Protein Structure Analysis

Iosif Vaisman

2004

Regular Expressions

Patterns described in a standard way are known as regular expressions

\[x \rightarrow \text{ANY} \]
\[{ } \rightarrow \text{OR} \{ \text{ILV} \} \rightarrow \text{I or L or V} \]
\[\{ \text{DE} \} \rightarrow \text{not D or E} \]
\[(\rightarrow \text{repetitions} \ x(2,3) \rightarrow \text{x-x or x-x-x} \]
\[\rightarrow \text{- separator} \]
\[< \rightarrow \text{N-terminal} \]
\[> \rightarrow \text{C-terminal} \]
\[\rightarrow \text{END} \]

PROSITE Database

Current version contains 1079 documentation entries that describe 1459 different patterns, rules and profiles/matrices

\[[\text{ST}]-x(2)-[\text{DE}] \rightarrow \text{Casein kinase II phosphorylation site} \]
\[[\text{AG}]-x(4)-G-[\text{K}] \rightarrow \text{ATP/GTP-binding site motif A (P-loop)} \]
\[Y-x-[\text{NQH}]-K-[\text{DE}]-[\text{IVA}]-F-[\text{LM}]-R-[\text{ED}] \rightarrow \text{Heat shock hsp90 proteins family signature} \]

http://www.expasy.ch/prosite

Blocks Database

Blocks are multiply aligned ungapped segments corresponding to the most highly conserved regions of proteins

N-6 Adenine-specific DNA methylases proteins
width=9 seqs=78

http://www.blocks.fhcrc.org/

Pfam Database

Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains

Zinc finger, C2H2 type

http://pfam.wustl.edu/
Other Motif Databases

PRINTS: a compendium of protein fingerprints. A fingerprint is a group of conserved motifs used to characterise a protein family
http://bioinf.man.ac.uk/ddbrowser/PRINTS/

DOMO: a protein domain database
http://www.infobiogen.fr/~gracy/domo/home.htm

ProDom: a protein domain database
http://protein.toulouse.inra.fr/prodom.html

InterPro Database

InterPro: integrated resource for the commonly used signature databases - Pfam, PRINTS, PROSITE, ProDom and SWISS-PROT + TrEMBL.

Current release of InterPro (3.2) contains 3939 entries, representing 1009 domains, 2850 families, 65 repeats and 15 post-translational modification sites.

http://www.ebi.ac.uk/interpro

Structural motifs of PROSITE patterns

Distribution of number of hits per pattern. Each column represents frequency of patterns having sequence matches in the 3D-sequence library. The bin width is 10. There were 1058 patterns having numbers of hits smaller than 10, including 712 patterns with no hits.

From Kasuya and Thornton (1999)

Root mean square deviation

Coordinate based RMSD

\[
\text{RMSD}_c(A, B) = \min_{T} \sqrt{\sum_{i=1}^{m} (A_i - TB_i)^2}
\]

Distance based RMSD

\[
\text{RMSD}_d(A, B) = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} (d_{ij}^A - d_{ij}^B)^2
\]

From Kasuya and Thornton (1999)
Difference Distance Matrix Plot (DDMP)

Geometric Hashing

Find common subsets, invariant under rotation and translation in two point sets M (model) and Q (query).

Finding the maximum coincidence set is an NP-hard problem

Geometric Hashing

Reference frames

• Two points (basis pair) define a reference frame
• The coordinates of all points are computed in the reference frame (reference frame system)
• There will be pairs of points (from M and Q) with the same coordinates
• The number of such pairs depends on selection of reference frame and reference frame system resolution

Geometric Hashing Algorithm

Preprocessing
Hash table H is created. It has a bin for each cell in the frame systems. The coordinates of all points in each model frame system are calculated. If there is a point in the cell (p,q) in the frame system with basis (a,b), then (a,b) is placed in the bin H(p,q)

Recognition
A pair of points in the query is chosen as basis, and the coordinates of the other points are calculated. These coordinates are used as indices for H, and for each cell being indexed, a vote is given for the (model) basis pairs in the cell. The number of votes for a model basis pair is the number of coinciding points to the query (using the specified query basis pair)

Combinatorial Extension (CE) Algorithm

Structure alignment of phycocyanin (1CPC:L) to colicin A (1COL:A).

The solid line represents the optimal path built from AFPs. The dotted line represents the search area at every step of path extension.

The thick solid line represents alignment overlap both before and after optimization.

Combinatorial Extension (CE) Algorithm

Calculation of distance

D_{ij} for two AFPs i and j from the path

D_{i} for single AFP i from the path