Data Warehouse

- Operational data
- Data fusion
- Data cleansing
- Metadata

Data Mining

- Data mining is the exploration and analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns and rules

- Common data mining tasks
 - Classification
 - Estimation
 - Prediction
 - Affinity Grouping
 - Clustering
 - Description

Knowledge Discovery

- Directed and Undirected KD
- Directed KD
 - Purpose: Explain value of some field in terms of all the others
 - Method: We select the target field based on some hypothesis about the data. We ask the algorithm to tell us how to predict or classify it
 - Similar to hypothesis testing (e.g., in regression modeling) in statistics

- Undirected KD
 - Purpose: Find patterns in the data that may be interesting
 - Method: clustering, affinity grouping
 - Closest to ideas of machine learning in artificial intelligence

- Comparison
 - UKD helps us to recognize relationships & DKD helps us to explain them
Classification
- Classifying observations into different categories given characteristics

Estimation
- Rules that explain how to estimate a value given characteristics

Prediction
- Rules that explain how to predict a future value or classification, given characteristics

Affinity Grouping
- Grouping by relations (not by characteristics)

Clustering
- Segmenting a diverse population into more similar groups
- In clustering, there are no pre-defined classes and no examples. Records are grouped together by some similarity measure.

Scientific Models
- Mechanistic models
 - Predictive power
 - Elegance
 - Consistency
- Stochastic models
 - Black box
 - Predictive power

Artificial Intelligence in Biosciences
- Neural Networks (NN)
- Genetic Algorithms (GA)
- Formal Grammars (FG)
Neural Networks

• interconnected assembly of simple processing elements (units or nodes)
• nodes functionality is similar to that of the animal neuron
• processing ability is stored in the inter-unit connection strengths (weights)
• weights are obtained by a process of adaptation to, or learning from, a set of training patterns

Perceptron

\[Y = \begin{cases} 1 & \text{if } \sum w_{i}i_{i} > \Theta \\ 0 & \text{otherwise} \end{cases} \]

Learning process: \[\Delta w_{i} = (T_{p} - Y_{p})i_{p} \]

Artificial Intelligence in Biosciences

Neural Networks (NN)
Genetic Algorithms (GA)
Formal Grammars (FG)
Genetic Algorithms

Search or optimization methods using simulated evolution.
Population of potential solutions is subjected to natural selection, crossover, and mutation

- choose initial population
- evaluate each individual's fitness
- repeat
 - select individuals to reproduce
 - mate pairs at random
 - apply crossover operator
 - apply mutation operator
 - evaluate each individual's fitness
- until terminating condition

Genetic Algorithms Applications

- Parents
- Child AB
- Child BA

Crossover

Mutation

GA simulation of folding

Artificial Intelligence in Biosciences

- Neural Networks (NN)
- Genetic Algorithms (GA)
- Formal Grammars (FG)
Grammars and Language

grammar
n.
1. the study of the way the sentences of a language are constructed...

4. **Generative Grammar**, a device, as a body of rules, whose output is all of the sentences that are permissible in a given language, while excluding all those that are not permissible.

Random House Unabridged Dictionary

Language Components

- Semantics (meaning)
- Syntax (structure, form)

Semantics

Derived from syntax

Semantic content derived from vocabulary within a context

Vocabulary element has its own meanings

- dictionary lookup
- meanings depending on context

Time flies like an arrow
Fruit flies like a banana

Formal Grammars

formal grammar
a means for specifying the syntactic structure of natural language by a set of transformation functions

Chomsky hierarchy (for string grammars)

- type 0: phrase structure
- type 1: context sensitive
- type 2: context free (SCFG)
- type 3: regular (Hidden Markov models)

Chomsky, *Syntactic Structures* (1957)

Markov Model (or Markov Chain)

A - T - C - T - A - G

Probability for each character based only on several preceding characters in the sequence

of preceding characters = order of the Markov Model

Probability of a sequence

Hidden Markov Models

A - T - C - T - A - G

Observed frequencies

A 0.7 A 0.1 C 0.8 A 0.4 A 0.8 C 0.3
T 0.3 T 0.9 G 0.2 T 0.6 T 0.2 G 0.7

Probabilistic model - true state is unknown
Hidden Markov Models

States -- well defined conditions

Edges -- transitions between the states

![Diagram of Hidden Markov Model](image1)

ATGAC
ATTAC
ACGAC
ACTAC

Each transition assigned a probability.

Probability of the sequence:
- single path with the highest probability --- Viterbi path
- sum of the probabilities over all paths --- Baum-Welch method

![Diagram of Viterbi and Baum-Welch methods](image2)

Adopted from Anders Krogh, 1998

Hidden Markov Model for Exon and Stop Codon (VEIL Algorithm)

![Diagram of Exon and Stop Codon](image3)

Adopted from S. Salzberg, 1997

A Markov state

A hidden Markov model consists of Markov states connected by directed transitions. Each state emits an output symbol, representing sequence or structure. There are four categories of emission symbols in our model: b, d, r, and c, corresponding to amino acid residues, three-state secondary structure, backbone angles (discretized into regions of phi-psi space) and structural context (e.g. hairpin versus diverging turn, middle versus end-strand), respectively.

Adopted from C. Bystroff et al, 2000

Hidden Markov Model in Structural Analysis

![Diagram of Structural Analysis](image4)

Adopted from C. Bystroff et al, 2000

Artificial Intelligence in Biosciences

Other machine learning algorithms:

- Support vector machines
- Decision trees
- Random forests
Support Vector Machines (SVM) Algorithm

Decision surface is a hyperplane (line in 2D, plane in 3D, etc.) in feature space.

Define what an optimal hyperplane is (in a way that can be identified in a computationally efficient way):

maximize margin

Extend the above definition for non-linearly separable problems: have a penalty term for misclassifications.

Map data to high dimensional space where it is easier to classify with linear decision surfaces: reformulate problem so that data is mapped implicitly to this space.