BINF 731

Protein Structure Analysis

Iosif Vaisman

2020

Structure of the Rotor of the V-Type Na⁺-ATPase

A model for ion translocation by the V-ATPase of E. hirae

T.Murata et al., 2005

DNA repair factory model

The cartoon depicts a stationary replication-repair complex encountering damaged DNA rolled along as on a conveyer belt

M. Goodman, 2002

Kinesin is a dimeric motor protein that travels processively towards the microtubule plus end by taking 8 nm steps, which corresponds to the distance between adjacent alpha/beta tubulin binding sites.

R. Vale and R. Milligan, 2000

Rotation scheme of V1-motor

The V1 was fixed on the Ni-NTA coated glass surface with amino-terminal His10-tags of the A subunits. A duplex bead was attached to the D subunit through biotin–strptavidin linkage.

H. Imamura, 2005

Protein Engineering

Protein engineering methods in the "change" -- "information" space

R. J. Kazlauskas & U. T. Bornscheuer, 2009

Protein Engineering

Protein Engineering

Increase catalytic activity Change substrate binding site to increase specificity Change the thermal stability Increase proteins resistance to proteases Change codon composition

Protein Engineering

Protein Engineering

Bornscheuer et al. Nature 485, 185-194 (2012)

Residue and mutant score

Computational Mutagenesis

- Assumption: the structural differences between each mutant and the wild-type protein are usually minor and, therefore, their tessellations are similar
- Approach: a single tessellation of either the wild-type or mutant protein structure can be used to develop environmental descriptors for quantitative evaluation of changes in mutant properties

Dealunay simplices classification

Delaunay Tessellation of Protein Structure

Compositional propensities of Delaunay simplices

$$q_{ijkl} = \log \frac{f_{ijkl}}{p_{iikl}}$$

f- observed quadruplet frequency, $p_{ijkl} = Ca_i a_j a_k a_l, a$ - residue frequency

AAAA: C = 4! / 4! = 1AAAV: C = 4! / (3! x 1!) = 4AAVV: C = 4! / (2! x 2!) = 6AAVR: C = 4! / (2! x 1! x 1!) = 12AVRS: C = 4! / (1! x 1! x 1! x 1!) = 24

Counting Quadruplets

 assuming order independence among residues comprising Delaunay simplices, the maximum number of all possible combinations of quadruplets forming such simplices is 8855

Ç ঢ় ঢ় ঢ়	$\begin{pmatrix} 20\\ 4 \end{pmatrix}$	4845
ССҔЀ	$20 \cdot \binom{19}{2}$	3420
ССДД	$\begin{pmatrix} 20\\2 \end{pmatrix}$	190
СССD	20.19	380
сссс	20	20
		8855

Log-likelihood of amino acid quadruplets with different compositions

Reversibility Analysis

Computational mutagenesis of T4 lysozyme Reversibility of mutations

DNA binding residues in HMG1

Protein-protein and protein-DNA interfaces (HMG-D)

Universal Model Approach: 980 Experimental Mutants from 20 Proteins

Protein Engineering

Protein Engineering

Protein Engineering

