placed into the context
of the target binding site to create a seed. The exact pose of
each seed is determined by the structural alignment. We use
this protocol to rapidly generate hundreds of thousands of
seeds around a potential binding site (Figure 1c).

We combined seeds to generate diverse binding
modes, some with complementarity to an extensive
region of the protein surface (Figure 1d). Inspired by
SEWING,34 we developed a graph-based path traversal
algorithm for enumerating sets of seed residues that
could be joined together to form a larger backbone. Seed-
joining points were identified using pairwise geometric
overlap criteria, which we implemented using an efficient
hashing algorithm. With this protocol, we generated pep-
tide backbones that we then ranked by multiple criteria,
filtered, and used as structural templates for sequence
design. A detailed description of each step in the compu-
tational design protocol is provided in the methods.

2.2 | Peptides from solved complexes are
covered by seeds

To explore the feasibility of designing new binders from
seeds, we first asked whether seeds generated from
single-chain structures could be used to cover known
peptide binding structures. Specifically, we tested
whether native peptide binding modes from 486 struc-
tures of peptide-protein complexes (PixelDB-486) could
be covered by seeds generated from a database of single-
chain structures (see methods). For each peptide-protein
complex, we removed the peptide atoms and generated
seeds around each residue in the binding site and then
examined whether the seeds overlapped the native pep-
tide binders. This test provided a means to explore how
the ability to generate target-complementing seeds
depends on the protein binding-site structure and the
details of the search procedure.

The number of seeds that can be generated depends on
the binding-site fragment that is used for the structural sea-
rch. Large, complex binding-site fragments capture more of
the structural context of the binding site, but can be less
common in other protein structures. To balance this

tradeoff, we used a greedy algorithm to find, for each
binding-site residue, the most complex binding-site frag-
ment that returned at least N structural matches
(Figure S1). We generated fragments for a range of N (500–
100,000) matches. When N was 5,000 or larger, the median
fragment size was just 3 residues. Only when relatively few
matches were required did we observe larger fragments:
when N = 2,500, the median size was 5 residues, and when
N= 500, the median size was 9 residues (Figure S2). In gen-
eral, large fragments consisted primarily of α-helix/β-strand
secondary structure. With the goal of generating many
seeds with diverse structures, we set N = 100,000 for most
of the tests described here (unless otherwise indicated) and
used a simplified approach to define single-segment target-
protein fragments ranging in size from 3 to 7 residues (see
Supplementary Methods).

Binding-site fragments differed considerably in the
number of seed residues that could be generated from their
structural matches. The average number of seed residues
generated per match in the single-chain database was
5.2 ± 4.0 SD. As expected, the structural context around a
binding-site residue was an important factor in the number
of seed residues that could be placed into the context of the
target structure. Binding-site residues that were more buried
by other protein residues generated fewer seeds (Figure S3).
We tested whether a database of multi-chain structures
would provide more seeds than the single-chain database,
but this only modestly increased the average number of
seed residues per match to 5.8 ± 3.7 SD (Figure S4).

Most native peptide structures were recovered by
seeds. For each peptide, we searched for all k-residue
alignments between the peptide and seeds generated
around the binding site. If a seed was found to align to a
k-residue window of a peptide, then those residues were
considered covered (Figure 2a). Of the 7,480 peptide resi-
dues in the PixelDB-486 test set, we defined 4,998 with
the potential to contact the target protein as peptide inter-
face residues (see methods). We focused our analysis on
coverage of peptide interface residues, calculating cover-
age over a range of alignment lengths and backbone
atom RMSD cutoffs to understand broader trends
(Figure 2b). When considering single residues of the pep-
tides (k = 1), all peptide interface residues were covered
at an RMSD cutoff over all four backbone atoms of 1.0 Å,
and even at the more stringent cutoff of 0.75 Å. With
window size k = 3, seeds still covered nearly all residues
with an RMSD cutoff of 1.0 Å. At longer alignment
lengths, (k = 5 or 7) we found that coverage at an RMSD
cutoff of 1.0 Å dropped to 63% or 42%, respectively.
Visual inspection confirmed that the seeds recapitulated
the structural features of the peptide regions they over-
lapped. For window length 3 (RMSD cutoff of 1.0 Å), we
compared the structure of each peptide to the best
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overlapping 3-residue seed window and confirmed that
the alignment reflected high structural similarity, as
shown in Figure 2c.

The degree to which peptides were covered, particu-
larly at longer window lengths, depended on the second-
ary structure of the peptide (Figure 2d). While residues of

FIGURE 2 Peptides from known structures are covered by seeds (a) Schematic illustrating the coverage benchmark. The peptide and seeds

are shown in red and blue, respectively. Variable-length alignments are identified between seeds and the peptide and used to determine which

peptide residues are covered. (b) The percentage of peptide interface residues covered over a range of RMSD cutoffs is shown for different window

lengths. The dashed red line indicates an RMSD cutoff of 1.0 Å. (c) Examples of peptides and the seed windows covering them. For four peptides

from experimental structures, the lowest RMSD seed window covering each three-residue window of the peptide is shown, unless no seed was

found to cover that window. The native peptide is rendered in transparent grey and the seeds are colored. The protein binding partner is omitted

for clarity. Coverage was defined with an RMSD cutoff of 1.0 Å. (d) The percentage of peptide interface residues covered by seeds over a range of

window lengths. The peptide interface residues are grouped and colored by their secondary structure. Coverage was defined with an RMSD cutoff

of 1.0 Å. The bars indicate 95% confidence intervals computed by bootstrapping. (e) The percentage of peptide interface residues that are covered

based on the number of matches per binding site fragment, for TERM seeds (blue) and decoy seeds (orange). Coverage was defined over 3-residue

windows with an RMSD cutoff of 1.0 Å. The shaded regions indicate 95% confidence intervals computed by bootstrapping
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all secondary structures were at least 80% covered at a
window length of 3 residues, at longer window lengths,
coverage dropped substantially for all structure types
except α-helix and β-strand. For example, at k = 7,
α-helix and β-strand residues were still ~90% and ~70%
covered, respectively, whereas other secondary structures
were close to 20% covered. We assigned secondary struc-
ture to the seed residues and found that the composition
varied among binding sites (Figure S5). When consider-
ing seeds generated around all binding sites, we found
that seed residues had a higher proportion of α-helix and
β-strand structures and less coil relative to the peptides in
the dataset. The overall distribution of seed secondary
structures was closer to the distribution of the structural
database from which they were generated (Figure S6).

Our initial evaluation of coverage used 100,000
matches per binding-site fragment, but further analysis
showed that a much smaller number of matches could
generate seeds that cover the majority of peptide interface
residues (Figure 2e). We ranked binding-site fragment
matches by RMSD and sequentially added the seeds that
they generated to the set used for coverage. We found
that the top 2,500 matches were sufficient to generate
seeds that cover 58% of the residues with 3-residue win-
dows and an RMSD cutoff of 1.0 Å. As we considered
more matches, the degree of coverage increased, but at a
diminishing rate. The residue types that were best cov-
ered with relatively few matches were β-strand, β-bridge,
and α-helix residues (Figure S7), consistent with our find-
ing that these secondary structure types are easier to
cover with seeds. We tested whether seeds generated
from complex, multi-segment query fragments could
cover more native peptide residues, however, when con-
sidering equivalent numbers of matches, greater frag-
ment complexity did not provide any advantage
(Figure S8).

As a control for covering peptides trivially by exten-
sive seed sampling, we examined coverage using decoy
seeds generated by randomly placing segments of protein
backbone around the target protein binding site. The
decoy seeds matched the TERM-generated seeds in num-
ber of residues and distance-to-protein distribution, but
were not generated from database matches (see Supple-
mentary Methods). The decoy seeds covered peptide
structures much less efficiently than the TERM-generated
seeds (k = 3 residues and RMSD = 1.0 Å, Figure 2e). This
effect was particularly pronounced when considering
fewer matches per binding-site fragment. As the number
of matches per binding fragment was increased, decoy
seeds did not exhibit the initial jump in coverage
observed when using TERM-generated seeds, and
instead, the degree of coverage rose steadily with the
number of seeds.

2.3 | Seeds can be fused to reconstruct
peptides from solved complexes

When applying this approach to protein design, seeds
need to be combined to form longer chains. To test
whether the relatively short seed windows that cover a
native peptide can be joined to accurately recapitulate
the structure of known peptide binders, we developed a
reconstruction test (Figure 3a). We combined seeds using
Fuser, a protocol that takes a set of aligned fragments as
input and joins them to generate a new backbone (see
Supplementary Methods). We used seeds generated from
single-segment fragments with N = 100,000 matches per
binding site fragment. For each 3-residue window of
every peptide, we found the corresponding aligned seed
window with the lowest RMSD, and provided these seg-
ments to Fuser along with the structure of the target-
protein binding site. The vast majority of the peptide
interface residues were covered by some seed: only 9 pep-
tide residues out of 4,998 peptide interface residues were
not covered and therefore could not be reconstructed.

Peptides reconstructed by fusing seeds had high struc-
tural similarity to the corresponding native peptide.
Visual inspection of the reconstructed backbones showed
that they overlapped the native structure very closely,
with small differences in the precise orientation of the
residues (Figure 3a,e). The average RMSD difference
between the backbone atoms of native peptides and their
corresponding reconstructions was 0.56 Å (95% CI
[0.55,0.57]), indicating that the peptides were
reconstructed with sub-atomic accuracy. Outlier positions
with RMSD >1.0 Å mainly corresponded to residues with
coil or turn secondary structures (Figure S9). We also
used native contact recovery as a measure of binding
mode conservation. The reconstructed peptides had no
sequence, so we used a definition of potential contacts
that only requires backbone coordinates.24 We defined
potential contacts between the residues of each native
peptide and the interacting protein and then counted
how many of these potential contacts were conserved in
the corresponding reconstruction. We found that on aver-
age 83.7% (95% CI [82.9,84.4]) of native potential contacts
were conserved by the reconstructed backbones,
supporting that the binding poses of the reconstructed
backbones were very similar to their native counterparts.

To complement our structural analysis, we used
dTERMen to design a sequence for each reconstructed
backbone25 and compared this to 1) the dTERMen-
designed sequence for the corresponding native backbone
(the “designed-sequence recovery”) and 2) the native
sequence (the “native-sequence recovery”) (Figure 3a, see
methods).35 The designed-sequence recovery was 51.8%
(95% CI [50.7,53.0]). This is slightly higher than the value
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FIGURE 3 Native peptide structures can be reconstructed by fusing seeds (a) Overview of the native peptide reconstruction process (example native

PDB: 1BBR). The RMSD and percentage of conserved potential contacts between the native peptide backbone and the reconstruction are reported. Results

are reported for the selected example, as well as the average over all 486 native peptides and 4,998 peptide interface residues. (b) Reconstructed peptide

interface residues are binned by RMSD to the native and the average designed sequence recovery is reported per bin. (c) Peptide interface residues are

grouped by STRIDE secondary structure classification of the native residue and the average native sequence identity is reported for both the reconstructed

and native residues. (d) The percent native sequence recovery on the native and reconstructed backbones is reported for each amino acid. (e) Top: The

selected native peptide and the corresponding reconstruction are shown in red and blue, respectively (native PDB: 3QAM). The RMSD and conserved

potential contacts between the native and reconstructed backbone are reported. Bottom: sequence logos were constructed from sequences sampled from

the native and reconstructed backbone dTERMen energy tables (see methods). Highlighted positions indicate residues in the reconstructed backbone with

an RMSD to the native of 0.75 Å or greater. (b, c, d) Error bars indicate the 95% confidence interval estimated by bootstrapping

SWANSON ET AL. 7 of 18
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obtained when dTERMen was used to design sequences
on distinct models from high-quality NMR ensembles
(47%),25 indicating that the reconstructions are within
the range of native protein structural fluctuation. As
expected, reconstructed residues with very low RMSD to
their corresponding native residue had an even higher
recovery, while residues with RMSD of 1.0 Å or greater
had lower sequence recovery (Figure 3b).

The native-sequence recovery, computed only over
peptide interface residues, was 26.1% (95% CI [25.0,27.1]).
This was slightly lower than the same value when design-
ing on the native backbone, which was 30.1% (95% CI
[29.1,31.3]). The native-sequence recovery varied by the
secondary structure of the native residue. Residues of all
secondary structures, except β-strand, showed a small
drop between the native and reconstructed backbones
(Figure 3c). The native-sequence recovery of
reconstructed β-strand residues was almost the same as
the native backbone, consistent with those reconstructed
residues having low RMSD to the native residues
(Figure S9). We grouped the native peptide positions by
their residue identity and found that the rate of recovery
did not show large biases (Figure 3d). The two exceptions
were glycine and proline, which showed 18% and 10%
lower sequence recovery on the reconstructed backbones
vs. native backbones. At positions where glycine and pro-
line were recovered on the native but not the
reconstructed backbone, we observed a higher RMSD dif-
ference between reconstructed and native backbones
(Figure S10), consistent with differences in sequence
recovery tracking with structural deviations, as expected.

To look at broader trends, we used Markov Chain
Monte Carlo sampling to generate ensembles of
sequences predicted by dTERMen to be compatible with
each reconstructed backbone and represented them as
sequence logos (methods, Figure 3e). The sequence logos
reflected the high degree of sequence conservation
between the native and reconstructed backbones; the
consensus sequence of native and reconstructed interface
residues had a 55.7% (95% CI [54.7,57.0]) identity. Native
peptide positions varied in their information content,
with some positions favoring a single amino acid and
others allowing a variety of amino acids. The per-position
sequence conservation was correlated between the native
and reconstructed backbones (Pearson R = 0.66), indicat-
ing that many positions with strong amino-acid prefer-
ences in the native backbone context also had strong
preferences in the reconstructed backbone (Figure S11).
Of the 560 positions in the native peptides where a single
amino acid was highly favored (sequence conservation
≥4 bits), 497 or 88.7% of the corresponding positions in
the reconstructed backbones had the same amino acid.

2.4 | Designing peptide binders of
TRAF6

To explore how this approach could be applied to design
protein-binding peptides de novo, we conducted a case
study that involved generating seeds around an entire
protein domain surface and using our method to sample
de novo backbones on which we designed sequences.
Our target was tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6), a human scaffolding protein
with important roles in signal transduction.36 We focused
on the TRAF domain, which binds to the cytoplasmic
tails of cell-surface receptors. Inhibiting the protein inter-
actions of this domain has been associated with
decreased osteoclastogenesis,37 increased insulin
sensitivity,38 and reduced breast cancer metastasis.39

Structures of TRAF6 in complex with natural peptide
ligands have revealed a conserved binding mode.40

To obtain a structural model of TRAF6 alone, we
removed the peptide ligand from the TRAF6-CD40 struc-
ture (PDB ID: 1LB6) and targeted a single, monomeric
domain. We generated seeds around the entire surface of
the TRAF domain (Figure 4a). We defined single-
segment binding-site fragments such that each had 5,000
matches in the database; this resulted in a total of
575,000 seeds with a median length of 6 residues. As
before, we saw considerable variation in the number of
seeds generated by each protein fragment (824–11,464
seeds, Figure S12). Seeds were unevenly distributed
around the protein domain (Figure 4a) and we used
greedy clustering to identify the most populated binding
modes (see methods). The 100 largest clusters included
examples of β-strand seeds pairing with unpaired
β-strands on the protein surface, helices packing against
the β-sheets, and a few scattered clusters lacking regular
secondary structure (Figure 4a).

Many seeds overlapped, suggesting that they could be
combined to generate diverse longer peptide structures.
We used a stringent overlap definition for fusion, requir-
ing 4-residue overlaps that satisfied both distance and ori-
entation criteria (see Supplementary Methods). In total,
we found 19 million overlaps, which were distributed
very unevenly over seeds (Figure S13). 60% of seeds over-
lapped no other seed, while some seeds overlapped as
many as 10,000 other seeds. Seeds with many overlaps
were overwhelmingly β-strand-pairing seeds. We con-
structed a seed graph and sampled random paths until
we obtained 4,000 paths that satisfied our criteria (see
methods). Of 66,671 paths sampled, the vast majority
(~93%) were rejected because they were shorter than the
minimum length requirement of 15 residues (Table S1).
Only 0.3% of all sampled paths were identical to a

8 of 18 SWANSON ET AL.

 1469896x, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.4322, W

iley O
nline L

ibrary on [04/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



previously accepted path, indicating that further sam-
pling could yield additional unique paths.

We fused the seeds in each of the 4,000 sampled paths
that passed our filters to generate peptide backbones and
observed many distinct binding modes. Using a permis-
sive criterion for similarity (20 Å RMSD), we defined
70 clusters, which we visualized by selecting cluster rep-
resentatives (Figure 4b). The representative peptide back-
bones spanned the surface of TRAF6, demonstrating that

designs are generated at many distinct sites. Representa-
tives had predominantly helical or strand secondary
structure composition, but also included loops con-
necting these elements. We also clustered with a tighter
threshold of 5 Å and observed 1,373 clusters, indicating
that many of the designed peptide backbones represented
variations on a similar binding mode.

We compared our designed peptide backbones to
native peptide backbones using contact-based criteria

FIGURE 4 Designing peptide binders of TRAF6 (a) Seeds generated around the surface of TRAF. (I) 1,000 seeds randomly sampled for

visualization. (II) The 100 most common seed binding modes. Seeds are colored according to their secondary structure. (b) Sampling and

filtering peptide backbones to obtain a final set of designs. (I) Representative sampled backbones from 70 peptide backbone clusters. (II) The

remaining peptide backbones after filtering by the number of potential contacts per residue and TERM interface score. (III) Designs with

better normalized Rosetta energy of binding than the native binder CD40. (c) The distribution of potential contacts per peptide residue for

4,000 sampled peptide backbones. (d) The distribution of TERM interface scores for 986 backbone designs, after filtering based on potential

contacts. (e) The Rosetta energy of binding, normalized by the size of the interface, for the final set of 100 sampled backbones after filtering.

Designs are shown in blue and CD40 is shown in orange. (c–e) The orange line and dot correspond to the native TRAF6 binder; the red line

corresponds to the cutoff value that was used to filter designs at each step

SWANSON ET AL. 9 of 18
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and used these to identify the most promising design can-
didates. Examining the potential for residues in the pep-
tide to contact the protein, we found that native peptides
(PixelDB-30, see methods) had a median of 4.2 potential
contacts per residue, although this value was lower for
peptides with 15 or more residues, for which the median
was 3.4 potential contacts per residue with a range of
2.4–5.5 (Figure S14). The designed backbones had a
much lower median: 1.8 potential contacts per residue.
Nonetheless, the designs included many examples with
as many potential contacts per residue as native peptides,
and we filtered designs using a permissive cutoff of 2.5
potential contacts per residue, which yielded 986 back-
bones (Figures 4c and S15). Next, we applied a TERM
interface score that quantified the compatibility between
the designed backbone and the protein surface (see
methods). This score ranged from �0.29 to 0.92 for native
peptides, with negative scores being more favorable, with
a median of 0.08 (Figure S16). The native TRAF binder,
CD40, had a score of 0.16, which we used to define a
slightly more permissive cutoff of 0.2, resulting in
108 backbone designs (Figure 4d). To further reduce this
number prior to the next stage, we looked at the clusters
defined at an RMSD of 5.0 Å and selected up to the top
three best-scoring backbone designs from each cluster,
providing 100 backbone designs from the 70 clusters
(Figure 4b).

We used dTERMen to design sequences on the final
set of selected backbones and used Rosetta Relax to con-
struct structural models (see methods). We scored the
models of the designs, along with a set of native peptide-
protein complexes subjected to Rosetta Relax (PixelDB-
30), with the Rosetta Interface analyzer.41 This approxi-
mates the binding energy by computing the change in
Rosetta energy when separated binding partners are
brought together to form a complex, with no change
between the bound and unbound monomer structures.
We used the surface area-normalized Rosetta interface
score to rank the quality of designed interfaces and to
compare them to the native CD40 binder interface
(Figure 4e). The mean Rosetta interface score for the
100 designs was �3.4 ± 0.45 SD, which was slightly less
favorable than native peptides (�3.8 ± 0.64 SD,
Figure S17). We also computed the packstat score, a mea-
sure of interface packing quality,42 and found the average
values were identical for the designs and native peptides
(0.62, PixelDB-30, Figure S18).

We focused on seven designs that gave a more favor-
able Rosetta interface score for binding to TRAF6 than a
native peptide binder from CD40 (see Supplementary
Table S2). These designs interacted with three sites: A)
the native binding site (Figure 5a, green), B) an exposed
β-strand and sheet on the other side of the protein

(Figure 5a, purple), and C) a loop (Figure 5a, pink). Two
of the high-scoring designs engaged the native binding
site (site A). Both paired with the exposed β-strand and
included a second anti-parallel β-strand, but with differ-
ent turns connecting the second β-strand to the first. Four
designs interacted with site B; each design had the same
α-β topology, with the β-strand pairing with an exposed
TRAF6 β-strand. The designs differed in the length of the
β-strand pairing interaction, the packing of the helix, and
the turn connecting the two structural elements. One
design interacted with site C, a TRAF6 loop. The design
consisted of a short helix and a β-strand connected by
a loop.

The best scoring designed peptides had properties
similar to those of native peptide binders. The top seven
designs formed between 1.2 and 1.6 hydrogen bonds per
100 Å2 of buried interface surface area. This was slightly
less than CD40, which forms 1.7 per 100 Å2, but is in line
with the average value observed for native peptides
(1.1 ± 0.6 SD, PixelDB-30). The TERM interface scores
ranged from 0.16 to 0.19, with the exception of design C1,
which interacted with a considerably more favorable
score of 0.03. These scores were close to those for native
peptides (0.11 ± 0.23, PixelDB-30). Finally, the packstat
of the designs ranged from 0.62–0.68, which was similar
to the native peptides (0.63 ± 0.09, PixelDB-30). All of
the statistics computed for the top seven designs and
CD40 are provided in Table 1.

To assess whether the top-ranked designed
TRAF6-peptide complexes are predicted to lie in energy
minima, we used the FlexPepDock Refinement (FPD
Refine) protocol to explore the local energy landscape for
each structure.43 Six of the top designs had a single local
energy minimum within a backbone RMSD of ~0.5 Å
with respect to the relaxed structure (Figure 5b). Design
A2 also showed a single energy minimum, albeit at a
backbone RMSD of 1.7 Å from the relaxed structure. The
differences between the relaxed and FPD Refine
minimum-energy structural models of A2 were primarily
at the termini (Figure S19). Altogether, computational
analysis supports that the binding interfaces formed by
seven top-scoring designs are enthalpically favorable and
that the designed binding mode is predicted to be stable
according to the Rosetta energy function.

We also considered whether the peptide designs are
predicted to form off-target structures or aggregates when
unbound. Deep learning methods such as AlphaFold and
RoseTTAfold provide highly accurate structure predic-
tions for many native proteins, and although the methods
make use of evolutionary information, recent work has
demonstrated that they can accurately predict the struc-
tures of de-novo designed proteins that adopt stable folds.
Such methods also assign low confidence to residues that
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FIGURE 5 Characteristics of top-ranked peptide designs (a) Selected designs interact with three distinct sites on TRAF. The designs are

colored based on which TRAF site they engage. (b) The reweighted Rosetta Energy vs. backbone RMSD of peptide structural models

sampled with FlexPepDock Refine. (c) The CamSol solubility score calculated for CD40 and the designs. (d) The AMYL2PRED aggregation

score calculated for CD40 and the designs. The threshold used to classify peptides as aggregation-prone is shown by the dashed red line.

(e) The CamSol solubility score, AMYL2PRED aggregation score, and Rosetta interface energy are shown for A2 sequences designed with

varying numbers of charged residues. The yellow line highlights the number of charged residues at which aggregation potential is decreased

and the Rosetta interface score is close to the original A2 design

SWANSON ET AL. 11 of 18
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correspond to intrinsically disordered regions.44,45 We
used ColabFold to predict the structure of each of the
seven designed peptides in the absence of the target pro-
tein.46 Interestingly, all of the peptides were predicted to
form structures with at least moderate confidence (77–96
pLDDT, Figure S20), and AlphaFold models for four of
the designs (A2, B1, B2, and B4) were structurally similar
to the designed conformation, with full atom RMSDs
ranging from 2.0–3.2 Å (Figure S20). Peptide A1 was
predicted to consist primarily of β-strand secondary struc-
ture, as designed. Although the top-ranked model for
peptide B3 lacked the β-strand, the third-ranked model,
which had a similar mean pLDDT (84.6 vs. 85.3), dis-
played the same α-β topology as the designed structure
(Figure S21). The structure of design C1 was predicted to
be mostly α-helical, with high confidence (pLDDT 96%).
While the models had moderately high mean pLDDT
values, the pTM was consistently low (0.03–0.08), indicat-
ing that AF2 was more confident in predicting local fea-
tures of the peptides, such as the secondary structure,
rather than the overall structure. This is unsurprising,
given that it is unlikely that any of these short peptides
form stable structures when unbound. Nevertheless, the
AlphaFold predictions indicate that sequences designed
to interact with sites A and B are well suited for their
intended binding conformations.

To evaluate whether the high-scoring designed pep-
tides have a propensity to form non-specific aggregates,
we used CamSol, a sequence-based statistical method for
predicting solubility.47 The CamSol solubility score is
scaled so that random peptides from the human prote-
ome have a mean score of 0 and a standard deviation of
±1. Two of the designed peptides, B4 and C1, were
predicted to have higher solubilities than CD40
(Figure 5c). B2, and B3, were also predicted to be soluble,
but less so than CD40. Designs A1, A2, and B1 were
predicted to have the lowest solubility scores, but they

were still positive . We also considered the possibility that
the designed peptides could aggregate by forming
amyloid-fibril structures. We assessed the potential for
each of the seven designs to form amyloid aggregates
using AMYL2PRED, a consensus prediction method that
scores a sequence as aggregation-prone if half or more of
the underlying algorithms (five, in this case) consider the
sequence to be aggregation-prone.48 Three of the pep-
tides, B3, B4, and C1, were only predicted by one of
10 algorithms to be prone to amyloid aggregation
(Figure 5d). Peptide B4 was predicted by four of 10 algo-
rithms to be prone to forming aggregates, making it an
intermediate case. Three of the peptides, A1, A2, and B1,
were predicted by more than half of the algorithms to
aggregate. We considered the per-residue solubility/
aggregation scores for designs A1, A2, and B1, and found
that, as expected, hydrophobic residues within β-strands
were predicted to contribute to low predicted solubility
and higher potential for aggregation (Figure S22).

We explored whether peptides interacting with site A
could be designed to be less aggregation-prone. We rea-
soned that increasing the number of charged residues
would make the peptides more soluble and protect them
from forming off-target β-strand pairing interactions in
amyloid fibrils. Taking advantage of dTERMen, which
defines the energy landscape as a linear function of
sequence and pre-computed energy parameters, we used
integer linear programming to optimize the energy of the
A2 peptide subject to a constraint on the number of
charged residues (see methods). We repeated the energy
optimization multiple times, incrementing the number of
charged residues, and scored the designed sequences for
amyloid-like aggregation and interface quality
(Figure 5e). As expected, the solubility score increased
with the number of charged residues. Likewise, the
aggregation score dropped as the number of charged resi-
dues increased, but the trend was not strictly monotonic.

TABLE 1 Properties of designed peptide binders of TRAF6

Design
Length
(residues)

Potential contacts per
residue

Hydrogen bonds
per 100 Å2

TERM interface
score

Rosetta
interface score Packstat

A1 15 3.0 1.3 0.16 �4.1 0.64

A2 15 3.3 1.2 0.19 �4.3 0.68

B1 20 3.6 1.5 0.18 �4.1 0.68

B2 20 3.0 1.6 0.16 �4.6 0.62

B3 17 2.6 1.5 0.16 �4.1 0.62

B4 20 2.5 1.4 0.17 �4.2 0.62

C1 16 2.8 1.5 0.03 �4.4 0.64

CD40
(native)

9 4.3 1.7 0.16 �4.1 0.71
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The Rosetta interface energy became less negative as the
number of charged residues in the peptide increased,
reflecting a trade-off between predicted binding affinity
and aggregation propensity. Notably, the sequence
obtained when requiring 8 charged residues (four more
than the originally designed sequence) had a significantly
higher solubility score and lower aggregation score, with
only a relatively small drop in Rosetta interface score
(Figure 5e).

3 | DISCUSSION

Despite numerous advances in computational method-
ology, it remains difficult to design binders of a protein
target de novo. The majority of successful studies have
approached this task using repurposed protein
scaffolds,5,14,16 effectively prioritizing the stability of the
binding protein over the formation of an optimal inter-
face with the target. An alternative function-guided
approach is to design the binder to be complementary to
the desired protein target binding site. Our work shows
that TERMs from single-chain structures in the PDB can
be used as modular building blocks to construct target-
complementing interface structures. In a test of the fea-
sibility of this approach, we found that TERMs can be
applied to reconstruct the structures of known peptide
ligands that exhibit broad structural diversity. As a
proof-of-concept for application in design, we demon-
strated a computational method that uses TERMs to
generate new peptide backbones that complement both
known and new binding sites on a target protein with
interface quality equivalent to a native peptide binder.
Coupled with sequence-design algorithms, this
approach has potential for de novo peptide binder
design.

Other work has explored the question of whether
peptide-protein and protein–protein interfaces exhibit
structural similarities to protein cores. Vanhee et al.
defined pairwise interacting fragments at known peptide-
protein interfaces, similar to TERMs, and found that
matching fragments could be found in monomeric pro-
teins.49 We demonstrated that we can start with the tar-
get protein structure alone, rather than a pre-defined
interface, and identify TERMs that can be aligned to the
target to define seeds that cover native peptide binders.
Hadarovich et al. recently compared fragments from
protein–protein interfaces and protein cores and found
that they are largely different.50 The discrepancy between
this result and our finding, as well as that of Vanhee
et al., can be explained by how structural fragments were
defined in each case. The fragments used by Hadarovich
et al. encompass large portions of the interface, with each

fragment consisting of hundreds of residues. We use sig-
nificantly smaller structural motifs, which recur at high
frequency in the PDB, but are still large enough to cap-
ture important structural features of interfaces. Interest-
ingly, even three-residue binding-site fragments can
generate seeds that cover significantly more peptide resi-
dues than decoy seeds with randomly determined poses
(Figure 2e).

Other groups have applied TERMs to the structural
search problem in peptide-protein docking28,29 and
design.30 For example, the PatchMAN docking method
threads a known peptide sequence onto multiple TERM-
derived backbone fragments and then uses FlexPepDock
Refine to fine-tune the structures and evaluate their ener-
gies. The design method PepComposer samples short
TERM-like fragments that complement a protein surface
and performs alternating cycles of sequence design and
relaxation to design the peptide binder. The fragments
that are used are short and have only local complemen-
tarity to part of the target, limiting their applicability to
designing peptides ~7 residues or shorter. In this work,
we showed that a great diversity of longer backbones can
be generated by combinatorial assembly, facilitating the
discovery of diverse structures that complement the tar-
get over a greater area. This is analogous to combining
structural elements to build complete protein folds using
SEWING.34

Building larger interfaces from small, TERM-derived
seeds requires a protocol for assembling seeds into longer
chains with realistic stereochemistry. We showed that
seeds with geometric overlap can be combined by Fuser
to reconstruct native peptide backbones and to build
novel candidate peptide backbones. Importantly, we
found that the designed-sequence recovery of
reconstructed peptide backbones was high, indicating
that the reconstructions accurately recapitulated struc-
tural features that are relevant to the sequence design
algorithm dTERMen. Peptide residues with β-strand or
α-helix secondary structure were reconstructed with the
highest accuracy, but we were also able to reconstruct
other secondary structure types such as turn and coil
(Figure S9). Our seven highest-ranking de novo peptide
designs for binding to TRAF6 included turns or coil seg-
ments connecting β-strand and α-helix elements
(Figure 5a). Thus, although TERMs may be most readily
applied to designing interfaces featuring β-strand or
α-helix secondary structures, they are not limited to these
structures.

We explored the ability of our method to generate
novel, physically realistic peptide binders by designing
peptides to interact with the TRAF domain of the protein
TRAF6. The Rosetta interface score and packing statistics
of the final set of 100 designs were very similar to those
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for known peptide-protein complexes, suggesting that in
these respects the designed interfaces are of similar qual-
ity to naturally evolved ones. Further in silico characteri-
zation by FPD Refine of the seven top-ranked designs
indicated their binding modes are stable. While it is diffi-
cult to rule out undesired off-target conformations,
AlphaFold-predicted structures for the unbound peptide
monomers did not reveal other highly favored states and
were remarkably similar to the intended conformation
for more than half of the designs, indicating good
sequence-structure compatibility. While some of the
designed peptides were predicted to be prone to aggrega-
tion, requiring more charged residues during sequence
design reduced this liability. We observed considerable
structural diversity among the designs, with many
targeting new sites on TRAF6. We sampled a small frac-
tion of the total number of paths in the graph, and more
extensive sampling would likely provide new binding
modes or variations on those already observed. Many of
the designs exhibit N and C termini in close proximity,
making them candidates for cyclization. Another promis-
ing direction is to expand the peptides into mini-proteins
by designing a scaffold to present the designed inter-
face.51,52 This approach would represent a marriage of
existing methods, where the interface is designed to pri-
oritize target complementarity and then subsequently
supported by structural elements that promote folding
and stability.

In this work, we have demonstrated the utility of
TERMs for the design of novel binders. The evidence
presented here supports that TERMs have broad applica-
bility across all known peptide types, but are most imme-
diately applied to designing binders with α-helix and/or
β-strand structures. Our computational design method
can be used to generate novel putative peptide binding
structures with high complementarity to an intended
binding site, a task which is not easily achieved by exis-
ting methods.

4 | MATERIALS AND METHODS

A detailed description of the peptide design method is
provided in the Supporting Information.

4.1 | Large set of non-redundant peptide-
protein complex structures (PixelDB-486)

The dataset used for peptide coverage and reconstruction
was created from PixelDB, a database of 1,966 high-
quality peptide-protein structures.31 The complexes in
PixelDB are grouped by the structure of the peptide-

bound protein, resulting in 486 clusters. From each clus-
ter, we selected the complex with the peptide with the
lowest average B-factor (see Table S4). For each complex,
we defined the binding site as the set of protein residues
that make at least one potential contact of any type with
the peptide. Since the sequence of the protein is fixed, we
modified the contact definition protocol slightly, such
that only rotamers of the native amino acid were consid-
ered at positions within the protein chain. We defined
peptide interface residues as those residues that (1) make
at least one of the previously defined potential contacts
that define the target protein binding site and (2) have a
B-factor within three standard deviations of the mean
B-factor over all atoms in that complex. There were 7,480
residues total in the peptides, of which 4,998 were
defined as interface residues. We refer to this set as
PixelDB-486.

4.2 | Native peptide coverage benchmark

We defined a native peptide as covered if all peptide residues
are well-aligned with at least one seed. Consider native pep-
tide p and seed s. We define a k-residue alignment
starting at residue i in p and j in s if the backbone-atom
RMSD between segment pi,piþ1,…,piþk�1

� �
and segment

s,siþ1,…,siþk�1ð Þ is ≤Rc. If this condition is satisfied, all
residues in pi,piþ1,…,piþk�1

� �
are considered covered. No

superposition is applied in this process; seed atoms are
fixed in space. For each value of k, we compare all
k-residue windows of the peptide with all k-residue win-
dows of all seeds. In this work, we used k = 1, 3, 4, 5 or
7 residues and tested different values of Rc in the range
Rc= [0.0, 3.0] Å.

4.3 | Identifying contacting residues

Throughout this work, we used potential contacts, which
capture the potential for two residues to participate in an
interaction given knowledge of just the backbone atoms
of the protein (i.e., without considering the sequence).
The types of contacts we consider include sidechain-
sidechain, sidechain-backbone, and backbone-backbone
interactions. We used contact degree to identify potential
interactions mediated by sidechains.24 To identify poten-
tial sidechain-backbone interactions, we used interfer-
ence25. Both of these provide a value between [0, 1] for
each pair of residues: to obtain a binary criterion for con-
tacts, we applied a threshold of 0.01. Finally, we identi-
fied backbone-backbone interactions by finding all pairs
of positions with any inter-residue backbone atom dis-
tance ≤ 3.25 Å.
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4.4 | Assigning secondary structure
labels to residues

We used STRIDE to assign secondary structure labels to res-
idues in the structural database.53 Residues were labeled in
their original structural context and these labels were pre-
served when residues were copied and placed around the
target as seeds. In some cases, STRIDE was unable to clas-
sify a residue, for example, if the residue had an uncommon
amino-acid identity. If the flanking residues (+/� 1) had
the same STRIDE classification, then this was assumed to
be the correct label for the residue in question. In all other
cases, the residue was assigned as coil.

4.5 | Native peptide reconstruction and
design benchmark

Each peptide was reconstructed from seeds identified in
the coverage benchmark. We used seeds that covered
3-residue windows with an RMSD cutoff of 2.0 Å. This
provided a set of seed windows covering most peptide
windows. For each window, if there were multiple seeds
aligned, we selected the seed with the lowest RMSD to
the peptide. We constructed the Fuser topology as
described in the Supplementary Methods, with some
modifications. If a window of the peptide was not covered
by a seed, then there was no structural information for
that window when fusing, and the position was omitted
from the topology. We required that each window of the
peptide be covered by a different seed, meaning that all
reconstructed backbones were chimeric structures. After
selecting the set of seeds covering each three-residue win-
dow of the peptide, we added the structure of the target
protein and each seed window with its corresponding
anchor to the topology and performed fusion to generate
the reconstructed peptide backbone.

To generate an ensemble of low-energy sequences for
the native and reconstructed peptide backbones, we used a
modified version of the Markov chain Monte Carlo simu-
lated annealing (MCMC SA) protocol used in de novo
design (see Supplementary Methods) for sampling sequences
given a dTERMen energy table. To account for the fact that
the dTERMen energy scale varies between structures, we
adjusted the final temperature used when sampling
sequences by MCMC SA. To find the final temperature, we
first estimated the standard deviation of each energy table, s,
and then computed E¼Eminþ 1

2s. We repeated the sam-
pling process, scanning over a range of final temperature
values, and selected sequences sampled at a final temper-
ature with an average energy closest to E. The sequence
conservation at each position was calculated by sub-
tracting the entropy of residues observed at that position

from the maximum possible entropy. The sequence logos
resulting from this procedure displayed a range of amino-
acid conservation: some positions were highly variable,
while others still displayed a strong preference for certain
amino acids. We defined a consensus sequence for a
given sequence logo by selecting the highest probability
amino-acid residue at each position in the peptide.

4.6 | Designing peptide binders of
TRAF6

We used an experimentally determined structure of
TRAF6-CD40 complex (PDB ID: 1LB6,40 CD40 peptide
removed) to model the TRAF domain. We attempted to
generate seeds from single-segment fragments (m = 3)
around every residue in the protein. The number of seeds
generated per TRAF6 residue is reported in Figure S12
for surface residues (those with relative solvent accessible
surface area > 0.05), as calculated with FreeSASA.54 We
searched for pairwise overlaps between seeds, con-
structed a graph, and sampled 4,000 paths as described in
the Supplementary Methods. We rejected paths sampled
from the seed graph if they consisted of a seed with no
alignment to other seeds, had fewer than 15 residues,
exhibited a VDW clash with the protein after fusing
(Equation 1, Supplementary Methods), or were redundant
to a path that had already been accepted. Seeds in paths
were fused to yield peptide backbones and, for a subset of
the peptide backbones, sequences were designed using
dTERMen as described in the Supplementary Methods.

4.7 | Clustering seed binding modes

We used a simple greedy set cover algorithm to cluster
the seed binding modes. We defined U as the set of all
k-residue windows of all seeds and found alignment by
geometric criteria (Equations 2,3, Supplementary
Methods). We found the k-residue seed window sA, ið Þ
with alignment to the most other seed windows. sA, ið Þ and
the aligned windows were defined as the first cluster
(with sA, ið Þ as the representative), all were removed from
U, and process was repeated. We continued until 10% of
the seed windows in U were included in some cluster. We
used k= 4 residues when finding aligned seed windows.

4.8 | Clustering designed peptide
backbones

We performed an all-to-all comparison of designed pep-
tide backbones to find their structural similarity by
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RMSD. If two peptides varied in length, the RMSD was
computed between the shorter peptide and all equal
length windows of the longer peptide, to find the best
alignment. We performed hierarchical clustering with a
complete-linkage criterion to find clusters at varying
RMSD thresholds. Cluster representatives were defined
as the peptide with the lowest average RMSD to all other
peptides in the cluster.

4.9 | Peptide–protein complex structures
selected for Interface analysis (PixelDB-30)

We manually curated a set of 30 peptide-protein com-
plexes from PixelDB, which we refer to as PixelDB-30, to
use for comparison of native vs. designed backbones. We
started with the largest cluster, selecting the single
peptide-protein complex with the lowest relative B-factor,
and continued to the next largest cluster until we had
30 complexes (see Table S27). We omitted complexes in
which the peptide appeared to be an integral part of the
protein fold.

4.10 | Rosetta full-atom modeling and
Interface analyzer

We used Rosetta Relax to obtain structural models of the
designed peptides and native peptides in PixelDB-30. We
used default Relax settings, generated 10 structural
models of each peptide, and selected the lowest-energy
model.55 We then used the Rosetta interface analyzer to
compute various statistics for the Rosetta-relaxed
peptide-protein structural models, including the Rosetta
interface score (ΔGbind/ΔSASAx100).41 Because packstat
has an underlying random component, we used the
option –packstat_oversample = 100 to increase the accu-
racy of the statistic. In all applications of Rosetta in this
work, we used the standard weights, REF15, and Rosetta
3.10 Linux Release (2018.33.60351).

4.11 | FlexPepDock refine

We slightly modified the FlexPepDock (FPD) Refine pro-
tocol to increase the structural diversity of the peptide
models. We found empirically that increasing the num-
ber of cycles over which the repulsive/attractive energy
terms are ramped (i.e., the outer cycles) also increased
the structural space that was explored by FPD Refine. We
repeated the protocol three times, generating 200 struc-
tural models using either 10, 15, or 20 outer cycles. We
combined the 600 total structural models to generate the

RMSD versus energy plots. Otherwise, we used default
settings, with the exception of the following arguments:
–ex1, �ex2aro, �use_input_sc, �lowres_preoptimize.
When scoring the peptide models, we used the
reweighted Rosetta energy function, which places a
stronger emphasis on the interface energy terms.56

4.12 | Predicting the unbound structures
of peptide designs with AlphaFold

We used ColabFold to predict the structure of each of the
seven designed peptides in the absence of the target pro-
tein.46 As ColabFold generates five models for a given
sequence by varying the random seed, we selected the
model with the highest mean pLDDT, a metric of struc-
tural confidence, for further analysis.

4.13 | Solubility and aggregation
predictions

We used the CamSol webserver to calculate the intrinsic
solubility of each peptide sequence at pH 7 (https://www-
cohsoftware.ch.cam.ac.uk/index.php/camsolintrinsic). We
used the AMYL2PRED webserver to calculate the aggrega-
tion potential of each peptide (http://thalis.biol.uoa.gr/
AMYLPRED2/). We excluded the “AmyloidMutants”
method, as the server hosting it could no longer be reached.
The threshold used to classify peptides was taken from the
original published work.48

4.14 | Optimizing peptide sequence with
charge constraints

We used integer linear programming to optimize the
sequence of a peptide, given a constraint on the total
number of charged residues. We defined charged residues
as arginine, aspartate, glutamate and lysine, excluding
histidine as it is uncharged at neutral pH. We used the
GLPK LP Solver, v4.55.
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