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Abstract

Integrative structure modeling computationally combines data from multi-
ple sources of information with the aim of obtaining structural insights that
are not revealed by any single approach alone. In the first part of this re-
view, we survey the commonly used sources of structural information and
the computational aspects of model building. Throughout the past decade,
integrative modeling was applied to various biological systems, with a focus
on large protein complexes.Recent progress in the field of cryo–electronmi-
croscopy (cryo-EM) has resolved many of these complexes to near-atomic
resolution. In the second part of this review, we compare a range of pub-
lished integrative models with their higher-resolution counterparts with the
aim of critically assessing their accuracy. This comparison gives a favorable
view of integrative modeling and demonstrates its ability to yield accurate
and informative results.We discuss possible roles of integrative modeling in
the new era of cryo-EM and highlight future challenges and directions.
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Cryo-EM:
cryo–electron
microscopy

XL-MS: cross-linking
coupled to mass
spectrometry; also
known as CX-MS

SAXS: small-angle
X-ray scattering

FRET: Förster
resonance energy
transfer

ISM: integrative
structure modeling

Input information:
experimental data and
any additional
information
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1. INTRODUCTION

Structural biology was dominated for many years by X-ray crystallography and NMR spec-
troscopy, which contributed thousands of atomic-resolution structures to the Protein Data Bank
(PDB) (1).The difficulty in obtaining crystallographic structures, especially for large protein com-
plexes, prompted the more recent development of alternative structural characterization tech-
niques. These include cryo–electron microscopy (cryo-EM), which has recently undergone a res-
olution revolution (2); mass spectrometry–based techniques, such as cross-linking coupled to mass
spectrometry (XL-MS) (3) and hydrogen–deuterium exchange (HDX) (4); small-angle X-ray scat-
tering (SAXS) (5); Förster resonance energy transfer (FRET) (6); and sequence analysis (7). Inte-
grative structure modeling (ISM) has the purpose of combining information from multiple tech-
niques through computation to yield structural models that have better accuracy, resolution, and
precision than those possible with any one technique alone (8–10). The rationale for integrative
modeling is that the strengths of different techniques complement one another. For example, some
methods provide the global shape of a complex, whereas others report on the local proximity of
subunits within it.

During the past 15 years, ISM has been applied to a wide variety of structural systems, ranging
in size from complexes of two subunits to giant assemblies comprising hundreds of subunits. The
structural information also ranges in level of detail from all-atom models to topological maps.
All ISM strategies share a common four-stage process: (a) gathering input information, (b) de-
signing model representation and converting information into a scoring function, (c) sampling
good-scoring models, and (d) analyzing models and information.We begin this review by describ-
ing these steps in more detail (Section 2).

At their time of publication, the accuracy of many integrative models was assessed on the basis
of how well they converged to a single solution and how consistent this solution was with the
available data. In the second part of this review (Section 3), we examine the accuracy of ISMmore
critically, by comparing the published models with more recent structural information.
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Ensemble: a set of
structural models, each
one of which is
consistent with the
data

Ensemble precision:
structural variability
among models in the
ensemble

Accuracy: the
difference between the
structural model and
the true structure(s)

2. EXPERIMENTAL AND COMPUTATIONAL ASPECTS
OF INTEGRATIVE MODELING

ISM iterates through the process of gathering data, proposing structural models, and then gather-
ing more data to validate and refine those models. All ISM strategies share a common four-stage
process:

1. Gathering input information: This information consists of data from wet laboratory exper-
iments such as those listed above, statistical tendencies such as atomic statistical potentials,
molecular mechanics force fields, and anything else that can be converted into a score on
features of a structural model.

2. Designing the model representation and scoring function: The resolution of the repre-
sentation depends on the quantity and resolution of the available information and should
be commensurate with the resolution of the final models; different parts of a model may
be represented at different resolutions, and a part may be represented at several differ-
ent resolutions simultaneously. The scoring function evaluates whether or not a given
model is consistent with the input information, taking into account the uncertainty in the
information.

3. Sampling good-scoring models: Multiple models are generated, and their scores are im-
proved by subjecting them to a variety of optimization algorithms (e.g., Monte Carlo, gra-
dient decent, etc.). These algorithms change the coordinates of different components of the
models in directions that overall improve their scores. The goal is for the models to thor-
oughly sample the possible conformations of the system. Consequently, the better-scoring
models represent the more likely conformations.

4. Analyzing models and information: The ensemble of good-scoring models need to be clus-
tered and analyzed to ascertain ensemble precision and accuracy and to check for incon-
sistent information. Analysis can also suggest which are likely to be the most informative
experiments to perform in the next iteration.

The actual implementations of the ISM approach vary greatly across users and systems. Users
may choose one of several comprehensive software packages that cover all of these stages such
as the Integrative Modeling Package (IMP) (10). Alternatively, users may implement each stage
with a different program or employ their own computer code. A compilation of available software
packages is listed in Section 2.5. Additionally, the second part of this review (Section 3) presents a
range of published ISM results from which readers may learn of implementations that suit their
modeling needs.

2.1. Information Sources in Integrative Modeling

Almost any type of information can be encoded into a scoring function and used in ISM. We
describe here the most commonly used types of information (Table 1).

2.1.1. Subunit structures. Ideally, ISM would assemble a model for a complex from all-atom
structures of its subunit components. Accordingly, one should aim to obtain the highest possi-
ble structural coverage for the modeled sequences. Experimental structures of individual subunits
determined by X-ray crystallography or NMR spectroscopy are most suitable. If experimental
structures are not available, comparative modeling is routinely used (11, 12). Comparative model-
ing can substantially improve the structural coverage, because reliable templates (sequence iden-
tity >30%) are available for ∼50% and ∼80% of all human and bacterial proteins, respectively
(13, 14). To increase structural coverage even further, one can apply ab initio modeling, preferably
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Table 1 Types of structural information

Modality Locality
Number of

distance restraints Accuracy
Conformational
heterogeneity?

In vivo
possibility?

Cryo-EM single particle
analysis

Global N/A Atomic resolution to
30 Å

Yes No

SAXS Global N/A ∼30 Å (shape
dependent)

Yes No

X-ray crystallography Local N/A Atomic resolution No No
NMR spectroscopy Local N/A Atomic resolution Yes No
Comparative modeling Local N/A Template dependent N/A No
Ab initio modeling Local N/A Variable N/A No

XL-MS Local 10s–1,000s 15–20 Å Yes Yes

Correlated mutations Local 10s–1,000s 6–10 Å Yes Yes

Pairwise interactions Local 1–10 10–20 Å No Yes

FRET Local 1–10 ∼60 Å Yes Yes

Abbreviations: cryo-EM, cryo–electron microscopy; FRET, Förster resonance energy transfer; N/A, not applicable; SAXS, small-angle X-ray scattering;
XL-MS, cross-linking coupled to mass spectrometry.

guided by contact information from sequence coevolution analysis (7, 15). It is often the case that
some sequence regions are left uncovered by these approaches. Such regions are then handled in
the ISM process by coarse representations (Section 2.2).

2.1.2. Cryo–electronmicroscopy. Cryo-EM is becoming the most commonmethod for struc-
tural characterization of large macromolecular complexes (16). It is also the source of global struc-
tural information in many ISM studies. The main work mode of cryo-EM in structural biology
is single-particle analysis [>75% of the maps in the electron microscopy (EM) data bank (17)],
which gives the three-dimensional (3D) electron density map of a complex. In this mode, the par-
ticles are confined within a thin layer of solution and frozen so rapidly that they become embedded
in amorphous ice in random orientations. Imaging of the particles with a transmission electron
microscope yields micrographs of their two-dimensional (2D) projections. As the particles are ori-
ented randomly relative to the electron beam, each projection provides an image of the particle
from a different direction.Dedicated software packages then reconstruct a 3D volume from thou-
sands of individual projections (18, 19). The procedure is similar to computerized tomography
in medicine, which renders the 3D volume of a skull from multiple X-ray exposures around the
head.

Cryo-EM is advantageous for the study of large complexes because it does not require crys-
tallization. Conformational flexibility is a major obstacle, which can sometimes be addressed by
reconstruction of multiple conformations within the framework of cryo-EM. In most cases, the
resolutions of structures obtained by cryo-EM are inferior to those obtained by crystallography.
Until approximately five years ago, the resolution of electron density maps from single-particle
analysis was typically 20–30 Å. At such resolution, the maps described the global shape of a macro-
molecular complex but revealed little information about the arrangement of subunits and domains
within the map. This situation prompted the development of ISM to incorporate sources of lo-
cal information and reveal the detailed architectures of the complexes. A dramatic improvement,
a so-called resolution revolution (2), resulted from the introduction of direct electron detectors
(20). New 3D reconstruction software packages such as RELION (18) and cryoSPARC (19) were
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developed to analyze the resulting information. Consequently,more than half of the electron den-
sity maps reported last year had resolutions better than 6 Å, with many claiming less than 4 Å (21).

Besides single particle analysis, other working modes of cryo-EM are also relevant to ISM.
Electron cryo-tomography is imaging 3D volumes of whole cells or cell slices and can be used to
obtain the electron density maps of macromolecular complexes in situ. Therefore, it is well suited
for the study of large assemblies that are hard to purify intact such as the nuclear pore complex
(22) or adhesion focal points (23). EM imaging of complexes labeled with antibodies enables lo-
calization of specific subunits in the density maps (24). Finally, the use of 2D projections per se is
also applicable to ISM (25–27) and is beneficial for cases in which the particles are embedded in
the ice in a limited number of orientations that are insufficient for accurate 3D reconstruction.

2.1.3. Cross-linking coupled to mass spectrometry. XL-MS (also known as CX-MS) is a
rapid and efficient experimental approach to obtain distance restraints between residue pairs
within a complex (3, 28, 29). It is based on the incubation of the complex of interest under phys-
iological conditions with a bifunctional cross-linking reagent. Following proteolytic cleavage,
further analysis by mass spectrometry identifies pairs of protein residues that underwent cross-
linking. Every identified cross-link indicates that the two cross-linked residues were in proximity
within the context of the complex. XL-MS therefore creates a distance restraint between the two
residues for use in structural modeling. Typically, tens to hundreds of cross-links can be iden-
tified from a complex of even moderate size, leading to a similar number of distance restraints.
For modeling purposes, the possible range of distances between the Cα atoms of cross-linked
residues was determined by analysis of XL-MS on known structures (3, 30). For the widely used
cross-linking reagent disuccinimidyl suberate (DSS), this distance was established to be between
10 and 25 Å (3). Interestingly, shorter cross-linking reagents only lead to slightly shorter bridging
distances, as these distances are mainly determined by protein flexibility and side-chain lengths
(30).

XL-MS has several important advantages that are complementary to other structural ap-
proaches. Foremost, it is applicable to nearly any protein complex, regardless of size or flexibility
(31, 32), including membrane assemblies (33–35). Because flexibility and solubility are major ob-
stacles to crystallography and cryo-EM,XL-MS is themethod of choice for some systems.Another
advantage of XL-MS is its potential to probe conformational changes (36–39). At the same time,
XL-MS also has three inherent disadvantages. First, the assignment of cross-links can be ambigu-
ous. The data set may contain a mixture of cross-links from multiple conformational states or
multiple copies of the same subunit. Computational modeling must take these types of ambigu-
ity into account. Second, cross-link locations are often distributed unevenly across the complex,
with some interacting subunits having few or no cross-links. This is often caused by the lack of
reactive amino acid residues at their interfaces and can be sometimes addressed by alternative
cross-linking chemistries. Finally, cross-linking may lead to the formation of aggregates and iden-
tification of non-native contacts. This problem can be avoided by the use of low concentrations
of cross-linking reagents, but care must be taken during the experiment and modeling to ensure
that the data are derived from a non aggregated state.

Over the past decade, improvements in mass spectrometry instrumentation and better avail-
ability of analysis software greatly facilitated the use of XL-MS. In fact, any laboratory with access
to a proteomics facility can now employ this rapid and inexpensive approach for structural studies
(40). Together with its other advantages, we foresee a growing use of XL-MS in ISM.

2.1.4. Small-angle X-ray scattering. SAXS is becoming a widely used technique for low-
resolution structural characterization of molecules in solution (5, 41–47). A key strength of SAXS
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is that it is informative about the shapes of macromolecules as large as 1,000 Å in the 10–50-Å res-
olution range at near physiological conditions.The experiment is performed with an∼1.0 mg/mL
sample in an∼15 μL volume and usually takes only a fewminutes on a well-equipped synchrotron
beamline (42).Moreover, SAXS profiles can be rapidly collected for a variety of experimental con-
ditions, such as ligand-bound and unbound protein samples, ligand titration series, and different
temperatures or pH values. The SAXS profile of a macromolecule, I(q), is computed by subtract-
ing the SAXS profile of the buffer from the SAXS profile of the macromolecule in the buffer.
The profile can be converted into an approximate distribution of pairwise atomic distances of the
macromolecule (i.e., the pair-distribution function) via a Fourier transform. In contrast to static
structures solved by X-ray crystallography, SAXS profiles, although limited in resolution, contain
information about conformational and compositional states of the system in solution (48–50).The
major challenge of computational modeling is to determine the set of states that is consistent with
the data (48, 51, 52).

2.1.5. Sequence information. The growth in the number of sequences has greatly outpaced
the growth in the number of PDB structures due to high-throughput sequencing technologies
(53). Sequence analysis has been traditionally used to define evolutionary conserved positions that
indicate importance for folding, function, interactions, and dynamics (54). Growth in the number
of sequences enabled analysis of coevolving residue positions. Because specific residue interac-
tions are required for stable and functional proteins, coevolution is observed for contacting amino
acids.Methods based on sequence coevolution for prediction of structural contacts have been very
successful in ab initio structure prediction (7, 15, 55–57). Moreover, analysis of coevolving posi-
tions can be used to predict protein–protein interactions, structures of transmembrane proteins,
conformations of disordered regions, and mutation effects (56, 58, 59).

2.1.6. Förster resonance energy transfer. FRET is a powerful technique for studying protein
structure, dynamics, and interactions both in vitro and in living cells (6, 60). FRET occurs when
two spectrally matched fluorescent molecules are in proximity and excitation energy is transferred
from the donor to the acceptor fluorophore through nonradiative dipole–dipole coupling (61).
The efficiency of this process is inversely proportional to the sixth power of the distance between
donor and acceptor, making FRET extremely sensitive to small changes in distance. It has been
used to probe distances over the range of 1 to 10 nm, resulting in spatial restraints for modeling
of both structure and dynamics (62, 63). Similarly to XL-MS and SAXS, single-molecule FRET
provides rich information about the conformational states of a system (64).

2.2. Designing the Model Representation and Scoring Function

Once structural information has been obtained from the methods described above, ISM may be
performed.One begins ISMby deciding onmodel representation and converting information into
scoring functions, followed by sampling good-scoring models and analyzing models and informa-
tion. Experimental information can be used in all of these steps. For example, all-atom models are
usually used in model representation, cross-links can be used in scoring functions, EM maps can
be used to restrict sampling, and SAXS profiles can be used for model validation.

2.2.1. Model representation. System representation is a central part of computational model-
ing (Figure 1). It is influenced by several factors, particularly the availability of structural cover-
age for the subunits. At the most detailed level, subunit structures can be represented by atomic
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Sphere cover One sphere per domainAll-atom model Cα atoms only

Figure 1

Selected representation options for one subunit.

positions. However, even when this level of detail is possible, one can decide on a coarser repre-
sentation for ISM depending on the available information and sampling requirements. For exam-
ple, if cross-linking information is available, the natural representation is one particle per residue
(centered at the Cα atom), because the scoring function only measures the distances between Cα

atoms. Reduced representation enables more sampling iterations at the same computational time
frame.When high-resolution structures are not available, coarse-grained spheres (one sphere per
several residues, per secondary structure, or even per domain) or volumes are required. In the case
of partial structural coverage, a mixed representation is often used: Subunits with high-resolution
structural models are represented in all-atom detail, whereas subunits without structures are rep-
resented by coarse-grained spheres.

2.2.2. Scoring functions. In ISM, the scoring function is a combination of several terms de-
pending on the available information and system representation. In this section, we first describe
more general scoring functions that are applicable to almost any system, followed by information-
specific scores.

2.2.2.1. Excluded volume. Molecules cannot overlap with each other in space, as steric clashes
between the atoms are impossible. The goal of the excluded volume score is to enforce this prop-
erty on the generated models. In many cases, the representation and sampling are not sufficiently
accurate, so the excluded volume score has to allow for a small amount of steric overlap. This is
often achieved by a smoothed, repulsive van der Waals potential (65).

2.2.2.2. Shape complementarity. Geometric shape complementarity is a necessary condition
for formation of protein–protein interfaces, because interfaces in solved structures are charac-
terized by tight packing. A shape complementarity score is commonly used in protein–protein
docking by employing algorithms that are based on fast Fourier transforms, which express shape
complementarity as a correlation (66, 67). The geometric complementarity restraint is less dis-
criminative when used at coarser representations that do not approximate shape accurately.

2.2.2.3. Physico-chemical complementarity. In addition to shape complementarity, the
physico-chemical complementarity between the proteins in the assembly can be assessed (68).
Most of the scoring functions in this category require atomic- or residue-level representation.
They can be classified into two major types: energy functions based primarily on a molecular
mechanics force field [such as the scoring functions of RosettaDock (65)] and knowledge-based
statistical potentials based on distributions of intermolecular features in large databases (69).
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2.2.2.4. Distance-based scoring functions. Multiple types of information can be converted into
distance-based scores. These scores can be divided into constraints and restraints. Constraints
require that the specified distance is within the predefined threshold and discard all the models
that violate it. Restraints are a softer version of constraints.They penalize violated distances but do
not discard the models. The most prevalent use of constraints is to enforce connectivity between
successive residues along a protein chain or, in case of coarser representations, between successive
spheres or volumes. Protein–protein interaction data are usually also converted into distance-
based scoring terms as restraints (70).

Data points from XL-MS, coevolving sequence positions, and FRET define pairs of residues
in a specific distance range. Each of these pairs contributes one distance restraint that is mea-
sured between the Cα or Cβ atoms of the corresponding residues. The upper limit on this dis-
tance is method dependent, with typical values listed in Table 1. The simplest scoring scheme
is to count the number of distance violations in a model (71). More sophisticated scores use har-
monic or Gaussian functions (26) around the optimal distance of the restraint as well as sigmoidal
and Lorentz functions (72). The most objective scoring of models is in principle achieved by a
Bayesian-based function. It was successfully adopted for NMR spectroscopy data (73), cysteine
cross-linking (36), chemical cross-linking (37), and FRET spectroscopy (63). The Bayesian scor-
ing function can account for most sources of uncertainty in data without overfitting but is more
difficult to implement.

2.2.2.5. EM-based scoring functions. The fit between the model and the 3D cryo-EM density
map is usually assessed by computing the cross-correlation coefficient (74, 75). When 2D class
averages are used, the scoring process is more involved (25, 26). First, hundreds of 2D projec-
tions are calculated from the model. Next, each measured class average is compared with all the
calculated projections, and the best matching projection is selected. The score is then the sum of
cross-correlation coefficients between each class average and its corresponding projection.

2.2.2.6. SAXS-based scoring functions. Modeling approaches that include SAXS information
usually compare the theoretical SAXS profile calculated from amodel with the experimental SAXS
profile. Theoretical SAXS profile calculations from atomic models require spherical averaging
to account for the random orientation of the macromolecule in solution. The observed scatter-
ing profile is the difference between the scattering of the target macromolecule with its ordered
hydration layer and the excluded volume that takes into account the missing scattering of bulk
solvent. Therefore, methods for calculating SAXS profiles have to account for the excluded vol-
ume of bulk solvent and the hydration layer. As a result, the approaches for profile computation
generally differ between methods by how they implement spherical averaging, treatment of the
excluded volume, and treatment of the hydration layer (76–79). The χ2 score is usually used to
assess the fit between experimental and computational SAXS profiles.

2.3. Sampling Good-Scoring Models

Effective sampling of large systems is a challenging task due to the many degrees of freedom.
Each subunit contributes six degrees of freedom (three rotational and three translational vari-
ables) to the system. The total number of degrees of freedom is therefore 6(N − 1), where N is
the number of subunits. Parts represented by spheres only have translational degrees of freedom.
Sampling methods can be classified into discrete and continuous search.The discrete search limits
the subunits to a finite set of positions in space (e.g., a grid set within a density map). In the con-
tinuous search, there are no restrictions on subunit positions. Sampling methods for continuous
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Multistate models:
models that specify
two or more coexisting
structural states or
values for any other
parameter

search space can be further divided into two major categories: (a) randomized optimization meth-
ods, such as conjugate gradients or Monte Carlo, simulated annealing, or genetic algorithms; and
(b) deterministic sampling strategies, such as divide-and-conquer or docking-based methods.

Randomized optimization usually starts with a random initial configuration. The space of con-
formations is then explored iteratively, by computing the next assembly configuration on the basis
of the scores of the current configuration. The major advantage of this sampling strategy is that it
can be applied with any scoring function, and as a result, any information type can be used. Owing
to the stochastic nature of randomized optimizations, many independent runs are required, each
starting from a different random initial configuration. The thoroughness of sampling can be indi-
cated by showing that new independent runs do not result in significantly different good-scoring
solutions (convergence test) (80). However, finding all good-scoring solutions is impossible to
guarantee, because passing the convergence test is a necessary but not sufficient condition for
thorough sampling. It is possible that the pathway to the minimum score corresponding to the
native state is narrow and thus difficult to find. Moreover, randomized sampling is not efficient
because it initially iterates through many poor-scoring configurations.

In contrast, deterministic sampling methods focus on sampling relevant configurations and
avoiding configurations that clearly violate a subset of the data. For example, given the EM density
map, it is possible in some cases to divide it into segmented regions, find good-scoring assignments
between subunits and the segmented regions, and refine the assemblies locally (81). In the absence
of the density map, it is possible to define pairwise configurations between the subunits using
docking approaches. The assemblies of the subunits are than enumerated from the docking results
using combinatorial enumeration strategies (82) or genetic algorithms. This approach works well
for distance-based information (cross-links, covariation, and FRET), as distance restraints can be
easily considered by docking algorithms, reducing the number of possible pairwise and, in turn,
multi-subunit configurations. In the case of symmetric assemblies, it is possible to restrict the
transformation space to symmetric configurations only (83, 84).

2.4. Analysis of Models and Information

Input information and an ensemble of output models are analyzed together to estimate ensemble
precision. Based on the number of good-scoring models and the consistency between the mod-
els and information, three outcomes of modeling are possible. In the first outcome, only a single
model (or a cluster of similar models) satisfies all input information.Therefore, sufficient informa-
tion probably exists for determining the correct structure (with the precision corresponding to the
variability within the cluster). In the second outcome, two or more different models are consistent
with the information. In this case, the input information is insufficient for structure determina-
tion or there are multiple significantly populated states. Additional experiments can provide the
information to narrow down the possible solutions. In the third outcome, no model satisfies all
the input information. There can be one or more reasons for this result: Some input information
or its implementation in the scoring function is incorrect, the representation needs to include ad-
ditional degrees of freedom, and/or sampling needs to be improved (regardless of the outcome of
the convergence test above).

The input information often describes a heterogeneous sample (Table 1), indicating multiple
structural states. In this case, the scoring function and the sampling should take the heterogene-
ity into account and generate multistate models. In addition, the number of states needs to be
determined. Frequently, the principle of Occam’s razor suggests using the smallest number of
states sufficient to explain the input information without data overfitting. An example of this ap-
proach is the minimal ensemble method inmolecular modeling based on SAXS orNMR data (40).
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However, sometimes Occam’s razor is not applicable. For example, even though a SAXS profile of
an intrinsically disordered protein may be matched by a sum of profiles for the minimal ensemble
structures, the system is likely to exist in a large ensemble of widely different states (85). Such
cases are indicated by similarity between distributions of structural properties, such as the radius
of gyration, of the best-scoring multistate models.

2.5. Available Software

Software packages are available for various steps of integrative modeling (Supplemental
Tables 1–3). It is common in an ISM project to employ several of these programs in succession.
Alternatively, some of the packages cover the entire ISM process. Most notably, the Integrative
Modeling Package (IMP) (10) was designed specifically for ISM and supports many types of in-
formation, various representations, and scoring functions. HADDOCK (86) and PatchDock (26,
87) are also frequently used in cases for which significant coverage of all-atom structures are avail-
able for the protein subunits. We further refer interested readers to the next section, in which we
review a range of published ISM results. These specific examples may instruct researchers on the
implementation options for various modeling needs.

3. REVIEW OF PUBLISHED INTEGRATIVE MODELS

We now describe in more detail a selection of published integrative models. It is not an exhaus-
tive list but rather a limited compilation aiming to demonstrate the range of structural questions
to which ISM is applicable. In all the cases that we describe, a higher-resolution structure (from
crystallography, cryo-EM, or NMR) of the same systemwas published after the release of the inte-
grative model. Comparison of the model and structure allows assessment of the overall strengths
and weaknesses of ISM in a critical manner. Many of the higher-resolution structures were ob-
tained by cryo-EM, reflecting the great technical advance that has occurred in that field over the
past decade.We divide the cases reviewed here according to the level of detail in their representa-
tion, starting from all-atom models and ending with models that describe only the architecture of
the system. A tabulated summary of these comparisons is also available in Supplemental Table 4.

3.1. All-Atom Models

All-atom representation is possible when reliable structures are available for most of the system
components. These subunit models are obtained by X-ray crystallography, NMR spectroscopy,
cryo-EM for larger individual components, comparative models (11, 88), or ab initio structure
predictions (89, 90). Assembly of the all-atom components into the full complex is then guided
by integration of information from other structural sources. Technically, this assembly is done
by established protein–protein docking applications that are augmented by the external data (26,
91–93). In most cases, the information is converted into restraints that are incorporated into the
sampling algorithms and scoring functions of these applications. The advantage of atomic repre-
sentation is that shape and physico-chemical complementarity between the subunits can be con-
sidered, resulting in a more accurate scoring function.

3.1.1. Phosphoinositide 3-kinase heterodimer. Phosphoinositide 3-kinases (PI3Ks) play a
key role in a variety of cellular processes and aremutated inmany cancer types.The class IA PI3Kα

consists of the p110α catalytic subunit and the p85α regulatory subunit with oncogenic mutations
identified in both subunits. The PI3Kα model was constructed using the X-ray structures of the
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a

b

Figure 2

Examples of all-atom integrative models. (a) Integrative model (left) (94) and crystal structure at 3.0-Å
resolution (right) (95) of the complex between the p110α catalytic subunit (green) and the complex of the
p110αABD domain with the p85α iSH2 domain (blue). The p85αnSH2 domain (red) and the p85α cSH2
domain (cyan) are only present in the integrative model. (b) Integrative model (left) (34) and the
cryo–electron microscopy structure at 7.8-Å resolution (right) (96) of the mitochondrial respiratory
supercomplexes I (purple) and III (light blue).

four subunits: p110α (without the ABD domain), the complex of the p110α ABD domain and the
p85α iSH2 domain, and the p85α nSH2 and cSH2 domains. PatchDock and CombDock with
sequence connectivity constraints between the domains were used to generate a set of models
consistent with the constraints (94). These docking calculations pointed to just a single cluster
of best-scoring models comprising all of the subunits, except for the p85α cSH2 domain, which
could not be placed reliably (Figure 2a). The resulting model shed light on the mechanism of
two classes of cancer mutations in the interface between the catalytic and regulatory subunits.
The structure of the complex was later solved by X-ray crystallography without the nSH2 and
cSH2 domains (95), confirming the integrative model.

3.1.2. Mitochondrial respiratory complexes I and III. The respirasome is a mitochondrial
supercomplex consisting of oxidative phosphorylation complexes I, III, and IV. The assembly of
complexes I and III was modeled by a protein–protein docking method (PatchDock) using shape
complementarity, distance restraints from three cross-links, and the confinement of the com-
plexes to the plane of the membrane (34). The resulting supercomplex is in excellent agreement
with a cryo-EM structure of the same system (96), with less than 2.5 Å deviation between them
(Figure 2b). Of note, the distance restraints between the two subunits originated from cross-
linking of intact mitochondria. The integrative model of the supercomplex thus strengthened the
relevance of the cryo-EM structure to the in vivo state.

3.2. Combinatorial Modeling: A Special Case of All-Atom Modeling

For certain biological systems, the native structure is assumed to be one of a finite set of configura-
tions that can be enumerated exhaustively. A fitness score is then assigned to each of these models
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a

b

c

N terminus

C terminus

Figure 3

Examples of combinatorial modeling cases. (a) The model of a helix from Munc13 (blue) bound to
calmodulin (red) (97) is superimposed on the corresponding NMR solution structure (light gray) (98). This
orientation of the helix fits the data better than the opposite orientation. (b) Integrative model (left) (99) and
cryo–electron microscopy structure at 4.7-Å resolution (right) (100) of the winged-helix domain of Tfg2
(black) on the DNA around the TATA-binding protein (red) in the transcription pre-initiation complex.
Other subunits are not shown for clarity. The model had the best fit to the data out of 35 positions along the
DNA path. (c) Top view of a model of the CCT chaperonin with each subunit colored by type. The back side
of the complex is not shown for clarity. There are 40,320 possible arrangements of the subunits within the
complex. The native arrangement was singled out by combinatorial homology modeling and cross-linking
coupled to mass spectrometry (71, 101). Some of the inter-subunit cross-links are modeled to scale (black van
der Waals spheres). Note the small size of the cross-links compared with the overall architecture of the particle.

on the basis of its compatibility with the available structural data. The best-fitting model is thus
clearly and objectively singled out. We describe three examples of such systems (Figure 3).

3.2.1. Munc13 peptide–calmodulin complex. The correct orientation of the Munc13 helical
peptide in the calmodulin cavity was selected from two options (97). At the time of modeling, the
structures of all the components were available, but their relative orientations were not known.
Dimova et al. (97) modeled both the parallel and antiparallel orientations and compared them
with distance restraints from cross-links identified between calmodulin and the helix (Figure 3a).
They found that only the antiparallel model satisfied the restraints, and indeed, their model was
validated a year later by an independent NMR study (98).

3.2.2. Tfg2 winged-helix domain and DNA–transcription pre-initiation complex. A more
elaborate case involved ISM of the winged-helix domain of Tfg2 on DNA in the context of the
large transcription pre-initiation complex (99) (Figure 3b). The domain was modeled in 35 dif-
ferent positions along the DNA path. Only one model was compatible with the cross-linking data
to neighboring subunits and the steric hindrance by the nearby TATA binding protein. A later
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cryo-EM study at much higher resolution (100) confirmed that the location of this domain was
accurate.

3.2.3. CCT chaperonin. Finally, an outstanding example of combinatorial modeling is the eu-
karyotic CCT chaperonin. This conserved complex comprises eight different subunits that are
highly similar to one another in structure and sequence. Consequently, the subunit order within
the complex could not be resolved, even though the overall shape of the particle was solved at low
resolution.To determine the subunit order, all of the 40,320 ( = 8 factorial) possible arrangements
of the complex were modeled and then compared with distance restraints from XL-MS experi-
ments (71, 101). This approach clearly demonstrated that only one model satisfied these restraints
(Figure 3c). The model was later verified conclusively by an independent crystallographic study
(102). It should be noted that, at the time of the modeling, several other subunit arrangements
were hypothesized to be correct, and all turned out to be significantly different from the one
found by ISM. This result emphasizes the potential of ISM to yield nontrivial structural insights
that are unaffected by prior bias.

Aside from the assurance that the search space is completely sampled, combinatorial modeling,
if applicable, is favorable for two other reasons. First, it quantifies howmuch better the best-fitting
model is compared with the structural alternatives, thus giving a confidence estimate to the selec-
tion. Second, in most cases, the models are built independently of the data used for selection. This
approach greatly reduces the risk of over-interpreting the data. Clearly, combinatorial modeling is
possible only when abundant structural information is available to restrict the system. In the cases
reviewed here, all-atom structures were available for all the subunits, and additional information
was available for their global architectures. This is usually not the case in ISM, but one should be
on the lookout for specific subsystems or structural questions for which combinatorial modeling
may apply.

3.3. Mixed-Representation Models

As their name implies, these models combine all-atom structures for specific parts of the assem-
bly and a coarser representation for the rest of it. Very often, such cases involve a low-resolution
cryo-EM density map and structural coverage for several of the larger subunits. ISM then pro-
ceeds in two steps. In the first step, the all-atom components of the system are docked into the
density map by standard correlation (74, 75, 103, 104). These then serve as anchors for the second
step, in which the remaining subunits are modeled around them by incorporating local structural
information such as XL-MS. Methods for this type of modeling in published studies range from
manual modeling (105, 106), through dedicated applications (99), to general platforms such as
IMP (107).

3.3.1. Polycomb repressive complex 2. Figure 4a shows a mixed-representation integrative
model of the human polycomb repressive complex 2 (PRC2) that was obtained with a cryo-EM
map at 21-Å resolution (105). Despite the low resolution of the map, the shape was sufficiently
defined to dock two of the subunits (RPB4 and EED). Other subunits were then placed around
them to satisfy 39 distance restraints fromXL-MS.At the time, all-atommodels were not available
for 55% of the protein mass. Therefore, several subunits were not modeled explicitly. Instead,
their general locations in the map, as suggested by the cross-links to neighboring components,
were marked by coloring of the electron density envelope. We commend this careful approach,
which seems highly appropriate given the amount of available structural data.The final integrative
model agrees well with the recently published cryo-EM structure of the same system at 3.9-Å
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Figure 4

Examples of mixed-representation models, which combine all-atom and coarse-grained components. The
integrative models are shown on the left, and higher-resolution cryo–electron microscopy (cryo-EM)
structures are shown on the right. The subunit colors match between model and structure. (a) The model
(105) and cryo-EM structure at 3.9-Å resolution (108) of the human polycomb repressive complex 2
comprising five subunits. Some of the cross-links identified between the subunits are marked on the model
(EZH2 and its domains SANT I, SANT II, and SET, shades of blue; EED, green; RPB4, red; SUZ12 and its
VEFS domain, yellow; AEBP2, purple). (b) The model (107) and cryo-EM structure at 4.8-Å resolution (110)
of the yeast proteasome 19S regulatory particle comprising 19 subunits (RPN1, orange; RPN2, yellow;
RPN8/RPN11 heterodimer, pink; RPN10, purple; RPN13, dark purple, upper left; PCI subunits, shades of
green; AAA-ATPase heterohexamer, blue; core particle, red).

resolution (108). The locations of all the subunits in the integrative model are accurate, including
the locations of subunits that were not modeled explicitly.However, the integrative model deviates
from the cryo-EM structure in the rotations of several subunits, in some cases by more than 90°.

3.3.2. The 19S proteasome regulatory particle. Figure 4b shows an integrative model of the
19S regulatory particle of the yeast proteasome that was obtained using a cryo-EMmap of ∼12-Å
resolution (107). In the first step, half of the subunits with known atomic structures were docked
into the cryo-EM map. The docking mainly resolved the region at the lower half of the map and
was assisted by additional information from deletion studies. All-atom models were not available
for 12 of the subunits that made up 40% of the protein mass. These subunits were modeled as
spheres, each representing 50 residues. In the second step, the IMP package was used to model the
remaining subunits, guided by local information from 57 cross-links and 47 pairwise interactions
(107). The resulting integrative model was in excellent agreement with a concurrent study (109)
and a later higher-resolution structure (110), both by cryo-EM. Of note are the exceptionally
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accurate orientations of the subunits in the integrative model, due in part to the relatively high
resolution of the map.

3.4. Architectural Models

The available structural data are often limited compared with the many degrees of freedom within
the system.These cases involve a combination of a large-assembly, low-resolution electron density
map, low structural coverage of the sequences with all-atom models, and a low ratio of cross-
links per residue. Under such circumstances, integrative modeling is possible only with coarse
representations outlining the probable location of each subunit. Accordingly, ISM can only reveal
the architecture rather than the structure of the system. Currently, only the IMP package (10) is
capable of handling this level of abstraction, as demonstrated in the following examples.

3.4.1. Transcription factor II H complex. An architectural integrative model of the transcrip-
tion factor II H (TFIIH) complex was determined using all-atom model coverage for half of the
protein mass, a cryo-EM density map at 30-Å resolution, and approximately one cross-link per 15
residues (111). A simplified representation with spheres representing 30 residues each was used in
the modeling. In accord with the sparse data, the best model eventually reported only the relative
subunit localizations as they extend along an arc-like architecture (Figure 5a). Comparison of
the integrative model to the cryo-EM structure at 4.4-Å resolution (112) shows good agreement
with the subunit order along the arc. The domain positions and orientations of the two largest
subunits (Rad3 and Ssl2) are also modeled well. However, the orientations of the Tfb4 subunit
and the Ssl1\Tfb1\Tfb2 cluster differ by nearly 120° between the model and the cryo-EM struc-
ture. Yet, one should note that the cryo-EM structure was part of a much larger complex (the
pre-initiation complex), whereas the data used for modeling came from TFIIH alone. Therefore,
these discrepancies may arise partly from conformational changes between these two states rather
than modeling inaccuracies.

3.4.2. Nup84 complex. The seven-subunit coat nucleoporin Nup84 complex from yeast was
modeled with cross-link data (one cross-link per 19 residues) and a low-resolution EM 2D class
average (27). Structures and comparativemodels were available for 80%of the proteinmass,which
were represented by one sphere per residue. The remaining mass was represented by one sphere
per 20 residues (Figure 5b). Comparison of the integrative model with a low-resolution crystal
structure (113) shows good agreement of the subunit order along the arms of the Y-like shape.
In fact, it is plausible that any disagreement between the model and the structure is the result of
multiple conformations of this flexible complex.The integrative model is also more complete than
the crystal structure, for which one subunit (NUP133) was not resolved.

3.4.3. Nuclear pore complex. One of the first and largest integrative models was reported in
2007 byAlber et al. (22) of the nuclear pore complex (Figure 5c).Themodel comprises 57 domains
that recur in an eight-fold symmetry for a total of 456 components per complex. This model was
globally confined by a toroidal density of low resolution (120 Å). Additional inputs to the model
included localization in the density for some of the subunits based on immuno-labeling EM and
approximately 200 pairwise interactions between subunits (1 interaction per 300 residues). At the
time, the percentage of protein mass for which all-atom structures were available was low, and
XL-MS was only emerging. Accordingly, modeling relied entirely on representation of domains
by spherical beads. Over the past decade, the structural information available for the nuclear pore
complex has drastically expanded, and ISM was used to determine the architecture of the nuclear

www.annualreviews.org • Integrative Structure Modeling 127

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
9.

88
:1

13
-1

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

H
ow

ar
d 

U
ni

ve
rs

ity
 o

n 
11

/0
9/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



BI88CH06_Kalisman ARjats.cls May 17, 2019 13:46

a b

c
Nup82
Nsp1
Nup159 Nup145C

Nup84
Nup133 Sec13

Nup85

Nup157

Nup188

Nup192

Nic96
Nup100

Nup116

Nup53
Nup59

Nup170

Pom34
Ndc1

Pom152
Nup145N

Nup1Nup60

Nup57
Nup49
Nsp1

Seh1
Nup120

Nup82
Nsp1
Nup159

Nup145C
Nup84

Nup133

Sec13

Nup85

Nup157
Nup170

Pom34
Ndc1

Pom152

Seh1

Nup120

Nup188
Nup192 Nup145N

Nup1

Nup60

Nup57
Nup49
Nsp1

Nic96
Nup100
Nup116

Nup53
Nup59

Figure 5

Examples of architectural integrative models. The integrative models are shown on the left, and higher-resolution structures are shown
on the right. The subunit colors match between the models and structures. (a) Integrative model (111) and cryo–electron microscopy
(cryo-EM) structure at 4.7-Å resolution (100) of the yeast transcription factor II H complex comprising eight subunits (Ssl2 domains,
shades of dark blue; Rad3 domains, shades of green; Tfb1 domains, shades of yellow; Tfb2 domains, cyan, light blue; Ssl1 domains, shades of
purple; Tfb3, orange; Tfb4 domains, pink, salmon; Tfb5, black). (b) Integrative model (27) and crystal structure at 7.4-Å resolution (113) of
the yeast coat nucleoporin complex comprising seven subunits (EC13, orange; NUP145, blue; SEH1, purple; NUP85, light yellow;
NUP120, red; NUP84, green; NUP133, gray). The crystallographic work did not include the flexible NUP133. (c) Sections of the
topological map (22) and the recent integrative model with higher resolution (116) of the nuclear pore complex, comprising 456
subunits. The two models agree well with each other, though the more recent one is defined at an order-of-magnitude higher precision.

pore in increasing detail (114, 115). Although an all-atom structure of the nuclear pore is still a
goal for the future, an integrative model of significantly higher resolution was recently determined
(116) for the same system that was modeled in 2007. The new model relied on an electron density
map at 28-Å resolution, 50% coverage of the protein mass by all-atom structures, and nearly 3,100
cross-links (1 cross-link per 18 residues). Comparison of the 2007 and 2018 models reveals how
strikingly accurate the former is. Only three subunits in the 2007 model are in a substantially
different location compared with the newer model. Even for these subunits, the localization to
the nuclear side of the pore is still correct. The main differences between the models are again in
the rotations of several subunits, which in some cases are substantial (>90°).

3.5. Summary of Integrative Modeling Accuracy

The cases reviewed here give a general estimate for the accuracy of integrative modeling. The po-
sitions of subunit centers within the complex are determined to better than 5 Å in all-atommodels,
5–10 Å in mixed-representation models, and 10–20 Å in architectural models. These are surpris-
ingly good figures,whichmark ISM as an excellent tool for the study of large protein architectures.
At the same time, the determination of relative rotations for certain subunits within the complex is
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less accurate and can deviate by more than 45°. Although part of these deviations can be explained
by the flexibility of the complexes, this is nonetheless a weaker point of ISM. As relative rotations
are mainly determined by local structural modalities (such as cross-links), devising better ways to
use them in ISM should be emphasized.

An almost trivial observation in ISM is that the more data are available, the higher the accuracy
of the model. This is especially true for subunit rotations, which were substantially less accurate
in regions where the input information was sparse. It is hard to say exactly how much data are
required for successful integrativemodeling.Yet, on the basis of the cases reviewed here and on our
own experience, we estimate that accurate models are likely if the following inputs are available:
(a) density map with resolution better than 20 Å, (b) all-atom models covering more than 70% of
the protein mass, and (c) one distance constraint per 20 residues, or better. In any case, users must
be aware of the main pitfall of ISM—over-interpreting the data. We note that, in this regard, the
authors of the ISM studies reviewed here were conservative in their interpretations.

3.6. Functional Insights from Integrative Models

What can architecture tell us about the function of a complex? Globally, the integrative model is
informative about the subunit localization within the complex, even at coarse representation. This
localization immediately sorts the subunits into core and periphery, thus identifying the central
structural subunits. The measurement of distance between any two subunits is also immediately
apparent from such models. Finally, if the functions of individual subunits are known, the sub-
unit localization may reveal the partitioning of a complex into defined submodules with specific
functions. Locally, the integrative model can identify new interactions between subunits. Such
interactions can then be the focus of follow-up studies using other techniques.

Examples of functional questions that were answered by ISM abound. A few are listed here:

1. A mechanism for DNA opening in the transcription pre-initiation complex was suggested
by the location of the Ssl2 helicase in an integrative model (99).

2. ISM revealed the partitioning of theCCT chaperonin into ATP-hydrolyzing andATP-inert
sectors (102).

3. The protein SUZ12 was identified at the core of the PRC2 complex (105).
4. The internal symmetries of the nuclear pore complex were calculated (22).
5. The distance between ubiquitin receptors in the integrative model of the proteasome sug-

gested an explanation for polyubiquitination requirement in degradation (107).
6. Disease-causing mutations were mapped to new subunit interfaces identified in the TFIIH

complex (111).

As in ISM itself, the risk of overinterpretation is also present in regard to functional insights
from integrative models. ISM users must therefore be careful to limit their inferences to the ac-
curacy and precision of their models.

3.7. Future Directions for Integrative Modeling

Many biological systems for which ISM was believed to be the best methodological option for
structural characterization were solved by cryo-EM in the last five years.We therefore ask: What
is the role of ISM in the new era of high-resolution cryo-EM? To answer this, we note that only
50% of the recently published EM maps had resolutions lower than 6 Å, and the majority of the
maps were published without an accompanying PDB model (21). Moreover, it is common for
maps of a certain resolution to have large parts that are much lower in resolution or that are even
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unresolved. Clearly, these are cases for which ISM is the approach of choice. In addition, ISM
can be applied to systems that, at least in the near future, are still not well resolved by cryo-EM,
such as large membrane complexes, filament assemblies, very small complexes, and highly flexible
complexes.

ISM currently faces several challenges. In our opinion, the most pressing is to improve the
performance and ease-of-use of available software, especially for cases of architectural mod-
eling. Often they require running many scripts in succession, with occasional obscure error
messages that are hard to interpret even for expert users. A second challenge is to formalize a
standard of reporting for ISM results. Efforts in this direction are ongoing (117, 118). Another
challenge is modeling the dynamics of complexes, which requires ensembles of conformations.
These are all doable tasks, the completion of which will greatly expand the use of ISM in structural
biology.

Finally, we highlight two prospective directions in ISM that we believe will be influential. The
first is the use of in situ and in vivo data as inputs to the ISM process. Such inputs include cryo-
tomograms of cellular sections, in vivo XL-MS (33, 34), and super-resolution light microscopy. Al-
though these data are currently inferior in the resolution and number of restraints compared with
what is achieved with purified complexes, they nonetheless hold the potential to yield models that
describe the native state better. A second direction is the use of high-yield XL-MS methodology
for the structure determination of small globular proteins (72, 119). Although the computational
aspects of this approach still need substantial work, it holds the potential to become an NMR-like
structural method.

In this review, we have undertaken a critical assessment of the ISM field by comparison of
published models with more recent structures at higher resolution. We believe this comparison
gives a favorable view of ISM and demonstrates its ability to yield nontrivial structural insights.
We hope that these successes will motivate an even wider use of ISM and development of the
software infrastructure to support it.
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