
BINF 731

Protein Structure Analysis

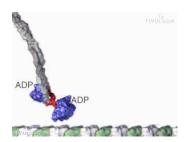
Iosif Vaisman

2015

Structure of the Rotor of the V-Type Na+-ATPase

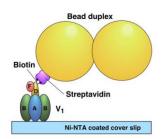
A model for ion translocation by the V-ATPase of E. hirae

T.M....... 1 2006

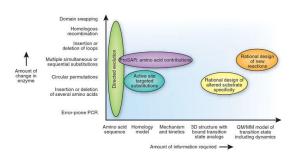

DNA repair factory model

The cartoon depicts a stationary replication-repair complex encountering damaged DNA rolled along as on a conveyer belt

M. Goodman, 2002

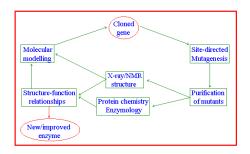

Kinesin motor

Kinesin is a dimeric motor protein that travels processively towards the microtubule plus end by taking 8 nm steps, which corresponds to the distance between adjacent alpha/beta tubulin binding sites.


R. Vale and R. Milligan, 2000

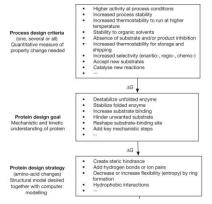
Rotation scheme of V1-motor

The V1 was fixed on the Ni-NTA coated glass surface with amino-terminal His10-tags of the A subunits. A duplex bead was attached to the D subunit through biotin–strptavidin linkage.

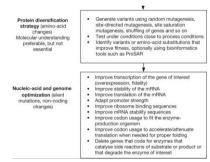

Protein Engineering

Protein engineering methods in the "change" – "information" space $% \left(1\right) =\left(1\right) \left(1\right) \left$

H. Imamura, 2005


Protein Engineering

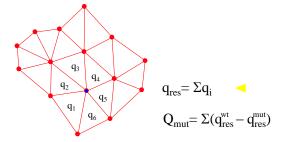
Protein Engineering


Increase catalytic activity
Change substrate binding site to increase specificity
Change the thermal stability
Increase proteins resistance to proteases
Change codon composition

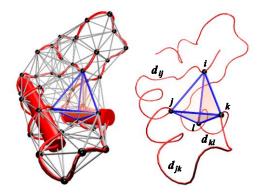
Protein Engineering

Bornscheuer et al. Nature 485, 185-194 (2012)

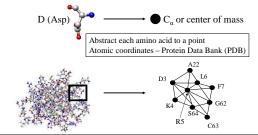
Protein Engineering


Bornscheuer et al. Nature 485, 185-194 (2012)

Computational Mutagenesis


Assumption: the structural differences between each mutant and the wild-type protein are usually minor and, therefore, their tessellations are similar

Approach: a single tessellation of either the wild-type or mutant protein structure can be used to develop environmental descriptors for quantitative evaluation of changes in mutant properties


Residue and mutant score

Dealunay simplices classification

Delaunay Tessellation of Protein Structure

Delaunay tessellation: 3D "tiling" of space into non-overlapping, irregular tetrahedral simplices. Each simplex objectively defines a quadruplet of nearest-neighbor amino acids at its vertices.

Compositional propensities of Delaunay simplices

$$q_{ijkl} = \log \frac{f_{ijkl}}{p_{ijkl}}$$

f- observed quadruplet frequency, $p_{ijkl} = Ca_i a_i a_k a_k$, a - residue frequency

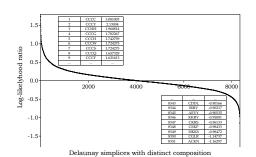
 $C = \frac{4!}{\prod_{i}^{n} (t_i!)}$

AAAA: C = 4! / 4! = 1

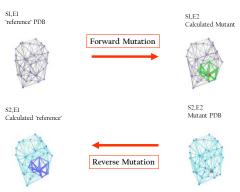
AAAV: $C = 4! / (3! \times 1!) = 4$

AAVV: $C = 4! / (2! \times 2!) = 6$

AAVR: $C = 4! / (2! \times 1! \times 1!) = 12$


AVRS: $C = 4! / (1! \times 1! \times 1! \times 1!) = 24$

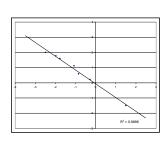
Counting Quadruplets


assuming order independence among residues comprising Delaunay simplices, the maximum number of all possible combinations of quadruplets forming such simplices is 8855

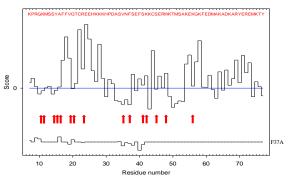
		8855
сссс	20	20
C C C D	20.19	380
$\overset{C}{\smile}\overset{C}{\smile}\overset{D}{\smile}\overset{D}{\smile}$	$\binom{20}{2}$	190
CCDE	$20 \cdot \binom{19}{2}$	3420
ÇPĘĘ	$\binom{20}{4}$	4845

Log-likelihood of amino acid quadruplets with different compositions

Reversibility Analysis

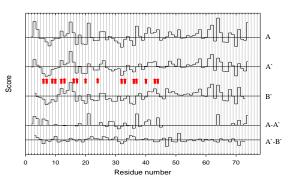


Structural Analysis S1,E1 'reference' PDB S1,E2 Calculated Mutant Reference Difference Mutant Difference S2,E1 Calculated 'reference' S2,E2 Mutant PDB


Computational mutagenesis of T4 lysozyme

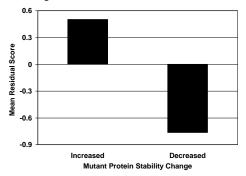
Reversibility of mutations

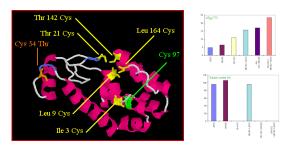
Protein	Mutation	Score change
1163	T26E	-2.49
1801	E26T	2.01
1163	A82S	1.49
1231	S82A	-1.49
1163	V87M	-0.28
1cu3	M87V	0.22
1163	A93C	-1.98
1381	C93A	1.78
1163	T152S	-1.08
1goj	S152T	1.12



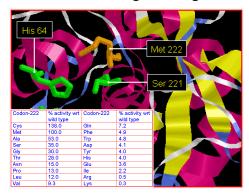
DNA binding residues in HMG1

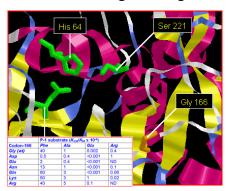
Coordinate file 1ckt: Ohndorf U-M et al. Nature 399:708

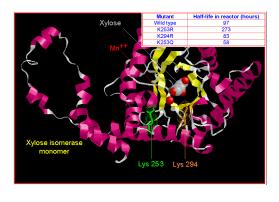

Protein-protein and protein-DNA interfaces (HMG-D)

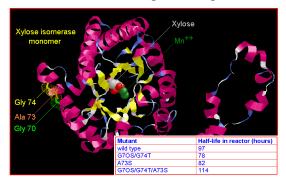

Coordinate file 1qrv: Murphy F V et al. EMBO Journal 18:6610

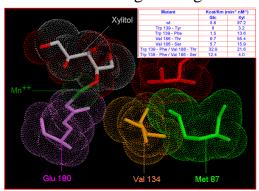
Universal Model Approach:

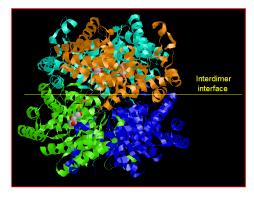

980 Experimental Mutants from 20 Proteins


Protein Engineering


Protein Engineering


Protein Engineering


Protein Engineering


Protein Engineering

Protein Engineering

Protein Engineering

