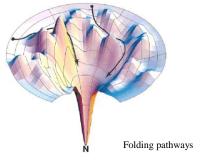
BINF 731

Protein Structure Analysis

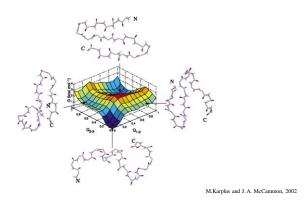
Iosif Vaisman

2015

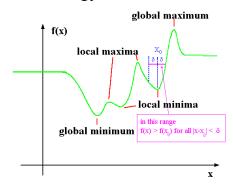

Protein Modeling Methods

- Ab initio methods:
 - solution of a protein folding problem search in conformational space
- Energy-based methods: energy minimization molecular simulation

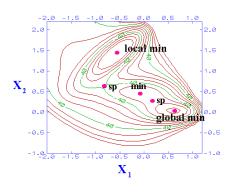
fold recogniion

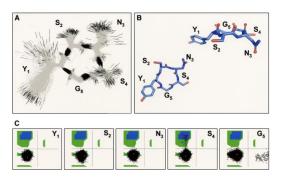

Knowledge-based methods:
 homology modeling

HP Lattice Models

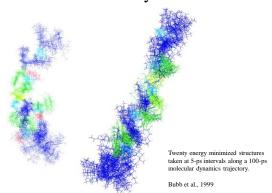


Chan & Dill, 1998


Free energy surface in protein simulation


Energy Minimazation

Energy Minimazation

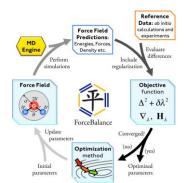


Molecular dynamics

YSNSG cyclopeptide as observed along the 20 ns molecular dynamics trajectory (Thevenard et al., 2006)

Molecular dynamics

Molecular Dynamics


- Model system
- Initial conditions
- Boundary conditions
- Integration algorithm
- Constraints
- Ensemble
- Results

Potential Energy Function and Force Field

$$egin{aligned} V(ec{R}) &= \sum_{ ext{bonds}} K_{ ext{d}} (d-d_0)^2 + \sum_{ ext{Urey-Bradley}} K_{ ext{UB}} (S-S_0)^2 + \ \sum_{ ext{angle}} K_{ heta} (heta- heta_0)^2 + \sum_{ ext{dihedrals}} K_{\chi} (1+\cos(n\chi-\delta)) + \ \sum_{ ext{impropers}} K_{\phi} (\phi-\phi_0)^2 + \ \sum_{ ext{nonbond}} \left\{ \in_{ij} \left[\left(rac{R_{ij}^{ ext{min}}}{r_{ij}}
ight)^{12} - \left(rac{R_{ij}^{ ext{min}}}{r_{ij}}
ight)^6 \right] + rac{q_i q_j}{ec{ec{e}_i r_{ij}}}
ight\} \end{aligned}$$

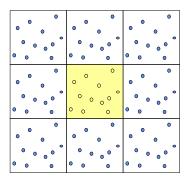
M.Karplus and J. A. McCammon, 2002

Force Field Development and Parametrization

L.-P. Wang et al., 2014

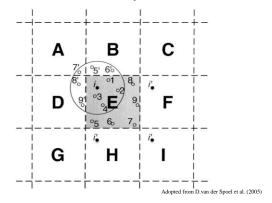
Molecular Dynamics

$$F_{i}=m_{i} a_{i}$$

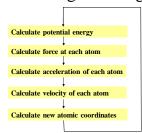

$$a_{i} = dv_{i} / dt$$

$$v_{i} = dr_{i} / dt$$

$$- dE / dr_{i} = F_{i}$$


$$- dE / dr_{i} = m_{i} d^{2}r_{i} / dt^{2}$$

Periodic Boundary Conditions



J. Jensen, animation

Periodic Boundary Conditions

MD cycle and integration algorithm

Characteristic Time Scales for Protein Motions

event	spatial extent (nm)	amplitude (nm)	time (s)	appropriate simulations
bond-length vibration	0.2-0.5	0.001-0.01	10-14-10-13	QM methods
elastic vibration of globular domain	1.0-2.0	0.005-0.05	10-12-10-11	conventional MD
rotation of solvent-exposed side chains	0.5-1.0	0.5-1.0	10-11-10-10	conventional MD
torsional libration of buried groups	0.5-1.0	0.05	10-11-10-9	conventional MD
hinge bending (relative motion of globular domains)	1.0-2.0	0.1-0.5	10-11-10-7	Langevin dynamics, enhanced sampling MD methods?
rotation of buried side chains	0.5	0.5	10-4-1	enhanced sampling MD methods?
allosteric transitions	0.5-4.0	0.1-0.5	10-5-1	enhanced sampling MD methods?
local denaturation	0.5-1.0	0.5-1.0	10 ⁻⁵ -10 ¹	enhanced sampling MD methods?
loop motions	1.0-5.0	1.0-5.0	10-9-10-5	Brownian dynamics?
rigid-body (helix) motions		1.0-5.0	10-9-10-6	enhanced sampling MD methods?
helix-coil transitions		>5.0	10 ⁻⁷ -10 ⁴	enhanced sampling MD methods?
protein association	≫1.0			Brownian dynamics

S. A. Adcock and J. A. McCammon, 2006

MD Ensemble

$Microcanonical\ ensemble\ (NVE):$

The thermodynamic state characterized by a fixed number of atoms, N, a fixed volume, V, and a fixed energy, E. This corresponds to an isolated system.

Canonical Ensemble (NVT):

This is a collection of all systems whose thermodynamic state is characterized by a fixed number of atoms, N, a fixed volume, V, and a fixed temperature, T.

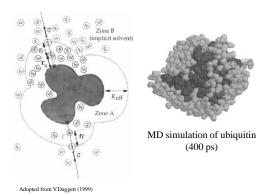
Isobaric-Isothermal Ensemble (NPT):

This ensemble is characterized by a fixed number of atoms, N, a fixed pressure, P, and a fixed temperature, T.

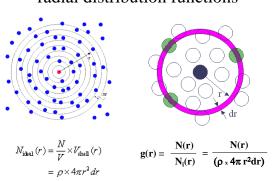
Grand canonical Ensemble (μVT):

The thermodynamic state for this ensemble is characterized by a fixed chemical potential, m, a fixed volume, V, and a fixed temperature, T.

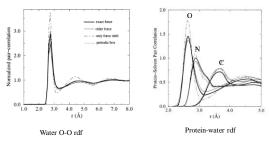
Temperature in molecular dynamics


$$U_{kin} = \sum_{i=1}^{n} \frac{1}{2} m_i v_i^2 = \frac{3}{2} NkT$$

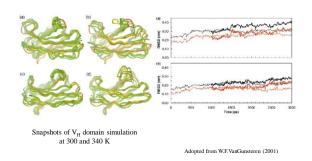
N – number of atoms


k – Boltzmann constant

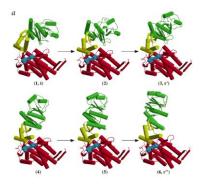
T-absolute temperature


MD of proteins: Solvent model

MD of proteins: radial distribution functions

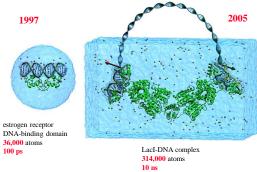


MD of proteins: radial distribution functions

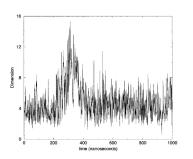


Adopted from V.Daggett (1999)

MD of proteins: mobile regions

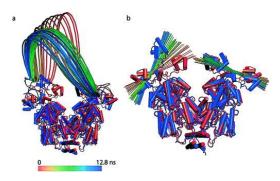


MD of proteins: Conformational change


A set of structures on the reaction path showing the behavior of a single subunit (apical domain, green; intermediate domain, yellow; equatorial domain, red; and ATP, blue). Structures 1–3 correspond to the first stages associated with ATP binding; 4–6 correspond to the second stage involving GroES binding. The early downward motion of the intermediate domain (compare [1,1] with [2] and [6,7"]) is the trigger for the overall transition.

MD of proteins: scale of simulation

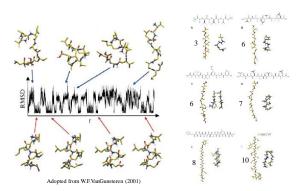
Adopted from J.C.Phillips et al. (2005) M.Karplus and J. A. McCammon, 2002


MD of proteins: long runs

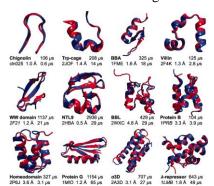
1 microsecond simulation of villin

Adopted from I.D.Kuntz and P.Kollman (2001)

MD of proteins: long runs

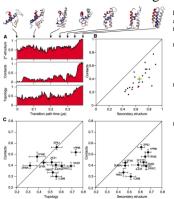

Adopted from J.C.Phillips et al. (2005)

MD of proteins: performance


	Simulation	n setup				Performance, ps/day			
66	System	FF	virtH	Water	Coulomb	LJ	ia32	x86-64	ppc
1999	Vil	G	no	TIP3P	cutoff 0.8	cutoff 0.8	9744	9574	14,385
	Vil	G	yes	TIP3P	cutoff 0.8	cutoff 0.8	16,900	16,895	23,681
	Vil	G	yes	TIP3P	RF 1.0	cutoff 1.0	10,308	9719	12,934

	stem DB ID)	Number of atoms	Approximate performance (µs/machine-day)
*D	HFR (5DFR)	23,558	17.4
aSl	FP (1SFP)	48,423	11.7
Fts	Z (1FSZ)	98,236	5.7
T7	Lig (1A01)	116,650	5.5
bII	AP (1BPM)	132,362	4.8

MD: Reversible folding of peptides



MD: Reversible folding of small proteins

K. Lindorff-Larsen et al., 2011

MD: Reversible folding of small proteins

Formation of topology, native contacts, and secondary structure during protein folding.

- (A) The three panels show the accumulation of native secondary structure, nonlocal native contacts, and native topology during a single folding event for α3D (B) The 24 transitions of α3D in a scatter plot are represented, with each of the black points corresponding to the time series integral for a single folding event event
 (C) Each point shows the average value
- Each point shows the average value over all folding and unfolding a vents observed for one protein. Each point is labeled with the PDB code of the relevant protein. Most proteins fall below the diagonal in these plots, showing that topology and secondary structure develop earlier than the full set of native contacts.