BINF 731

Protein Structure Analysis

Iosif Vaisman

2020

Protein Modeling Methods

• *Ab initio* **methods:** solution of a protein folding problem search in conformational space

- Energy-based methods: energy minimization molecular simulation
- Knowledge-based methods: homology modeling fold recogniion

Protein Modeling Methods

- Ab initio methods
- Energy-based methods
- Knowledge-based methods

Ab initio Methods

Simplified models simplified alphabet (HP) simplified representation (lattice) Build-up techniques Deterministic methods quantum mechanics diffusion equations DFT Stochastic searches Monte Carlo genetic algorithms

Genetic Algorithms Applications

Protein folding funnels

27 unit cubic lattice model

P. Leopold et al., 1992

Protein folding funnels

The denatured coil (A) collapses to a random dense structure (B), approximated by a set of maximally compact conformers (C). A reconfigurational distance is defined between compact states (D) and is used to sort pairs of cubes for calculation of the mean first passage time for interconversion (E). The kinetic structure of conformation space (F) shows a folding funnel leading to a unique, locally stable, kinetically accessible state.

P. Leopold et al., 1992

HP Lattice Models

Hierarchical ab initio prediction

Lattice models Knowledge-based scoring functions

Ab initio prediction using Rosetta

Simons et al., 1999

Samudrala et al., 1999

Ab initio prediction using Robetta

Quantum Chemistry Refinement of Protein Structures

Ryde et al., 2003

Density Functional Theory

Density Functional Theory

DFT optimization of NMR structure (1PNH)

Andreoni et al., 1999

Folding simulations of high resolution reduced lattice model using Monte Carlo dynamics

S.Kmiecik and A.Kolinski, 2007

Protein Modeling Methods

- *Ab initio* methods: solution of a protein folding problem search in conformational space
- Energy-based methods: energy minimization molecular simulation
- Knowledge-based methods: homology modeling fold recogniion

Potential Energy Functions

Boas & Harbury, 2007

Potential Energy Function

$$PEF(R) = \sum_{\text{bonds}} K_{b} \{b(R) - b_{eq}\}^{2} + \sum_{\text{angles}} K_{0} \{\theta(R) - \theta_{eq}\}^{2} + \sum_{\text{dihedrals}} \frac{K_{eq}}{2} \{1 + \cos[n\phi(R) - \gamma]\} + \sum_{\substack{\text{dihedrals}}} \sum_{\substack{ij} \in \mathbb{R}^{n}} \left[\frac{A_{ij}}{r(R)^{12}} - \frac{B_{ij}}{r(R)^{6}} + \frac{q_{i}q_{j}}{\varepsilon_{r}\varepsilon_{0}} \frac{r(R)}{r(R)}\right]$$
(1)

Forcefields: AMBER, CHARMM, CVF, ECEPP, GROMOS

Non-Bonded Interactions

Bond length

Bond length

Bond angle $E = \sum_{angles} k_{\theta} (\theta - \theta_{o})^{2}$ θ

Bond length and angle (parameters)

Torsional angle (parameters)

Non-bonded terms

Non-bonded terms (parameters)

Electrostatic interactions

electrostatic potential calculated using PME

particle-mesh Ewald (PME) summation

Adopted from J.C.Phillips et al. (2005)

Potential Energy Function

Boas & Harbury, 2007

Energy Minimazation

