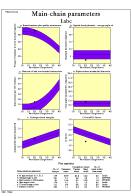
Structure verification and validation

Protein Structure Analysis

Iosif Vaisman

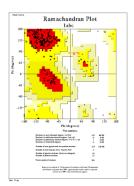
2015

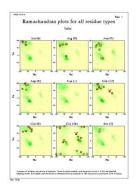
Anolea Verify3D Procheck WhatIf

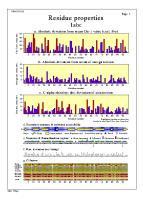

Bond lengths (Procheck)

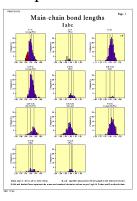
Bond	labeling		Value sigma
C-N	C-NH1 C-N	(except Pro) (Pro)	1.329 0.014
C-0	C-0		1.231 0.020
Calpha-C	CH1E-C CH2G*-C	(except Gly)	1.525 0.021 1.516 0.018
Calpha-Cbeta	CH1E-CH3E CH1E-CH1E CH1E-CH2E	(Ala) (Ile,Thr,Val) (the rest)	1.521 0.033 1.540 0.027 1.530 0.020
N-Calpha	NH1-CH1E NH1-CH2G* N-CH1E	(except Gly, Pro)	1.458 0.019 1.451 0.016 1.466 0.015

Bond angles (Procheck)

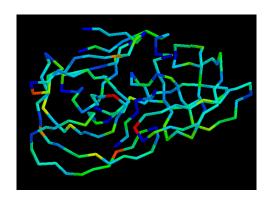

Angle	labeling		Value sigma
C-N-Calpha	C-NH1-CH1E	(except Gly,Pro)	121.7 1.8
	C-NH1-CH2G*	(Gly)	120.6 1.7
	C-N-CH1E	(Pro)	122.6 5.0
Calpha-C-N	CH1E-C-NH1	(except Gly,Pro)	116.2 2.0
	CH2G*-C-NH1	(Gly)	116.4 2.1
	CH1E-C-N	(Pro)	116.9 1.5
Calpha-C-O	 CH1E-C-O CH2G*-C-O	(except Gly) (Gly)	120.8 1.7 120.8 2.1


Procheck output

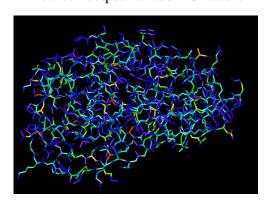

- a. Ramachandran plot quality percentage of the protein's residues that are in the core regions of the Ramachandran plot.
- b. Peptide bond planarity standard deviation of the protein structure's omega torsion angles
- c. Bad non-bonded interactions number of bad contacts per 100 residues.
- d. $C\alpha$ tetrahedral distortion standard deviation of the ζ torsion angle ($C\alpha$, N, C, and CB).
- e. Main-chain hydrogen bond energy standard deviation of the hydrogen bond energies for main-chain hydrogen bonds.
- **f. Overall G-factor** average of different G-factors for each residue in the structure.

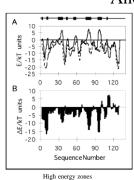

Procheck output

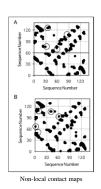
Procheck output



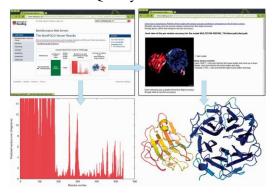
Procheck output



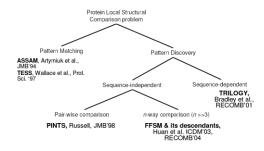

Procheck output - backbone G factors



Procheck output - all atom G factors



Anolea



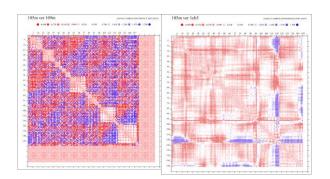
Model Quality Assessment

Melo et al., 1997

Local structure comparison algorithms

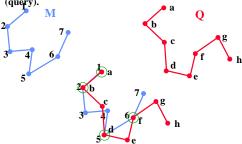
Huan, 200

Root mean square deviation


Coordinate based RMSD

$$RMSd(A, B) = \min_{T} \sqrt{\sum_{i=1}^{m} (A_i - TB_i)^2}$$

Distance based RMSD


$$RMSd_D(A, B) = \frac{1}{m} \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} (d_{ij}^A - d_{ij}^B)^2}$$

Difference Distance Matrix Plot (DDMP)

Geometric Hashing

Find common subsets, invariant under rotation and translation in two point sets M (model) and Q (quory)

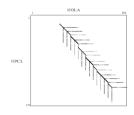
Finding the maximum coincidence set is an NP-hard problem

Geometric Hashing Reference frames

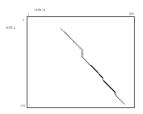
- Two points (basis pair) define a reference frame
- The coordinates of all points are computed in the reference frame (reference frame system)
- \bullet There will be pairs of points (from M and Q) with the same coordinates
- The number of such pairs depends on selection of reference frame and reference frame system resolution

Geometric Hashing Algorithm

Preprocessing

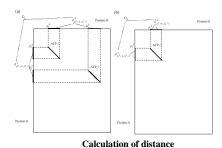

Hash table H is created. It has a bin for each cell in the frame systems. The coordinates of all points in each model frame system are calculated. If there is a point in the cell (p,q) in the frame system with basis (a_i,a_k) , then (a_i,a_k) is placed in the bin H(p,q)

Recognition


A pair of points in the query is chosen as basis, and the coordinates of the other points are calculated. These coordinates are used as indices for H, and for each cell being indexed, a vote is given for the (model) basis pairs in the cell. The number of votes for a model basis pair is the number of coinciding points to the query (using the specified query basis pair)

Combinatorial Extension (CE) Algorithm

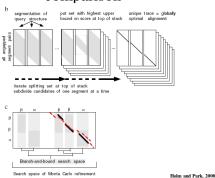
Structure alignment of phycocyanin (1CPC:L) to colicin A (1COL:A)



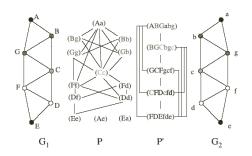
The solid line represents the optimal path built from AFPs. The dotted line represents the search area at every step of path extension.

The thick solid line represents alignment overlap both before and after optimization.

Combinatorial Extension (CE) Algorithm


Dij for two AFPs i and j from the path Dii for single AFP i from the path.

The fight free Color of the Col


jCE and jFATCAT tool at RCSB

Pairwise structure alignment and pre-calculated 3D structure comparisons for the entire PDB

DaliLight algorithm for protein structure comparison

Search for common substructures by clique detection

