BINF 731

Protein Structure Analysis

Iosif Vaisman

2020

Protein Modeling Methods

- Ab initio methods: solution of a protein folding problem search in conformational space
- Energy-based methods: energy minimization molecular simulation
- **Knowledge-based methods:** homology modeling fold recogniion

Knowledge

Knowledge is a.pattern that exceeds certain threshold of interestingness.

Factors that contribute to interestingness: coverage confidence statistical significance simplicity unexpectedness actionability

Knowledge-based methods

Finding patterns in known structures

Deriving rules (usually in the form of PMF)

Applying the rules

Fold Recognition

Pattern searching sequence patterns structure patterns residue composition patterns

Threading

sequence-structure compatibility structure-sequence compatibility

SEQUENCE STRUCTURE STRUCTURE STRUCTURE STRUCTURE

Sequence-structure compatibility (fold recognition)

Threading

Structure-sequence compatibility (inverse folding)

Wu and Zhang, 2010

Segmental Threading

Wu and Zhang, 2010

One to one threading Phyre2: One to one threading PSI-Blast vs User structi Extract sequence and secondary structure information sequence database hmm-hmm matching PSI-Blast vs sequence database User sequence Final

J. Koehler Leman et al., 2014

Protein modeling techniques

http://www.sbg.bio.ic.ac.uk/phyre2

Threading

•Only the local environment is taken into account •Non-local contacts are assumed with generic peptide •No gaps are allowed in the alignment

Homology Modeling

- Identification of structurally conserved regions (using multiple alignment)
- Backbone construction (based on SCR)
- Loop construction (KB or conformational search)
- Side-chain restoration (KB, rotamer, or MM)
- Structure verification and evaluation
- Structure refinement (energy minimization)

Swiss-Model

- Method: Knowledge-based approach.Requirements:
- At least one known 3D-structure of a related protein. Good quality sequence alignements.
- Procedures:

Superposition of related 3D-structures. Generation of a multiple a alignement.

- Generation of a framework for the new sequence.
- Rebuild lacking loops.

Complete and correct backbone. Correct and rebuild side chains.

- Verify model structure quality and check packing.
- Refine structure by energy minimisation and molecular dynamics.