Protein Structure Analysis

Iosif Vaisman

2004

Protein Structure Hierarchy

- Primary - the sequence of amino acid residues
- Secondary - ordered regions of primary sequence (helices, beta-sheets, turns)
- Tertiary - the three-dimensional fold of a protein subunit
- Quaternary - the arrangement of subunits in oligomers.

Secondary Structure Conformations

<table>
<thead>
<tr>
<th>Conformation</th>
<th>ϕ</th>
<th>ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha helix</td>
<td>-57</td>
<td>-47</td>
</tr>
<tr>
<td>alpha-L</td>
<td>57</td>
<td>47</td>
</tr>
<tr>
<td>3-10 helix</td>
<td>-49</td>
<td>-26</td>
</tr>
<tr>
<td>π helix</td>
<td>-57</td>
<td>-80</td>
</tr>
<tr>
<td>type II helix</td>
<td>-79</td>
<td>150</td>
</tr>
<tr>
<td>β-sheet parallel</td>
<td>-119</td>
<td>113</td>
</tr>
<tr>
<td>β-sheet antiparallel</td>
<td>-139</td>
<td>135</td>
</tr>
</tbody>
</table>

Secondary Structure Prediction

Three-state model: helix, strand, coil

Given a protein sequence:
- NWVLSTAADMQGVTDGMASGLKD...

Predict a secondary structure sequence:
- LLEEEELLLLHHHHHHHHHHLHHHL...

Methods:
- statistical
- stereochemical

Accuracy: 50-85%

Statistical Methods

Residue conformational preferences:
- Glu, Ala, Leu, Met, Gln, Lys, Arg - helix
- Val, Ile, Tyr, Cys, Trp, Phe, Thr - strand
- Gly, Asn, Pro, Ser, Asp - turn

Chou-Fasman algorithm:
- Identification of helix and sheet "nuclei"
- Propagation until termination criteria met
Chou-Fasman Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>P(a)</th>
<th>P(b)</th>
<th>P(turn)</th>
<th>f(i)</th>
<th>f(i+1)</th>
<th>f(i+2)</th>
<th>f(i+3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>142</td>
<td>83</td>
<td>66</td>
<td>0.06</td>
<td>0.076</td>
<td>0.035</td>
<td>0.058</td>
</tr>
<tr>
<td>Arginine</td>
<td>98</td>
<td>92</td>
<td>95</td>
<td>0.070</td>
<td>0.104</td>
<td>0.099</td>
<td>0.085</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>101</td>
<td>64</td>
<td>146</td>
<td>0.147</td>
<td>0.110</td>
<td>0.179</td>
<td>0.081</td>
</tr>
<tr>
<td>Asparagine</td>
<td>67</td>
<td>89</td>
<td>156</td>
<td>0.161</td>
<td>0.081</td>
<td>0.191</td>
<td>0.091</td>
</tr>
<tr>
<td>Cysteine</td>
<td>57</td>
<td>75</td>
<td>152</td>
<td>0.105</td>
<td>0.087</td>
<td>0.130</td>
<td>0.075</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>151</td>
<td>37</td>
<td>74</td>
<td>0.056</td>
<td>0.060</td>
<td>0.077</td>
<td>0.064</td>
</tr>
<tr>
<td>Glutamine</td>
<td>111</td>
<td>110</td>
<td>98</td>
<td>0.074</td>
<td>0.098</td>
<td>0.027</td>
<td>0.090</td>
</tr>
<tr>
<td>Glycine</td>
<td>57</td>
<td>75</td>
<td>152</td>
<td>0.105</td>
<td>0.085</td>
<td>0.130</td>
<td>0.075</td>
</tr>
<tr>
<td>Histidine</td>
<td>100</td>
<td>87</td>
<td>95</td>
<td>0.140</td>
<td>0.047</td>
<td>0.093</td>
<td>0.054</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>108</td>
<td>160</td>
<td>47</td>
<td>0.043</td>
<td>0.034</td>
<td>0.013</td>
<td>0.056</td>
</tr>
<tr>
<td>Leucine</td>
<td>121</td>
<td>130</td>
<td>59</td>
<td>0.061</td>
<td>0.025</td>
<td>0.034</td>
<td>0.070</td>
</tr>
<tr>
<td>Lysine</td>
<td>114</td>
<td>74</td>
<td>101</td>
<td>0.155</td>
<td>0.115</td>
<td>0.028</td>
<td>0.035</td>
</tr>
<tr>
<td>Methionine</td>
<td>145</td>
<td>125</td>
<td>40</td>
<td>0.068</td>
<td>0.082</td>
<td>0.014</td>
<td>0.055</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>113</td>
<td>133</td>
<td>60</td>
<td>0.059</td>
<td>0.041</td>
<td>0.065</td>
<td>0.065</td>
</tr>
<tr>
<td>Proline</td>
<td>57</td>
<td>55</td>
<td>152</td>
<td>0.102</td>
<td>0.101</td>
<td>0.034</td>
<td>0.064</td>
</tr>
<tr>
<td>Serine</td>
<td>73</td>
<td>76</td>
<td>143</td>
<td>0.120</td>
<td>0.110</td>
<td>0.125</td>
<td>0.106</td>
</tr>
<tr>
<td>Threonine</td>
<td>83</td>
<td>119</td>
<td>94</td>
<td>0.086</td>
<td>0.108</td>
<td>0.065</td>
<td>0.079</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>108</td>
<td>137</td>
<td>94</td>
<td>0.077</td>
<td>0.031</td>
<td>0.064</td>
<td>0.167</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>69</td>
<td>147</td>
<td>114</td>
<td>0.082</td>
<td>0.045</td>
<td>0.114</td>
<td>0.125</td>
</tr>
<tr>
<td>Valine</td>
<td>106</td>
<td>170</td>
<td>50</td>
<td>0.062</td>
<td>0.048</td>
<td>0.028</td>
<td>0.053</td>
</tr>
</tbody>
</table>

Chou-Fasman Algorithm

Identification of helix and sheet "nuclei"

- Helix - 4 out of 6 residues with high helix propensity (P > 100)
- Sheet - 3 out of 5 residues with high sheet propensity (P > 100)

Propagation until termination criteria met

Turn prediction

1) \(p(t) > 0.000075 \)
2) \(P(\text{turn}) > 1.00 \)
3) \(P(a) < P(\text{turn}) < P(b) \)

where

\[
p(t) = f(j) f(j+1) f(j+2) f(j+3)
\]

Garnier - Osguthorpe - Robson (GOR) Algorithm

Likelihood of a secondary structure state depends on the neighboring residues:

\[
L(S_j) = \sum (S_j; R_{j+m})
\]

Window size - \([j-8; j+8]\) residues

Accuracy for a single sequence - 60%

Accuracy for an alignment - 65%

Evolutionary Methods

Taking into account related sequences helps in identification of "structurally important" residues.

Algorithm:

- find similar sequences
- construct multiple alignment
- use alignment profile for secondary structure prediction

Additional information used for prediction

- mutation statistics
- residue position in sequence
- sequence length

Neural Networks

Perceptron

\[
Y = \begin{cases}
1 & \text{if } \sum w_i i_i > \Theta \\
0 & \text{otherwise}
\end{cases}
\]

Learning process:

\[
\Delta w_i = (T_p - Y) p_i
\]

Neural Networks Methods

```
MKFGNFLTTYQP [PELSQTE] VMKRLVNLGKASEGC...
```
Stereochemical Methods

Patterns of hydrophobic and hydrophilic residues in secondary structure elements:

- segregation of hydrophobic and hydrophilic residues
- hydrophobic residues in the positions 1-2-5 and 1-4-5
- oppositely charged polar residues in the positions 1-5 and 1-4 (e.g. Glu (i), Lys (i+4))

Definitions of hydrophobic and hydrophilic residues (hydrophobicity scales) are ambiguous

<table>
<thead>
<tr>
<th></th>
<th>F-F</th>
<th>F-L</th>
<th>L-F</th>
<th>L-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l, l+2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>l, l+3</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>l, l+4</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>l, l+5</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l, l+2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>l, l+3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Hydropathic correlations in helices and sheets
Accuracy of prediction

\[Q_3 = \frac{PH + PE + PC}{N} \]
\[W = \log \frac{TP \times TN}{FP \times FN} \]
Range: 50-85%

Structural classes of proteins

- all α
- all β
- α/β

Protein Structure Classification

- SCOP - Structural Classification of Proteins
- FSSP - Fold classification based on Structure-Structure alignment of Proteins
- CATH - Class, architecture, topology and homologous superfamily

SCOP: Structural Classification of Proteins

Current release: 1.65
20619 PDB Entries (1 Aug 2003). 54745 Domains.

http://scop.mrc-lmb.cam.ac.uk/scop/

The SCOP database aims to provide a detailed and comprehensive description of the structural and evolutionary relationships between all proteins whose structure is known. Proteins are classified to reflect both structural and evolutionary relatedness. Many levels exist in the hierarchy; the principal levels are family, superfamily and fold.

Family: Clear evolutionary relationship
Superfamily: Probable common evolutionary origin
Fold: Major structural similarity

Proteins clustered together into families are clearly evolutionarily related. Generally, this means that pairwise residue identities between the proteins are 30% and greater. However, in some cases similar functions and structures provide definitive evidence of common descent in the absence of high sequence identity; for example, many globins form a family though some members have sequence identities of only 15%.
SCOP: Structural Classification of Proteins

Superfamily: Probable common evolutionary origin

Proteins that have low sequence identities, but whose structural and functional features suggest that a common evolutionary origin is probable are placed together in superfamilies. For example, actin, the ATPase domain of the heat shock protein, and hexokinase together form a superfamily.

SCOP: Structural Classification of Proteins

Fold: Major structural similarity

Proteins are defined as having a common fold if they have the same major secondary structures in the same arrangement and with the same topological connections. Different proteins with the same fold often have peripheral elements of secondary structure and turn regions that differ in size and conformation. In some cases, these differing peripheral regions may comprise half the structure. Proteins placed together in the same fold category may not have a common evolutionary origin: the structural similarities could arise just from the physics and chemistry of proteins favoring certain packing arrangements and chain topologies.

SCOP Statistics

<table>
<thead>
<tr>
<th>Class</th>
<th>Folds</th>
<th>Super families</th>
<th>Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>All alpha proteins</td>
<td>179</td>
<td>299</td>
<td>480</td>
</tr>
<tr>
<td>All beta proteins</td>
<td>126</td>
<td>248</td>
<td>462</td>
</tr>
<tr>
<td>Alpha and beta proteins (a+b)</td>
<td>121</td>
<td>199</td>
<td>542</td>
</tr>
<tr>
<td>Alpha and beta proteins (a+b)</td>
<td>234</td>
<td>349</td>
<td>567</td>
</tr>
<tr>
<td>Multi-domain proteins</td>
<td>38</td>
<td>38</td>
<td>53</td>
</tr>
<tr>
<td>Membrane and cell surface proteins</td>
<td>38</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>Small proteins</td>
<td>66</td>
<td>95</td>
<td>150</td>
</tr>
<tr>
<td>Total</td>
<td>800</td>
<td>1294</td>
<td>2327</td>
</tr>
</tbody>
</table>

FSSP Database

Current release: May 2003
3242 sequence families representing 30624 protein structures

The FSSP database is based on exhaustive all-against-all 3D structure comparison of protein structures currently in the Protein Data Bank (PDB). The classification and alignments are automatically maintained and continuously updated using the Dali search engine.

Dali Domain Dictionary

http://www2.ebi.ac.uk/dali/domain

Structural domains are delineated automatically using the criteria of recurrence and compactness. Each domain is assigned a Domain Classification number DC_l_m_n_p, where:

- l - fold space attractor region
- m - globular folding topology
- n - functional family
- p - sequence family
Fold types

Fold types are defined as clusters of structural neighbors in fold space with average pairwise Z-scores (by Dali) above 2. Structural neighbors of 1urnA (top left), 1mli (bottom right) have the same topology even though there are shifts in the relative orientation of secondary structure elements.

Functional families

The third level of the classification infers plausible evolutionary relationships from strong structural similarities which are accompanied by functional or sequence similarities. Functional families are branches of the fold dendrogram where all pairs have a high average neural network prediction for being homologous. The neural network weighs evidence coming from: overlapping sequence neighbors as detected by PSI-Blast, clusters of identically conserved functional residues, E.C. numbers, Swissprot keywords.

Sequence families

The fourth level of the classification is a representative subset of the Protein Data Bank extracted using a 25 % sequence identity threshold. All-against-all structure comparison was carried out within the set of representatives. Homologues are only shown aligned to their representative.

Class, C-level

Class is determined according to the secondary structure composition and packing within the structure. It can be assigned automatically (90% of the known structures) and manually.

Three major classes:
- mainly-alpha
- mainly-beta
- alpha-beta (alpha/beta and alpha+beta)

A fourth class is also identified which contains protein domains which have low secondary structure content.
CATH - Protein Structure Classification

Architecture, A-level

This describes the overall shape of the domain structure as determined by the orientations of the secondary structures but ignores the connectivity between the secondary structures.

It is currently assigned manually using a simple description of the secondary structure arrangement e.g. barrel or 3-layer sandwich. Reference is made to the literature for well-known architectures (e.g. the beta-propellor or alpha four helix bundle).

Procedures are being developed for automating this step.

CATH - Protein Structure Classification

Topology (Fold family), T-level

Structures are grouped into fold families at this level depending on both the overall shape and connectivity of the secondary structures. This is done using the structure comparison algorithm SSAP.

Some fold families are very highly populated and are currently subdivided using a higher cutoff on the SSAP score.

CATH - Protein Structure Classification

Homologous Superfamily, H-level

This level groups together protein domains which are thought to share a common ancestor and can therefore be described as homologous. Similarities are identified first by sequence comparisons and subsequently by structure comparison using SSAP.

Structures are clustered into the same homologous superfamily if they satisfy one of the following criteria:

- **Sequence identity >= 35%, 60% of larger structure equivalent to smaller**
- **SSAP score >= 80.0 and sequence identity >= 20% 60% of larger structure equivalent to smaller**
- **SSAP score >= 80.0, 60% of larger structure equivalent to smaller, and domains which have related functions**

CATH - Protein Structure Classification

Sequence families, S-level

Structures within each H-level are further clustered on sequence identity. Domains clustered in the same sequence families have sequence identities >35% (with at least 60% of the larger domain equivalent to the smaller), indicating highly similar structures and functions.