Structural Genomics

Iosif Vaisman

Email: ivaisman@gmu.edu

From genes to proteins

From genes to proteins

Computational Gene Prediction

- Where the genes are unlikely to be located?
- How do transcription factors know where to bind a region of DNA?
- Where are the transcription, splicing, and translation start and stop signals?
- What does coding region do (and non-coding regions do not)?
- Can we learn from examples?
- Does this sequence look familiar?

Measures of Prediction Accuracy

<table>
<thead>
<tr>
<th>REALITY</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN</td>
<td>TP</td>
</tr>
<tr>
<td>FP</td>
<td>FN</td>
</tr>
</tbody>
</table>

Sensitivity: $S_n = \frac{TP}{TP + FN}$

Specificity: $S_p = \frac{TN}{TN + FP}$

<table>
<thead>
<tr>
<th>REALITY</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

Chromosome 19 gene map

DNA

RNA

mRNA

PROTEIN

TRANSCRIPTION

SPlicing

TRANSLATION

PROMOTER ELEMENTS

SPLICE SITES

START CODON

STOP CODON

SPLICE SITES

PROTEIN

From genes to proteins

Chromosome 19 gene map

DNA

RNA

mRNA

PROTEIN

TRANSCRIPTION

SPlicing

TRANSLATION

PROMOTER ELEMENTS

SPLICE SITES

START CODON

STOP CODON

SPLICE SITES

PROTEIN
Measures of Prediction Accuracy

Exon Level

<table>
<thead>
<tr>
<th>REALITY</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRONG EXON</td>
<td>CORRECT EXON</td>
</tr>
</tbody>
</table>

Sensitivity

\[
S_n = \frac{\text{number of correct exons}}{\text{number of actual exons}}
\]

Specificity

\[
S_p = \frac{\text{number of correct exons}}{\text{number of predicted exons}}
\]

Spliced Alignment (Procrustes)

- New genomic sequence
- Selection of candidate exons
 - AUG → GU initial exons
 - AG → GU internal exons
 - AG → UAA or UAG or UGA terminal exons
- Filtration (based on the codon usage statistics)
- Construction of all possible chains of candidate exons
- Finding a chain with the maximum global similarity to the target protein

Predicted Exon Assembly (Procrustes)

PCR Primers Prediction (GenePrimer)

Exon 1085..1182 (98) hit using first 2 primers
Exon 1628..1676 (49) missed
Exon 1900..2001 (102) hit using first 8 primers
Exon 2110..2184 (75) missed
Exon 2516..2722 (207) hit using first 4 primers
Exon 3385..3472 (88) missed
Exon 3546..3746 (201) hit using first primer
...

GRAIL gene identification program
Suboptimal Solutions for the Human Growth Hormone Gene (GeneParser)

![Graph](image)

GeneMark Accuracy Evaluation

![Graph](image)

Sequence-structure correlations

![Graph](image)

Model structure coverage in sequence space

![Graph](image)

Structural Genomics Project

- Organize known protein sequences into families.
- Select family representatives as targets.
- Solve the 3D structure of targets by X-ray crystallography or NMR spectroscopy.
- Build models for other proteins by homology to solved 3D structures.

History of Structural Genomics

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>SG project proposed in Japan</td>
</tr>
<tr>
<td>1997</td>
<td>SG pilot project starts at RIKEN, Japan</td>
</tr>
<tr>
<td>1998/99</td>
<td>Initial SG projects start in Canada, Germany, US</td>
</tr>
<tr>
<td>2000</td>
<td>OECD/ISTP/PSF, Paris, France - Further Study on SG</td>
</tr>
<tr>
<td>2002</td>
<td>National project on Protein Structural and Functional Analyses starts in Japan</td>
</tr>
</tbody>
</table>

Heinemann, 2002
Goals of structural genomics

- Provision of enough structural templates to facilitate homology modeling of most proteins
- Structures of all proteins in a complete proteome
- Structural elucidation of a complete biological pathway
- Structural elucidation of a complete disease

Target selection

- realm of interest
- family exclusion - impossible
- family exclusion - known
- prioritization
- selection
- analysis and interpretation

Coverage of the Human Genome By Structure

Structural genomics shortcuts

M. thermoautotrophicum structural genomics project

Structural genomics target database