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DNA repair factory model

The cartoon depicts a stationary replication-repair complex
encountering damaged DNA rolled along as on a conveyer belt

M. Goodman, 2002

Rotation scheme of VV1-motor
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The V1 was fixed on the Ni-NTA coated glass surface with amino-terminal
His10-tags of the A subunits. A duplex bead was attached to the D subunit
through biotin-strptavidin linkage.

H. Imamura, 2005

Structure of the Rotor of the V-Type Na*-ATPase
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A model for ion translocation by the \-ATPase of E. hirae

T.Murata et al., 2005

Kinesin motor
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Kinesin is a dimeric motor protein that travels processively towards the microtubule
plus end by taking 8 nm steps, which corresponds to the distance between adjacent
alpha/beta tubulin binding sites.

R. Vale and R. Milligan, 2000
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Protein Engineering

Higher activity at process conditions
*  Increased process stability
*  Increased thermostability to run at higher

temperature
Process design criteria «  Stability to organic solvents
(one, several or all) «  Absence of substrate and/or product inhibition
Quantitative measure of *  Increased thermostability for storage and
property change needed shipping

*  Increased selectivity (enantio-, regio-, chemo-)
Accept new substrates
«  Catalyse new reactions

i

+  Destabilize unfolded enzyme
+  Stabilize folded enzyme
«  Increase substrate binding

Protein design goal *  Hinder unwanted substrate
Mechanistic and kinetic +  Reshape substrate-binding site
understanding of protein *  Add key mechanistic steps

al

. Create steric hindrance
Protein design strategy *  Add hydrogen bonds or ion pairs
(amino-acid changes) *  Decrease or increase flexibility (entropy) by ring
Structural model desired formation
together with computer *  Hydrophobic interactions
modeliing e

T

Computational Mutagenesis

Assumption: the structural differences between
each mutant and the wild-type protein
are usually minor and, therefore, their
tessellations are similar

Approach: a single tessellation of either the
wild-type or mutant protein structure
can be used to develop environmental
descriptors for quantitative evaluation
of changes in mutant properties

Bornscheuer et al. Nature 485, 185-194 (2012)

Protein Engineering

Increase catalytic activity

Change substrate binding site to increase specificity
Change the thermal stability

Increase proteins resistance to proteases

Change codon composition

Protein Engineering

v
Protein diversification *  Generate variants using random mutagenesis,
strategy id i d site saturation
changes) mutagenesis, shuffling of genes and so on
Molecular understanding *  Test under conditions close to process conditions
preferable, but not *  Identify variants or amino-acid substitutions that
essential improve fitness, optionally using bioinformatics

tools such as ProSAR

'

Improve transcription of the gene of interest
(overexpression, fidelity)
Nucleic-acid and genome Improve stabilty of the mRNA
optimization (silent +  Improve translation of the MANA
mutations, non-coding Adapt promoter strength
changes) «  Improve ribosome binding sequences

Improve mRNA stability sequences
Improve codon usage to fit the enzyme-
production organism
«  Improve codon usage to accelerate/attenuate
translation when needed for proper fokding
Delete genes that code for enzymes that
catalyse side reactions of substrate or product or
that degrade the enzyme of interest

Bornscheuer et al. Nature 485, 185-194 (2012)
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Dealunay simplices classification Delaunay Tessellation of Protein Structure
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Abstract each amino acid to a point
Atomic coordinates — Protein Data Bank (PDB)
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Delaunay tessellation: 3D “tiling” of space into non-overlapping,
irregular tetrahedral simplices. Each simplex objectively defines a
quadruplet of nearest-neighbor amino acids at its vertices.
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DNA binding residues in HMG1
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Universal Model Approach:
980 Experimental Mutants from 20 Proteins
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Computational mutagenesis of T4 lysozyme
Reversibility of mutations
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Protein-protein and protein-DNA interfaces (HMG-D)
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Protein Engineering

Leu 9 Cys
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Codon-222 | % activity wit | Codon-222 | % activity wit
wild type wild type
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