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Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem
involved in foldinghoweverhas been simplified through the evolutionof foldingenergy landscapes that are
funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal
frustration principle. Strong quantitative predictions that follow from energy landscape theory have been
widely confirmed both through laboratory folding experiments and from detailed simulations. Energy
landscape ideas also have allowed successful protein structure prediction algorithms to be developed.

The selection constraint of having funneled folding landscapes has left its imprint on the sequences of
existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the
statistical characteristics of the folding landscape. These turn out to be consistent with what has been
obtained from laboratory physicochemical folding experiments signaling a beautiful confluence of ge-
nomics and chemical physics.

© 2014 Elsevier B.V. and Soci�et�e française de biochimie et biologie Mol�eculaire (SFBBM). All rights
reserved.
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1. Introduction

Paradoxically, protein folding has turned out to be easy. How?
Why?What's paradoxical? This review is aimed at answering these
questions, beginning with the last one [1]. Ever since Anfinsen's
groundbreaking experiments, understanding the spontaneous na-
ture of protein folding has been widely viewed as being a difficult
problem [2]. Delbrück is quoted by Gunther Stent [3] as saying
about protein folding “…the reduction in dimensionality from
three dimensional continuous to one dimensional discrete in the
de biochimie et biologie Mol�ecula
genesis of proteins is a new law of physics and one nobody could
have pulled out of quantum mechanics without first seeing it in
operation”. According to Stent, after saying this, Delbrück also
immediately quoted Bohr as telling about amanwho, upon seeing a
magician saw a woman in half, shouts out “It's all a swindle”. In a
similar spirit, I think it is fair to say that a majority of people even in
the last decade have looked with skepticism at claims that protein
folding was becoming understood [4].

Yet today, a variety of computer algorithms can indeed translate,
for the simpler systems, one dimensional sequence data into three
dimensional structure albeit at moderate resolution [5e7]. The
easiest to use algorithms rely ultimately on recoding existing
ire (SFBBM). All rights reserved.



Fig. 1. The funnel diagram. A schematic diagram of the energy landscape of a protein,
here illustrated with the PDZ domain whose native structure is shown at the bottom of
the funnel. The energy landscape exists in a very high dimensional space. The diagram
can only give a sense of this through its representation of two dimensions. The radial
coordinate measures the configurational entropy which decreases as the protein takes
on a more fully folded structure. The energy of individual configurations is represented
by the vertical axis. The values of the energy indicated on this axis are strongly
correlated with the fraction of native structures that has formed which is often
measured by the fraction of correct native-like contacts called Q. Q also typically in-
creases as the structures descend in the funnel. The energy and entropy oppose each
other so that at high temperature the protein is found in an ensemble of states near the
top of the funnel. Structures of denatured configurations thus are shown near the top
of the funnel. At low temperature, in contrast, an ensemble clustered around the native
structures becomes thermally occupied at the bottom of the funnel. The imperfect
matching of entropy and energy leads typically to a free energy barrier that separates
these two ensembles of states. Surmounting this barrier limits the folding rate. The
small mini-funnels on the sides of the funnel represent trap states. These traps typi-
cally possess some native structure but also they contain energetically favorable
alternative non-native contacts. Because the non-native contacts are not consistent
with each other, rarely are such mini-funnels competitive in an energetic sense with
the native basin. The stability of non-native interactions in any one of these traps is an
unusual rare accident while the interactions that are formed in native structure have
evolved in order for the individual natively folded structure to be especially stable.
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biological information into the form of an energy landscape for
computer simulations [5] and thus ultimately these algorithms rely
on having “seen it in operation” rather than deriving their results
directly from quantum mechanics. Delbrück's demand to pull
folding out of quantum mechanics, has, however, almost been
satisfied by using very powerful computers to simulate fully
atomistic models, the forces in which are only lightly parametrized
by protein structural data [7]. So we see folding proteins really is
easier than many people (including me!) thought. Nevertheless,
there is something at least a bit strange, perhaps even paradoxical
about this outcome, because theory has shown that protein folding
indeed could have been much harder, almost as hard as Levinthal
envisioned in his famous paradox inwhich it was pointed out that it
would take a cosmological time to fold a protein by searching
through all its possible structures [8].

Anfinsen's refolding experiment itself suggests that folding can
be thought of as the search for aminimum free energy arrangement
in space of a heteropolymeric chain of residues. The solvent aver-
aged interactions between amino acids depend on the residue
types; some residues will interact more strongly with particular
other ones than they interact with others. Thus folding is a kind of
matching problem: we must find which amino acid will finally
make contact with which other one in the native structure in order
to reach the lowest energy three dimensional structure. The
matching problem is in general NP (non-polynomial) complete [9].
To say a problem is NP complete is a mathematician's way of saying
there exist instances of such a problem (i.e. there should be certain
sequences) for which no known algorithm could find the solution
in a time scaling as a polynomial in the size of the problem. The
exhaustive search through minima envisioned in Levinthal's
paradox scales exponentially with protein length but even an al-
gorithm that takes a time exponentially scaling with a lower power
of length (as happens in some theories based on capillarity ideas
[10,11]), also would satisfy strict NP completeness so Levinthal's
estimate is certainly an exaggeration. Of course the key words in
the mathematical statement are “there exist instances”. Not all
instances of matching problems are expected to be equally hard.
Some instances of matching problems can in fact be quite easy. A
familiar biological example where search difficulty varies with the
task is provided by thematching of base pairs in nucleic acid double
helices as they assemble. The minimum energy matching is easily
found if the two strands are exactly complementary, as in most
nuclear DNA giving rise to the standard rules of replication. Finding
a match is also easy if only a small fraction of the bases are not
conjugate to their partners just as happens when we try to fish out
functionally related sequences using primers or use modified
primers for site directed mutagenesis via PCR. Comparing two
divergent sequences for homology is easy, the difficulty scaling only
with a polynomial in the chain length [12]. Most functional RNA
sequences have easymatches also, if no pseudo-knots are formed in
forming their secondary structures, but in principle the problem of
pairing the bases in an arbitrary nucleic acid strand with itself can
be quite difficult. This difficulty is also reflected in the cell where
some messenger RNA's turn out actually to be metastable [13] e
they first find an active conformation transiently but later rear-
range to an inactive but more stable form after sufficient protein
has been translated by themRNA so that themessenger is no longer
needed. In contrast, it appears from the Anfinsen experiment, along
with its thousands of descendants, that monomeric protein folding
is usually thermodynamically controlled, with functional meta-
stability being the exception [14] rather than the rule.

Are the easy instances of matching an amino acid sequence to
itself in order to fold into a three-dimensional structure exceptional
or are the tough cases the weird examples? This, of course, may
depend on the details of the interactions, but the simplest
arguments suggest that for a sufficiently long chain, among those
chosen at random, the easy examples should be the rarities.
Bryngelson and Wolynes suggested that the energy landscape of a
typical random amino acid sequence would be rough, riddled with
deep metastable minima of widely differing structures and
resemble the rugged landscape of a glass [15,16]. They analyzed this
situationwith the random energymodel [17]. The ideawas that in a
sufficiently long random sequence conflicts between different
choices of the favorable interactions would inevitably arise, a
phenomenon known as frustration [18]. The low energy states of
such a system are all highly compromised, satisfying some in-
teractions very stably, perhaps, but with other interactions
remaining unsatisfied and in conflict giving rise to many near
degenerate configurations. The mathematical validity of this idea
that the energy landscape of a completely random heteropolymer
would be rugged, has been buttressed both by more sophisticated
statistical mechanics using the replica method [19,20] and by
numerous computer simulation studies on highly simplified
models that capture the essential features of self-matching chains
[21e23].

So proteins seem to be the rare, easy instances of energy mini-
mization. What is it that makes folding protein-like sequences
easy? What is it that allows proteins to pair residues properly
through Brownian motion in order to find their lowest free energy
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states without the molecule getting trapped in metastable states of
wildly different structure as sometimes happens with RNA? The
answer is that natural proteins correspond with those special se-
quences that have been selected to have more consistently stabi-
lizing interactions throughout the natively structured molecule
than does a typical sequence which inevitably makes many com-
promises in its low energy structures. Proteins are not so “frus-
trated” as a usual heteropolymer sequence is e we say they are
“minimally frustrated” [15].

Bryngelson and Wolynes showed that, in contrast to random
sequences, such unusual, easy-to-fold minimally frustrated se-
quences have two potential structural thermodynamic phase
transitions. One of the transitions is the folding transition to a well-
organized highly stable structure with perhaps some defects.
Nevertheless if this correct folding would be prevented from
happening, a protein still would settle down to an ensemble of
structurally disparate low energy states when cooled below a
characteristic temperature Tg.Wewould find thesemisfolded states
in the low energy trapped ensemble to have similar energies to
each other, but to be structurally quite distinct from each other.
Finding one given energy minimum by a simulated annealing
protocol would yield a structural prediction for that sequence, but
that prediction would be quite unreliable until all the low energy
arrangements of the chain were found and examined individually.
Which structure out of this wide ranging ensemble prevails for a
particular molecule would depend on the history of the protein
synthesis and annealing, i.e. the protein folding outcome would be
kinetically controlled not thermodynamically controlled. This sit-
uation is much like what happens for a liquid which becomes a
glass when it is cooled if the liquid fails to crystalize [24]. The
detailed atomic structure of the resulting glass varies from sample
to sample but the macroscopically averaged properties of the glass,
like its energy, are nearly the same from sample to sample.

For easy folding sequences, i.e. minimally frustrated sequences,
the folding transition at TF resembles a crystallization transition
while the history dependent transition at Tg for poor folders is like
the glass transition for a liquid. Protein folding in this picture re-
sembles nucleation of a crystal from a small fluid drop. The kinetics
of nucleation is impeded by the multiplicity of trapped states that
become prominent near the glass transition temperature of the
fluid, Tg. The driving force to the native structure is impeded in its
effectiveness by the energetic ruggedness reflected in Tg [16,20,21].

Nucleation, folding and self assembly differ from the more
familiar multi-step chemical transformations of organic synthesis
or intermediary metabolism in that collective self assembly has a
multiplicity of possible mechanisms–no specific sequence of steps
is absolutely needed in order to achieve successful folding. Never-
theless a dominant small set of pathways can emerge as the most
important ways a particular sequence assembles under some
thermodynamic conditions [25,26]. The dominant routes, as well as
the activation barrier determining the folding rate, depend on the
way in which the loss of entropy upon ordering the chain is
compensated by the additional stabilization energy that properly
assembled parts of the chain achieve when the energy is compared
with the weaker stabilization that occurs when the chain tran-
siently samples improperly folded states [27]. The landscapes for
protein folding or for crystallization can be described as rugged
funnels [28]. See Fig. 1.

The rate of attempting to escape from misfolded traps decreases
as the stability of these traps increases and thus the kinetics of search
depends on the glass transition temperature Tg. Easy-to-fold se-
quences can foldwithout getting trappedbecause they have ahigh TF
to Tg ratio. This ratio, in turn, depends on the comparison of the en-
ergy of the fully folded state EF and the typical stabilization energy of
a trap Eg which monotonically increases as Tg increases [29].
The minimal frustration or “funnel” [21,28] scenario as the
explanation for the ease of protein folding has been confirmed, in
concept, by numerous computer studies that simulate stylized
stripped down models of self-associating polymers. The most
comprehensive such studies simulate heteropolymers on lattices
[30,31] where the exact enumeration of possibilities ensures that a
complete survey of the landscape can be made so that even for bad
folders the ground state can be found and certified as being correct.
Other models that realistically describe the protein backbone ge-
ometry so that they give structures more easily recognized as being
real proteins concur in supporting the idea that it is the magnitude
of the TF/Tg ratio that determines the ease of folding to a first
approximation [32e34]. A discussion of these studies can be found
in many early reviews [21,22,35]. Yet the funnel story has seemed
too simple to many people [36e38]. They ask “Could that really be
all there is to it?” Some of the skepticism is perhaps justified
because the success of the funnel landscape picture raises other
questions: How does the energy landscape theory apply to real
proteins (in a quantitative sense)? Exactly how easy is it to fold the
proteins of Nature? These questions form the impetus for much of
the last two decades' work on protein folding theory.

In this paper I plan to first touch on the experimental evidence
that proteins are indeedminimally frustrated polymers, i.e. that the
energy landscape of naturally occurring proteins is actually a
rugged funnel as hypothesized. The evidence for the funnel idea is
actually quite overwhelming in volume. It is much too extensive to
do justice to it here. I therefore refer the reader to an earlier
comprehensive review on the experimental survey of protein
folding landscapes [21] using the tools of protein engineering, fast
kinetics, theory and simulation. That review documents the use-
fulness of the rugged funnel model in understanding the kinetics of
a range of systems. Atomistic simulations done recently [7] also
support the funneled energy landscape picture for a large number
of examples, as I will describe below.

Having achieved minimal frustration is the “swindle” (to use
Bohr's term) behind the ease of protein folding. Minimal frustration
has apparently come about as the result of evolution and is encoded
in existing protein structures and sequences. The mathematical
instantiation of the minimal frustration principle via the TF/Tg ratio
can therefore be used as a learning tool for inferring the nature of
forces within and between protein molecules e “reverse engi-
neering” the folding problem [29,39e42]. This strategy has led to
predictive algorithms for determining protein tertiary structure
from sequence alone. Again the topic of protein structure predic-
tion algorithms based on energy landscape theory has also recently
been reviewed by us [5], so I will just touch on this question here.
These practical successes, in my view, also should buttress our
confidence in the main ideas of folding energy landscape theory.

The bulk of this review will focus on understanding precisely
how easily do proteins folde that is, what havewe learned through
trying to quantify the smoothness of the landscape by comparing
the strength of the guiding forces to the ruggedness of the land-
scape. To a first approximation this quantification may be sum-
marized in a single number, again, the TF/Tg ratio. Several estimates
of TF/Tg have been made in different ways over the years, using
laboratory data on the thermodynamics and kinetics of folding as
well as experimental observations on the reconfigurational mo-
tions and residual structure in molten globules as input [43e45]. I
will review those arguments.

As I have mentioned, the ease of protein folding must ultimately
be the result of evolution. The “swindle” of easy protein folding was
set up by natural history. Can we also check the idea of the evolu-
tionary origin of minimal frustration in a quantitative sense? Is
there a sign in the sequence data alone that landscapes have been
funneled through natural selection? Recently it has become
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possible to determine the degree of funneling of entire protein
families as measured by their typical TF/Tg ratio by carrying out
information theoretic analyses of large families of protein se-
quences and comparing the detectable coevolutionary patterns to
the sequence patterns that would be expected based on the physics
contained in energy landscape derived transferable force fields that
are able successfully to predict tertiary folds from individual pro-
tein sequences [46]. I will review the resulting confluence of the
evolutionary genomic and the physics perspectives on the energy
landscape. One finds a picture of the folding energy landscape from
the genomic data alone that matches pretty well with what has
been previously deduced from purely physico-chemical ideas and
experiments. Finally I will return to the paradoxes of easy protein
folding commenting on my current view of them.

2. General evidence that folding landscapes are funneled

The experimental study of protein structure and folding mech-
anism has yielded many general sorts of observations about the
ways proteins fold. These patterns suggest protein energy land-
scapes, in the main, are funneled and that proteins are minimally
frustrated heteropolymers. In addition, the details of the folding
mechanisms of many specific proteins have been reproduced using
highly idealized models of protein energy landscapes that have no
frustration at all: so called “structure based” [47,48] or G�o models
[49]. These models ignore any possibility of stabilizing misfolding
interactions that would lead to kinetic traps nevertheless they give
solid and surprisingly accurate predictions. The landscapes of such
structure based models can be thought of as being “perfect fun-
nels”. Like the perfect gas model in elementary chemistry, the
perfect funnel model, while working reasonably well, does not al-
ways have quantitative perfection. Major qualitative deviations
from perfect funnel predictions are, however, quite unusual.
Apparent failures of the funnel model have sometimes led us to
think outside the box and to our delight have turned out to confirm
that funneling is still preserved for the greater part of the folding
process [50]. Many seeming exceptions to perfect funnel prediction
can be accounted for by usingmodels that have small perturbations
from perfectly funneled landscapes. These models take into ac-
count weak trapping owing to residual frustration [51] or energetic
heterogeneity [52] or other sources of landscape degeneracy such
as the symmetry of designed protein sequences [53] or the sym-
metry intrinsic to oligomerization through domain swapping [54].
The success of the general predictions about folding that have come
from funneled, minimally frustrated landscapes along with the
multitude of detailed specific successes on many systems should
give us a lot of confidence that theminimal frustration principle has
more than a core of truth. The fact that we can understand and
quantify deviations from the model itself is also very encouraging
that we have begun to understand protein folding.

What general observations support the minimal frustration
hypothesis? The first observation is the well-known robustness of
protein structure to changes in sequence. Single mutations, and
even sometimes dramatic overall changes in sequence like those
found in “twilight zone” homologues still give remarkably similar
folded native structures [55]. It is commonplace now for protein
engineers to assume thatmaking only a singlemutation in a protein
will leave its structure intact, once that protein has successfully
folded, under the right solvent conditions. This robustness is not
what would be expected for folding on a typical highly frustrated
rugged landscape where an ensemble of structurally disparate
competing low energy structures is the norm. Yes, a single muta-
tion sometimes does cause a protein to unfold but this unfolding
reflects an “unfair” competition between one single folded struc-
ture against myriads of unfolded alternatives, not the competition
between specific structured individual alternatives. Only recently
have sequences been found that adopt fixed structures but that also
change drastically their structure when individual mutations are
made [56]. These examples typically involve also changing of the
oligomeric state of the proteins, however. Such sequences might be
“missing links” in protein evolution.

For a minimally frustrated protein, the overall stability typically
does not come from just a few residues but rather is spread
throughout the structure. Owing to this delocalized character of the
guiding forces to the native state, proteins with widely different
sequences not only have similar final structures but often follow the
same basic folding mechanism and sometimes have even quantita-
tively similar rates when tuned to the same stability [57,58]. This
generalization that “topology” controls the folding mechanism (as
well as its exceptions) has been documented for several protein
familiesnotablyby JaneClarke [59]but alsobynumerousothers [60].

The most general powerful consequence of proteins having
minimally frustrated landscapes is that folding kinetics almost al-
ways changes smoothly and monotonically as protein stability is
changed. Studying the effect of such changes on the kinetics is the
basis of modern systematic mechanistic folding studies [26,61]. The
stability can be changed by changing temperature (up or down!),
changing solvent conditions or by making site mutations. The
smooth variation of rate with stability is expected for landscapes
that are dominated by forming successively the contacts found
finally in the native structure [62]. In contrast such a smooth vari-
ation is quite unexpected if wildly different structures involving
specific non-native structures were to play a significant role in the
folding mechanism as would be expected to happen for typical
random sequences. Such unexpected variations do sometimes
appear. The ROP dimer system seemingly violates the funnel
concept because mutations were found that changed both the
folding and unfolding rates without changing the protein stability
[63]. To accommodate this anomaly, energy landscape thinking
however led us to suggest the structure of the dimer had, in fact,
been changed upon mutation [50]. It was later confirmed by single
molecule FRET experiments that the ROP dimer indeed had, owing
to its high symmetry, two different but similarly stable 4 helix
bundle structures sharing a common set of interactions [64,65]. One
form is dominant for the original protein but the other form dom-
inates for the mutant. In the absence of the symmetry of the dimer
system, only a few proteins show any evidence at all of degenerate
trap states in which non-native contacts play a role in the key in-
termediates, as we would find for a random sequence. The most
notorious of these strong exceptions to the perfect funnel model is
the folding of Im7, a molecule that functions by binding a toxin [66].
It turns out to be “the exception that proves the rule”. Computa-
tional analysis of the Im7 landscape shows that this rather small
protein possesses a large region that is frustrated in the monomer
but that takes part in the binding function of themoleculewhere the
additional interactions with its target form that are finally favorable
and the frustration is relieveduponbinding [51]. This frustrated part
of themolecule leads to a re-packing in an intermediatewhen Im7 is
required to fold on its own without having a partner present [67].

A more detailed test of the ideal funnel model comes from
making quantitative predictions using perfectly funneled landscape
calculations and comparing them with accurate experimental
measurements of kinetic changes on a residue by residue basis
[68e72]. The ideal funnel models allow us to predict the fraction of
the native stability change that becomes translated into the rate
change e the so-called F value analysis. The F value essentially
gives the fraction of the time that a residue participates energeti-
cally in the crucial transition states for folding [62]. Very good
agreement between predictions of perfect funnel models and
experiment has been found in several cases for extensive sets of F-



Fig. 2. The Distribution of energies on a funneled folding landscape. A schematic
spectrum showing the density of states of a minimally frustrated protein. Compact
alternative or decoy states are distributed with a nearly Gaussian distribution of en-
ergies through the random addition of conflicting contributions. At a temperature T,
the thermally occupied decoys will be diminished in number but they will still have a
Gaussian distribution of energies that is shifted downwards. At the glass temperature
Tg only a very small number of such trap states would be thermally occupied. The
energy Eg at Tg can be estimated from the width of the unbiased decoy distribution DE.
For a minimally frustrated protein an evolved sequence fits the target structure quite
well so that at a folding temperature TF the Boltzmann weight for the target structure
competes with the entire collection of states in the unfolded ensemble. For most
random heteropolymers no significant gap in the spectrum exists. As the extra stability
of the target dEF increases, relative to the width of decoy distribution DE, the folded
structure can be more and more easily picked out from the alternatives. By maximizing
dEF/DE over a set of sequences one finds more and more stable “well-designed” se-
quences. Conversely if many sequence/structure pairs are known the parameters in the
energy function can be varied so as to maximize the energy of dEF/DE for the set. The
resulting energy function summarizes the structural sequence correlations in the
training set. In this way structural data allow us to learn transferable energy functions.
Energy landscape theory provides us a theoretical “license to do bioinformatics”.
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values measured for many systems. These include the F values for
the folding of azurin, UIA, l repressor and very large lactose
repressor module [73].

Fully atomistic simulations also converge on confirming the
validity of the funnel concept for the folding of natural proteins at
least when correctly tuned all-atom force fields are used. Many
early simulation studies did find some evidence for non-native
intermediates in natural proteins [74e76]. It was suggested that
these non-native traps simply had been missed by experimenters.
Certainly some misfolded intermediates may be real and probably
do exist in the laboratory but a poor force field also typically leads
to transient misfolding (since the protein did not evolve with that
man-made force field!) and this seems to be the problem in many
of the early simulations of folding. In any event the importance of
misfolded intermediates in the laboratory would be a quantitative
question. Non-native traps may also be relatively more important
in the smaller protein systems that first became accessible to
simulation than they are in the more typical large proteins. In large,
more slowly folding proteins, non-native traps would give bigger
barriers and thus they would interfere much more dramatically
with folding in vivo. This suggests that selection against misfolds
should be stronger for longer proteins than shorter ones. As force
fields used in the simulations have improved and the computa-
tional capabilities have also advanced so that the bigger systems
can be studied [7], it has now become clear that the finally formed
native contacts do, in fact, generally provide the dominant in-
teractions in guiding the folding process [77,78]. Other non-native
contacts may help collapse and also provide an overall frictional
influence on the rate as expected by landscape theory [16] but they
do not greatly modify the sequence of events. Eaton et al. have
analyzed the heroic simulations of the Shaw group on a large
number of systems. Their analysis shows that only for the artificial
designed protein aD3 can one find evidence for specific non-native
interactions playing any significant role in the dominant folding
paths. Indeed even for aD3 the non-native interactions that form
correspond to a simple sliding of helices upon each other. Such
symmetrically related interactions would not be immediately
apparent to the casual observer.

So proteins, in themain areminimally frustrated. Quantitatively,
how much frustration is there?

3. How rugged is the folding landscape e physicochemical
approach

The first attempt to quantify the energy landscape of real pro-
teins through the TF/Tg ratio was made by Onuchic et al. [43]. Their
goal was to see whether the then existing toy model simulations of
protein folding using simplified lattice models could be used to
think about real proteins. The earlier lattice calculations already
had dovetailed with the analytical energy landscape ideas of
Bryngelson and Wolynes [15,16] that looked at the folding process
of a small protein as a random walk of an order parameter that
measures the native-like character of a polymer configuration.
Folding is a biased randomwalk because entropy favors the myriad
of polymer configurations unconstrained by similarity to the native
state while energy, on the other hand, favors more native-like
configurations. Energy and entropy combine to give a free energy
that depends on the order parameter. The gradient of the free en-
ergy then describes the bias of the walk towards folding or
unfolding and depends on the temperature. The diffusion rate for
the order parameter depends on the energetic ruggedness, slow
rates of diffusion corresponding to rugged glassy landscapes, fast
rates to smoother landscapes. The resulting description via a
Kramers-like diffusion equationwas shown to describe the kinetics
of lattice models quite well [16,79]. In recent years the biased
diffusion model has also been shown to describe the dynamics of
more realistic off-lattice models [80] and has been used directly to
interpret experimental data [81e83].

As we see, the first key quantity needed to make the connection
between landscape theory and real proteins is the entropy change
of the polymer when it unfolds. Calorimetry is unfortunately only
of modest help in getting that the part of the entropy change
relevant to the polymer chain alone because the surrounding water
is structured by hydrophobic side chains in the unfolded state. We
cannot easily separate out the entropy change of the water envi-
ronment from the overall calorimetric change. This solvent entropy
change is a non-trivial phenomenon, ultimately being the origin of
cold denaturation. The folding temperature itself is directly
observable so we know the energy loss must exactly compensate
the configurational entropy change so TFDS ¼ dE. While many
folding processes occur directly from a random coil state, the
collapsed but disordered state of the protein is not too far away.
Apparently proteins are near a triple point between the native,
compact globule and random coil phases. The entropy of the
collapsed molten globule state is key because ruggedness can, in
any event, only arise to a significant extent in the collapsed
ensemble. Searching through collapsed states can be slow but
searching through the expanded states with few stabilizing con-
tacts is not. Collapsed state ruggedness is what could make
reconfigurational search difficult.

Onuchic et al. [43] estimated the configurational entropy of the
collapsed, molten globule by noting that its helical content is quite
high. Both collapse and helix formation lower the molten globule
entropy. The helical entropy loss can be quantitatively estimated by
considering the ease of nucleation in the uncollapsed phase as
measured by the s and s parameters of the helix coil transition for
uncollapsed peptides. Luthey-Schulten et al. showed how to couple
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the quasi-one dimensional phase transition of helix formationwith
the three dimensional collapse transition to relate both the entropy
of the globule and its helix content to the hydrogen bond strength
[84]. This theory combined with experimental data on the struc-
tural content of molten globules gives a configurational entropy of
about 0.6kB per amino acid in the molten globule. This estimate is
based on the observation that molten globules typically have about
65% a helical structure. This is quite a bit less than the 2.3kB per
monomer unit estimated for free chains and indeed is even smaller
than the 1.0kB per unit of the toy model lattice polymers.

Saven et al. arrive at similar numbers when the propensity of
particular sequences to form helices of peptides or the thermody-
namics of signals to start or stop helices is used as input to a theory
of the collapsed globule [85].

According to this estimate, entropically a 60 amino acid helical
protein maps pretty well on to the popular cubic lattice model of
proteins that has 27 beads [43].

While the entropy of the collapsed ensemble follows from the
study of residual structure in collapsed states, estimating the
ruggedness of the collapsed ensemble requires knowing about the
dynamics within molten globules. In 1995 Onuchic et al. [43] used
themillisecond time scale value for the reconfiguration time tR that
could be inferred from existing NMR measurements on molten
globules [86] to estimate the ruggedness. Surprisingly it is still not
easy to come by better values for molten globule dynamics in the
laboratory. According to the BryngelsoneWolynes random energy
model estimate, tR is related to the ruggedness described by an
energy variance DЕ2 and a microscopic reconfiguration time t0:

tR ¼ t0e
DE2=2T2

(1)

Onuchic et al. took a rather short time for t0 z 10�9 s, so that
millisecond rates in the globule give DE2/2T2 z 15.

The ruggedness DЕ2 also determines the temperature of the
glass transition which occurs when the temperature is low enough
so that only deepest energy states out of the eSc/kB possible ones are
thermally sampled. This condition on the entropy gives the relation

kBTg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE2

�
N

q � ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sc=N

p
(2)

where N is the chain length.
Onuchic et al. thus arrived at a value for the glass transition

temperature which is much lower than the folding temperature
Tg z .6TF. This low value is consistent with a moderately strongly
funneled landscape corresponding to a roughly three letter protein
folding code.

The random energy model also gives an estimate for the energy
of the deepest traps that would be thermally sampled at Tg. This
competitive trap energy is Eg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DE2Sc

p
.

The minimum frustration principle can also be formulated in
terms of the condition that the energies dEF are less than Eg. In this
form thenwe see minimal frustration is equivalent to there being a
gap in the spectrum of folded energy states, as in Fig 2. In reality of
course, this gap is filled by partially folded configuration in which
some of the native contacts have formed that correspond to the
structures on the paths for nucleation of properly folded protein
structure. Important as they are, these partially folded configura-
tions are sufficiently small in number that they would hardly show
up on the plot.

The TF/Tg ratio of 1.6 inferred by Onuchic et al. clearly indicates
the folding landscape is quite smooth. It is probably an underesti-
mate of the smoothness. One reason the estimate may be on the
low side is that the polymer chain motions in the globule are now
thought to be intrinsically slower than the t0 estimate they used e
more in the time scale of a microsecond. At the same time, escape
from traps may not require rearranging the whole chain. In this
regard, Plotkin et al. showed that correlations in the landscape
cause only a fraction of the ruggedness to be translated into
configurational slowing [87,88]. This error would go in the opposite
direction, but correlations in the landscape also change the corre-
sponding Tg estimate, so that correlations in the folding landscape
turn out essentially to preserve the estimated TF/Tg ratio at the
value found for the Onuchic et al. model.

Chan has argued that the TF/Tg ratio is actually much larger than
1.6, perhaps reaching a ratio as large as TF/Tg z 10. This very high
value would correspond to a very highly funneled energy land-
scape. His reasoning is based on trying to match the observed high
cooperativity of folding [44]. He shows that a heteropolymer model
with TF/Tg ¼ 1.6 would give denaturation curves that are much
broader than typically seen, suggesting the smoother landscape.

Clementi and Plotkin also suggest that TF/Tg is greater than 1.6.
They base their suggestion on the quantitative success that perfect
funnel models have in predicting F-values [45]. By adding random
non-native interactions, to a heterogeneous structure based model
they suggest that the variance of non-native energies must be quite
a bit less than what the 1.6 value for the TF/Tg ratio would indicate;
otherwise specific non-native contacts the misfolded state would
greatly modify the F values. They suggest that TF/Tg ratios as large
as 2 or 3 would better fit the small deviations from a perfect funnel
that are in fact experimentally observed.

4. Reverse engineering the folding energy landscape

The minimal frustration hypothesis provides a strategy for
“reverse engineering” the folding problem–thereby energy land-
scape theory provides an organized way of learning the folding
landscape by “having seen it in action”. The strategywhich is rooted
in the minimal frustration hypothesis is to tinker with the force
field so as to ensure that a transferable form for the energy function,
one that can be applied to any sequence, actually leads tominimally
frustrated, funneled landscapes for a training set of proteins with
natural sequences that we already know fold to specific known
structures. If all folding landscapes are funneled and the parame-
ters in the force field are universal and are thus transferrable, the
predictive force field that results should work well for proteins not
in the training set.

Testing the landscape for proper folding would be a hard reverse
engineering task if it had to be done simply by trial and error. There
are many parameters in even the simplest coarse-grained molec-
ular force field. Testing even one set of parameters for the force field
to see if it yields a funneled folding landscape takes quite a bit of
computer time, so combinatorial search through parameter space
would be prohibitively expensive. The good news is the minimum
frustration principle provides a quick zeroth order check on
whether a protein sequence can be folded with a given force field.
All we have to do is to check that the energy of the folded state is
much lower than the typical value of the energy of lowest thermal
accessible misfolded state. How do we find the energy of misfolded
states? The latter typical trap energy, Eg as we have seen can be
estimated directly from the variance of the energy over a set of
candidate decoy structures, the quantity we call the ruggedness
DE2. This variance can easily be calculated from a fixed set of
representative decoys e this makes it unnecessary to find specif-
ically the absolutely lowest energy misfolded state for a given force
field. Finding the actual lowest energy misfolded would be an NP
hard task. Sampling to findDE2, however, is much easier and robust.

Taking this strategy one step further mathematically leads to an
explicit optimization scheme: Maximize the ratio of dE/DE. This
quantity is monotonically related to the TF/Tg ratio. If the



Fig. 3. Predictions of globular protein tertiary structure. A gallery of globular protein structures predicted by the AWSEM energy landscape optimized force field are shown
overlapped with the correct x-ray structures. The agreement is comparable to what can be found via homology modeling but no homology information was used in making these
predictions. The examples are 3ICB: vitamin D-dependent calcium-binding protein; 2MHR: myohemerythrin; 1JWE: N-terminal domain of E. coli DNAB helicase; 1R69: amino-
terminal domain of phage 434 repressor; 256bB: cytochrome B562; 1utg: uteroglobin; 1MBA: aplysia limacina myoglobin; and 4CPV: carp parvalbuminCARP. For details please
see Ref 90.
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parameters in the force field enter into the energy function linearly
then optimizing this ratio actually becomes a problem in linear
algebra, as first noted by Goldstein et al. [29]. Even better funneled
energy landscapes emerge when one employs still more elaborate
Fig. 4. Predictions of membrane protein structures. A gallery of membrane proteins structur
ray structures. The examples are 1IWG: subdomain of multidrug efflux transporter; 1J4N:
transporter; 1PY6SD: subdomain of bacteriorhodopsin; 1OCC: subdomain of cytochrome C
receptor; and 2BL2: subdomain of V-type Naþ-ATPase. For details please see Ref 91.
nonlinear self-consistent optimization schemes in which the de-
coys are all iteratively re-computed by sampling misfolded struc-
tures for the already partially optimized force fields [89,90]. This
strategy (illustrated in Fig 2) has over the years led to a series of
e predicted by the AWSEM-Membrane force field shown overlapped with the correct x-
subdomain of aquaporin water channel AQP1; 1PV6: subdomain of lactose permease
oxidase aa3; 2RH1: 2-Adrenergic GPCR; 2BG9: subdomain of nicotinic acetylcholine
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ever improving force fields that now can successfully fold many
globular and membrane proteins using their sequence information
alone.

An historical survey of the progress made using this energy
landscape theory based strategy as well as the details of its un-
derlying mathematics have been recently presented by us [5].
Nowadays, the quality of predictions made without homology in-
formation from such force fields is almost as high as what can be
achieved by tweaking the structures of known homologs. We can
see the comparison of the structures predicted by the latest force
field (called AWSEM, the Associative Memory Water Mediated
Structure and Energy Model) to the X-ray structures for several
globular proteins in Fig. 3. The same strategy has even proved a
successful route to developing force fields for studying membrane
proteins where the funnel minimal frustration idea has been less
tested. Indeed the very basis of the funnel hypothesis may be
questioned for membrane proteins because of the kinetic control
that may occur in vivo through the action of the translocon. Some
examples of membrane protein structure prediction [91] using such
a transferable force field based on energy landscape reverse engi-
neering are shown in Fig 4. It appears that once the translocon has
placed the protein in the membrane spontaneous folding �a la
Anfinsen ensues.

It is probably not an accident that these force fields which have
been reverse engineered using the minimal frustrated landscape
idea yield results with a resolution only comparable to what can be
obtained using homology models. They are not as precise as fully
determined atomistic x-ray structures. This is reasonable because
the minimal frustration principle must be a result of evolution.
Evolutionworks at the residue level not at the atomistic levels: only
a limited set of side chains has been tried over the course of natural
Fig. 5. The folding super landscape. The super-energy landscape of proteins is pictured
here. Ideally this would be shown as a function of both sequence and conformation
simultaneously. The large funnels are pictured as a function of sequence space with the
radial sizes connoting sequence entropy. Energy is again the vertical axis. Natural
proteins are not necessarily the lowest energy designs. These would be found at the
bottom of the super funnel. For each target the configuration space landscape is
funneled, but only to an energy EF. This structural energy landscape is, however, shown
superimposed on the sequence space landscape. Disordered compact structures and
sequence scrambled decoys have comparable energy statistics. They are shown near
the top of the landscape. The funnels to other structures start from these same high
energy states but again would finally reach energies near EF if they have sufficiently
evolved under the minimal frustration selection constraint. The energy of the traps Eg
can be estimated by scrambling sequences within the native structure. This diagram
shows how the evolutionary and physical configurational landscapes are related to
each other. Notice that sequence space is cosmologically bigger than the structure
space is as reflected by the large sequence entropy at EF. This excess coding space
allows minimally frustrated landscapes to be found through the random processes of
natural selection.
history and any new side chains beyond the standard 20 that would
be needed to completely test the all-atom models haven't been
tried by Nature. This evolutionary origin of the funneled landscape
can be tested in another way, which I describe in the next section.

5. The evolutionary landscapes of proteins

Folding of proteins is important to their function and the proper
function of proteins is needed for an organism's survival, therefore
the folding landscape is a key part of natural selection. Evolution
works, however, both by selection and by random experimentation
through mutation and recombination. Functional proteins in
widely divergent organisms therefore have wildly different se-
quences. There is much evidence that structure evolves more
slowly than sequence does [92]. Slow structural evolutionwould be
expected if the folding energy landscape is funneled. Can we
quantitatively relate the diversity of protein sequences all of which
fold to a largely common structure to the physical energy land-
scapes for each of these sequences? One way to address this
question is first to assume that folding to the proper structure is
actually the only selection constraint on molecular evolution. The
funnel hypothesis would then summarize the folding constraint by
saying the energy of the folded structure EF must be far below Eg,
the typical energy of a structurally distinct trap. As we have seen
the latter depends on DE2, which itself depends foremost on the
protein sequence composition (but not primarily on the order of
amino acids). This suggests we can picture the evolutionary energy
landscape of proteins in a way much like the folding landscape of a
single protein [93]. In Fig. 5 we show such a super landscape which
describes how energy varies both in sequence and structure. There
will be numerous funnels in the landscape corresponding to every
possible structure of a protein. We can concentrate on the land-
scape in sequence space for evolving to a given target structure and
compare it with the physical energy landscape for folding to that
structure. For the sequence space landscape, the energy coordinate
represents the energy that a particular sequence has when it takes
on the particular target structure. One would find the most “well-
designed” sequence at the bottom of the sequence space funnel.
(Unfortunately many early folding theory papers used the
“designed” terminology, which can be easily misinterpreted as
being an endorsement of creationism!)

It is important to remember, however, that because evolution is
a random process, there is no need for selection to have given the
“best designed” or most stable sequence, it is only necessary for
evolution to have found a sequence that folds to a functional
structure sufficiently often. To find the folded structure quickly and
reliably the physical energy landscape must have a low energy EF
below some threshold for at least two reasons. One of these reasons
is to avoid kinetic trapping, as we see indeed natural sequences do
but also it is necessary for survival of the species to avoid being
unstable against next generation mutations that would inevitably
occur in a finite population of organisms [91]. The first selection
constraint based on kinetic trapping would act on the organism
possessing the protein itself. Kinetic trapping (if EF would be close
to Eg, the typical energy of a trap) will create long-lived misfolded
proteins. Such long lived species could lead to aggregation and
problems with protein trafficking. It is often thought that this is an
issue in giving rise to the numerous neurodegenerative diseases.
The second selection constraint really acts at the population level
not at the level of the presently living individual organism. Some
fraction of the offspring of a viable organism which has a protein
with energy EF will, after a mutation has occurred now become
unviable. Again the closer EF is to Eg the more this poor perfor-
mance in the offspring will be a problem for the species, as a whole.
Whatever is the actual origin of the selection constraint on EF, if this



Fig. 6. The distributions of energies in sequence and configuration space. The sche-
matic spectrum in sequence space is shown superimposed on the configurational
energy spectrum. Notice that there are many sequences that fold to the same target
structure because the selection temperature Tsel is greater than the sequence space
glass transition temperature. This temperature in turn is lower than the structural
space glass transition at Tg.

Fig. 8. The correlation between the evolutionary and physical folding landscape. We
evaluate the energies of structures using both a physical and a genomic energy
function. The pairs shown in the figures correspond to partially folded protein struc-
tures generated via molecular simulation using the AWSEM energy function for the
Ir69 family. Again the two landscapes turn out to be funneled and strongly correlated
as would be expected from the minimal frustration principle. The colors of the points
correspond to the fraction of native contacts formed in the sampled structure. For
details please see Ref. [46].
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energy constraint is the only constraint, we can argue that after
sufficient sequence variation has occurred, one would end up with
an ensemble of proteins whose sequences are random apart from
their satisfying a threshold constraint on their energy in the native
structure EF. Since sequence space is cosmologically large, the
selected sample would be equally well described by a Boltzmann
distribution for the energy E (a1,…aN) of a particular sequence of
amino acids (a1…aN) in the target structure [94e97]. This Boltz-
mann distribution would be characterized by an effective temper-
ature of selection Tsel. The lower the selection temperature Tsel the
lower is EF and the more stable or “better designed” or better said
minimally frustrated the sequence would be. Thus as Tsel goes
down, TF gets larger relative to the glass transition temperature Tg. If
one applies a random energy model ansatz to the sequence space,
just as is done for the molten globule configuration space, one ends
up with an elegant relation between the evolutionary funnel
characterized by EF (and characteristic evolutionary temperature
Tsel) and the physical folding funnel characterized by the same EF
(but with different physical temperatures TF and Tg):

2
TFTsel

¼ 1
T2g

þ 1
T2F

(3)

The key point is that the two “funnels” one in physical space, the
other in sequence space have the same energies for native
Fig. 7. The correlation between physical and evolutionary folding landscapes. We
evaluate the energies, on using the physics based AWSEM energy function, the other
using the direct contact approximation genomic based energy function both for
scrambled sequences and for natural sequences in the 1r69 repressor family. These
pairs of energies are then plotted. We see that both the physical and evolutionary
energy landscapes have sizable gaps showing the minimally frustrated nature of the
proteins. For details please see Ref 46.
structures and also would have similar distributions of decoy en-
ergies. See Fig 6. An elementary derivation of this relation may be
found in the supplementary material of Ref. [46]. This relation be-
tween evolutionary and physical scales was first stated in this way
by Pande, Grosberg and Tanaka through more sophisticated replica
arguments [97].

The assumption of a Boltzmann distribution over sequences has
been taken as the basis of several new information theoretic ana-
lyses of the genomic data for protein families which maximize
sequence entropy given known correlations in aligned sequences
[98]. Such analyses have recently become quite useful because of
the extensive genome sequencing data now available. Gene
sequencing has made known to us, for many structural families,
thousands of sequences all of which presumably fold to sensibly the
same structure in order to retain their functions. Using the
sequence data, by quantifying co-evolution at distinct sites in the
protein, one can do “reverse statistical mechanics” to find the form
of the energy function EF (a1,…aN) that would give such a sample of
sequences. Typically the information theoretic energy function is
parametrized via site energies and pair interactions. One algorithm
for doing reverse statistical mechanics is known as direct coupling
analysis (DCA). This algorithm yields an energy function HDCA
Fig. 9. The smoothness of the folding funnel quantified by coevolutionary information.
The TF/Tg ratios for several protein families are inferred using genomics and landscape
theory shown. The families are denoted by the PDB ID codes of the representative
structures which are described in Ref. [46]. TF/Tg measures the smoothness of a folding
landscape. Higher values correspond to more ideal funnels. The red circle is an alter-
nate way of making an estimate by comparing changes in evolutionary energies and
experimentally measured stability changes. The estimated TF/Tg ratios for all the nat-
ural protein families studied are larger than one so the folding landscape is confirmed
to be a funnel. The estimates are clustered around the value of TF/Tg ¼ 2.5 that was
estimated by Clementi and Plotkin through a comparison of measured F values with
simulated ones. For details please see Ref. [46].
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which describes the evolutionary constraints at a given site and the
coevolution of different positions in the sequence. HDCA should be
strongly correlated with the physical energy function. Indeed it has
been shown that HDCA correlates well with the energy functions
developed for structure prediction. Two plots showing the corre-
lations are found in Figs. 7 and 8. One of these plots shows the
correlations of the in sequence space contrasting random se-
quences threaded on the native structure to the energies for natural
sequences known to fold to the target. The other plot evaluates both
the physical and evolutionary information theoretic energy for
partially folded structures generated by a molecular dynamics
simulation using the structure prediction force field near the
folding temperature. Computing the DCA energy for differing
configurations involves the inclusion only of contact pair energy
terms.

You can see in both plots that both energy functions generate a
gap between correct sequenceestructure pairs and incorrect ones:
the evolutionary funnel landscape and the physical funneled
landscape are highly correlated.

This analysis also allows us to access the ratio TF/Tsel. We can
then use Equation (3) to find the corresponding TF/Tg ratios. These
are shown for several families in Fig 9.

It is heartening that evolutionary data give rise to estimates for
TF/Tg in the same range as those predicted by physical arguments
using data from laboratory experiments. The values of the TF/Tg
ratio inferred in this way are larger than those first estimated by
Onuchic et al., and are more in line with the values estimated by
Clementi and Plotkin, discussed earlier.
Fig. 10. Frustration serves a functional purpose. A diagram showing the minimally frustrated
indicated in green. The frustrated interactions in the regions shown in red lead to alternate
hinges. The lower panel shows the frustration levels at different sequence locations, the r
frustrated contacts. The black line indicates the local overlap of the two interconnecting
energetically frustrated regions. For details please see Ref. [103].
6. Frustration and function

Protein function requires specificity of interaction as well as
sufficient stability to live in the cell and in subsequent generations
of cells. In the protein world, standing there and looking pretty is
not always enough, however. Proteins act as nonlinear elements in
cellular networks in order to process environmental information.
This nonlinearity necessitates motion and thus often an energy
landscape with multiple distinct stable states. Because stability of a
limited number of specific structures is so important to prevent
promiscuous interactions, most of the individual interactions in
proteins have evolved to give collectively strongly funneled land-
scapes but some strategic parts of the sequences located at specific
sites in the structure have been selected to be frustrated in order to
allow both motion and interaction with partners. To quantify this
phenomenon requires tools for localizing the sources of frustration
[18,99,100]. Localization of frustration can be detected by exam-
ining the energy changes that would occur if only the local envi-
ronment of a site were to be changed through sequence mutation
or allowed to change by reconfigurational physical motion. Mini-
mally frustrated native regions will have energies in the more
stable part of the distribution of local energies; regions that are
unstable in comparison with the bulk of the distribution of local
energies are frustrated. Checking for local frustration is relatively
easy once good structures and adequate energy functions are
known [99], as is now the case. It has been shown that regions
where highly frustrated interactions cluster often map onto sites of
allosteric change [100] or can identify binding sites [99] which then
web of interactions in two structural forms of e RhoA an allosteric protein. This web is
nearly energetically degenerate configurations that allow these regions to function as
ed line indicating the number of frustrated contacts, green the number of minimally
structures. Notice the regions that move (and have low Q) correspond to the most



P.G. Wolynes / Biochimie 119 (2015) 218e230228
have their frustration relieved once a binding partner is found and
then docked to the site. In contrast to the clustered, frustrated,
functional regions, minimally frustrated interactions typically form
a connected web throughout the protein that keeps subunits of the
protein relatively rigid. The combination of the protein having
modules with rigidity along with specifically frustrated local re-
gions that act as moveable elements justifies considering many
large proteins as being nearly macroscopic “machines”. A key dif-
ference of these molecular machines from their fully macroscopic
counterparts is that the minimally frustrated nature of most of the
molecule allows the molecular protein to move by breaking or
“cracking” locally and then re-assembling into a new configuration
[101,102]. Local frustration analysis is easily automated and a Web
server showing both the web of minimally frustrated interactions
and the highly frustrated sites is available [103].

An example of the frustration patterns in an allosteric protein is
shown for the RhoA oncogene in Fig 10.

7. Folding paradoxes revisited

Protein folding has turned out to be easy and that seems para-
doxical. As we have seen Levinthal's original paradox can be avoi-
ded in several ways, the most important turning out to be that
evolution has led to funneled energy landscapes. It is clear that
there are other ways of simplifying the search through configura-
tion by parsing out the configurational entropy piece meal such as
capillarity effects so that only part of the chain folds at any time
[10,11] or by utilizing local structural signals that increase the
probability of the chain bending in the right places [85]. Never-
theless the minimal frustration hypothesis has proved to be a most
fruitful tool for visualizing the folding mechanism and addressing
protein design and structure prediction. The quantitative form of
the minimal frustration principle has been confirmed in several
ways through detailed kinetic predictions. In additionwe have seen
the minimal frustration principle is confirmed to be the result of
natural selection and random variation through the comparison of
the landscape characteristics inferred from sequence co-evolution
and through folding physics. But doesn't this resolution of the
Levinthal just raise another paradox? How did the random process
of evolution find the minimally frustrated sequences?

Searching sequence space would seem to be a daunting task
in the same sense that the searching structure space seemed to
be in the Levinthal paradox. Fred Hoyle raised just such an issue
in his science fiction work “The Black Cloud” [104]. Sequence
space is indeed cosmologically larger than structure space so
how does evolution find minimally frustrated sequences? The
answer seems to be that while minimally frustrated sequences
are exponentially rare, they are dense enough in sequence space
that connected paths of mutation can find minimally frustrated
sequences if there is sufficient selection pressure. Indeed we can
see that there is a cosmologically large number of sequences that
fold even to a specific given structure. In Fig. 6 we show the
density of both available structural states measuring the config-
urational entropy and sequences at a given energy measuring the
sequence entropy. The minimal frustration principle is quanti-
tatively summarized by saying there is a gap between the folded
energy and the glassy structural traps. Precisely because
sequence entropy is so much larger than structural entropy the
deepest most “well designed” sequence e the energy corre-
sponding to a glass transition in sequence space will be much
below the typically selected folding energy EF. This excess of
states signals the expected high connectivity of the sequence
space.

As the diversity of amino acid type interactions reduces one will
encounter in sequence space a glass transition that will occur now
at a higher energy. Indeed it appears that such a coding crisis occurs
whenwe are limited to 2 letter protein folding codes [105]. Finding
foldable sequences for some structures becomes problematic even
with 3 letter folding codes, in the computer [53]. The idea that
interaction diversity is necessary to resolve the Levinthal paradox
has been confirmed in the laboratory where 5 distinct amino acid
types have been shown to be sufficient for design [106] but fewer
numbers do not suffice.

We see that energy landscape analysis suggests that finding
minimally frustrated sequences is not too hard for a random pro-
cess like evolution. This has also been confirmed via simulation
studies. Again when evolutionary searches are made in the com-
puter using simplified models it has proved straightforward reach
by trial and error sequences to fold into even quite complex
structures [107e109]. Evolving for specific function at a specific
locus turns out to entail evolving to fold globally as a prerequisite,
according to the work of Sasai [108,109].

A rich problem, still unsolved however is how and when did the
minimally frustrated sequences come into being in our world?
Completely resolving this puzzle of natural history may be hard
because folding appears as a phenomenon even in the earliest days
of life that we can now probe through evolutionary sequence
analysis. Studies of the last universal common ancestor suggest this
organism had a full complement of foldable proteins [110]. So
presently there is a veil over the early steps of protein biogenesis.
There is hope, however, that the process of evolving foldability is
still going on today. Eukaryotes encode protein with split genes.
Gilbert has proposed that these exons might be themselves
exchangeable units [111] and G�o made the case for this for hemo-
globin [112]. Using energy landscape analysis Panchenko et al.
showed that indeed many exons seemed to be minimally frustrated
folding units. We called these units “foldons” [113,114] nearly
twenty years ago. The case that foldons were exons was equivocal
in 1995. The much larger amount of sequence data and better en-
ergy functions that are available today should lead to a re-
examination of the foldoneexon correspondence.

There is also evidence that we can see minimal frustration
evolving in real time today. During the somatic evolution of anti-
bodies [115], Romesberg and co-workers have examined the dy-
namics of antibodies that have been made against fluorescent dyes.
The motions of the dyes bound to the antibodies can then be pro-
bed spectroscopically. His investigations suggest that conforma-
tional substates of the antibodyedye complex disappear as the
antibody evolves and that the energy landscape gets smoother and
smoother as successive rounds of selection occur so that the anti-
body becomes a better binder. This is very much consistent with
the mechanism envisioned by Sasai for evolving folding through
selection pressure on specific binding at a given locus.

Thus while there is no new paradox to the trick of having
evolved funneled landscapes it seems there is much more that we
should be able to learn about evolution and folding in the near
future. The union of energy landscape theory andmodern genomics
should be very fruitful.
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