

A Robust Online Sequential Extreme Learning Machine

Hoang Trong Minh Tuan, Hieu T. Huynh,

Nguyen H. Vo, Yonggwan Won*

International Symposium on Neural Network (ISNN 2007)

Feed-Forward Neural Networks

• Review FFNN:

- A powerful method used in various applications (regression, classification).
- Slow training speed (gradient-descent/iterative based approaches)
- Overfitting
- Local minima
- Some parameters need to be tuned manually.
- (In theory) single hidden layer can express arbitrary boundary

Feed-Forward Neural Networks

Chapter 1 Introduction enough to have a good classification boundary.
Given any bounded nonconstant piecewise continuous activation function *g*, for any target function *f* and any randomly generated

parameter sequence $\{a_i, b_i\}$ and \tilde{N} is the number of hidden nodes.

In many application fields: single hidden layer neural network is

- $\lim_{\tilde{N}\to\infty}\left\|f\left(\mathbf{x}\right)-f_{\tilde{N}}\left(\mathbf{x}\right)\right\|=0$
- Huang et al. proposed extreme learning machine (ELM)
 - ELM is a single-hidden-layer feed-forward neural network

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Extreme Learning Machine (ELM)

 ELM approach is based on finding the estimation for the linear system forming the hidden-to-output part of the system.

$$\mathbf{H}oldsymbol{eta}=\mathbf{T}$$
 .

ELM is a batch learning method

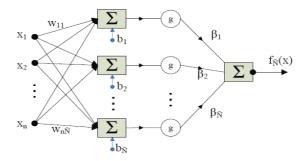


Fig. 1. A sample SLFN with n- $\tilde{\mathrm{N}}\text{-}\mathrm{m}$ network structure

• ELM algorithm:

Assign input weights w_{ij} and hidden nodes bias with random values.

• Assume N >
$$\tilde{N}$$
:

$$\mathbf{H}_{N \times \tilde{N}} = \begin{bmatrix} g(\mathbf{w}_{1}.\mathbf{x}_{1} + b_{1}) \cdots g(\mathbf{w}_{\tilde{N}}.\mathbf{x}_{1} + b_{\tilde{N}}) \\ \vdots & \ddots & \vdots \\ g(\mathbf{w}_{1}.\mathbf{x}_{N} + b_{1}) \cdots g(\mathbf{w}_{\tilde{N}}.\mathbf{x}_{N} + b_{\tilde{N}}) \end{bmatrix} .$$

$$\beta_{\tilde{N} \times m} = \begin{bmatrix} \beta_{1}^{T} \\ \vdots \\ \beta_{\tilde{N}}^{T} \end{bmatrix} \text{ and } \mathbf{T}_{N \times m} = \begin{bmatrix} \mathbf{t}_{1}^{T} \\ \vdots \\ \mathbf{t}_{N}^{T} \end{bmatrix} .$$
• Find output weight:

$$\mathbf{H}\boldsymbol{\beta} = \mathbf{T} \quad \hat{\boldsymbol{\beta}} = \mathbf{H}^{\dagger}.\mathbf{T} \quad \vdots$$
Chonnam National University - KOREA
Dept. of Computer Engineering
IC@Network Lab

Online Sequential Extreme Learning Machine (OS-ELM)

• ELM is a batch learning in nature.

Obstacle in real world application:

Chapter

Introduction

- When data set is large (computational cost with hidden-tooutput matrix)
- When the data is costly/hard to collect
- OS-ELM propose the solution for these difficulties
 - Learn one-by-one
 - Learn chunk-by-chunk (same or different chunk sizes)

OS-ELM algorithm:

Step 1 (*Boosting phase*). Given a chunk of initial training set $\aleph_0 = \{(\mathbf{x}_i, \mathbf{t}_i)\}_{i=1}^{N_0}$, $N_0 \times \tilde{N}$.

a) Assign the input weight and bias randomly within the range [-1, 1].

b) Calculate the initial hidden layer output matrix \mathbf{H}_0 .

$$\mathbf{H}_{0} = \begin{bmatrix} g\left(\mathbf{w}_{1}.\mathbf{x}_{1}+b_{1}\right) & \cdots & g\left(\mathbf{w}_{\tilde{N}}.\mathbf{x}_{1}+b_{\tilde{N}}\right) \\ \vdots & \ddots & \vdots \\ g\left(\mathbf{w}_{1}.\mathbf{x}_{N_{0}}+b_{1}\right) & \cdots & g\left(\mathbf{w}_{\tilde{N}}.\mathbf{x}_{N_{0}}+b_{\tilde{N}}\right) \end{bmatrix}$$

c) Estimate the initial output weight $\boldsymbol{\beta}^{(0)} = \mathbf{P}_0 \mathbf{H}_0^T \mathbf{T}_0$, where $\mathbf{P}_0 = (\mathbf{H}_0^T \mathbf{H}_0)^{-1}$ and $\mathbf{T}_0 = [\mathbf{t}_1, \dots, \mathbf{t}_{N_0}]^T$ d) Set the index for data chunk k to zero (k = 0).

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Online Sequential Extreme Learning Machine (OS-ELM)

Step 2 (Sequential learning phase). For each further (k + 1)-th chunk of new observations

$$\aleph_{k+1} = \{ (\mathbf{x}_i, \mathbf{t}_i) \}_{i=(\sum_{j=1}^k N_j)+1}^{\sum_{j=1}^{k+1} N_j}$$

Chapter 2 Motivation

where $N_{(k+1)}$ denotes the number of samples in the (k + 1)-th chunk. a) Calculate the partial hidden layer output matrix \mathbf{H}_{k+1} for the (k + 1)-th chunk, as shown below

$$\mathbf{H}_{k+1}_{N_{k+1} \times \tilde{N}} = \begin{bmatrix} g\left(\mathbf{w}_{1} \cdot \mathbf{x}_{(1)} + b_{1}\right) & \cdots & g\left(\mathbf{w}_{\tilde{N}} \cdot \mathbf{x}_{(1)} + b_{1}\right) \\ \vdots & \ddots & \vdots \\ g\left(\mathbf{w}_{1} \cdot \mathbf{x}_{(N_{k+1})} + b_{1}\right) \cdots & g\left(\mathbf{w}_{\tilde{N}} \cdot \mathbf{x}_{(N_{k+1})} + b_{1}\right) \end{bmatrix}$$

b) Calculate the output weight matrix $\beta^{(k+1)}$.

$$\mathbf{P}_{k+1} = \mathbf{P}_k - \mathbf{P}_k \mathbf{H}_{k+1}^T \left(\mathbf{I} + \mathbf{H}_{k+1} \mathbf{P}_k \mathbf{H}_{k+1}^T \right)^{-1} \mathbf{H}_{k+1} \mathbf{P}_k$$
$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + \mathbf{P}_{k+1} \mathbf{H}_{k+1}^T \left(\mathbf{T}_{k+1} - \mathbf{H}_{k+1} \boldsymbol{\beta}^{(k)} \right).$$

c) Set k = k + 1. Go to step 2)

Online Sequential Extreme Learning Machine (OS-ELM)

Weak-points of OS-ELM:

$$\mathbf{P}_0 = \left(\mathbf{H}_0^T \mathbf{H}_0\right)^{-1}$$

- In real applications: H^TH tends to be either singular or illconditioned matrix.
- Adjust parameter manually:
 - Satellite image + California housing: bias in the range [0.2, 4.2]
 - Image segment: bias in the range [3, 11]
 - DNA: bias in the range [20, 60]

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Robust Online Sequential Extreme Learning Machine (ROS-ELM)

Find the condition to guarantee H^TH is full rank

Chapter

Motivation

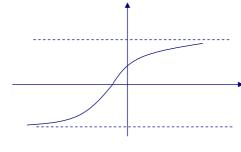
• If **H**^T**H** is full rank, then **H**^T**H** is invertible.

If **H** is full rank, then $\mathbf{H}^{\mathsf{T}}\mathbf{H}$ is full rank

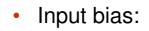
Input weight selection

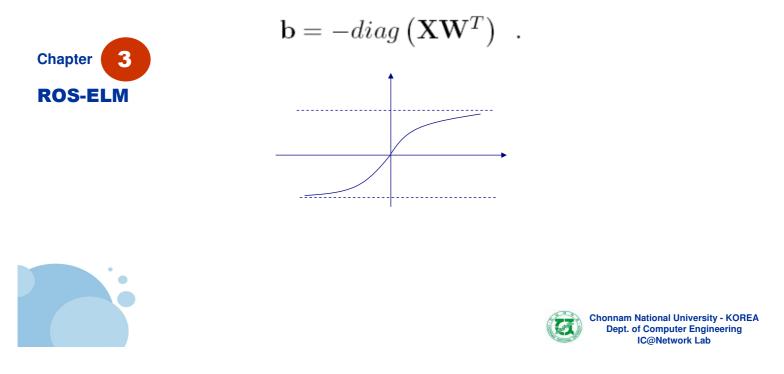
 $w_{ij} = c.r_{ij} \quad .$

where r_{ij} is a random variable of normal distribution ($\mu = 0, \sigma = 1$); c is a user-defined scalar that can be adjusted to obtain the input-to-hidden weights that do not saturate the sigmoid functions.



Robust Online Sequential Extreme Learning Machine (ROS-ELM)





- Dataset for benchmarks
 - Regression

Classification

 Table 1. Specifications of benchmark data sets with number of hidden nodes for testing

Dataset	Attribute	Classes	Training data	Testing data	\mathbf{Nodes}
Auto-MPG	7	-	320	78	25
Abalone	8	-	3,000	$1,\!177$	25
Image Segment	19	7	1,500	810	180
Satellite Image	36	6	$4,\!435$	2,000	400

Experiment process

All features of regression application: normalized into • the range [0, 1]

- Input attributes of classification applications: normalized into the range [-1, 1].
- Number of hidden nodes in each test cases: manually select the best ones
- Fifty trials for each test and we compute the average result

RMSE

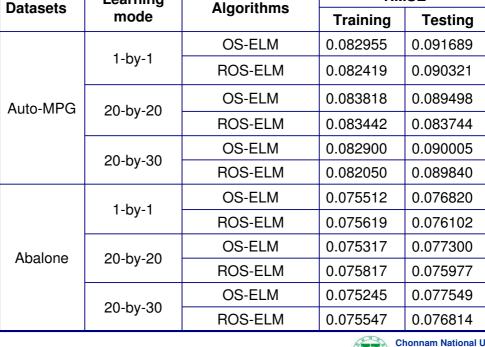
Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Regression results

Learning

Datasets

Table 2. Performance comparison on Regression Applications



• Result from Liang et al.

TABLE II

COMPARISON BETWEEN OS-ELM AND OTHER SEQUENTIAL ALGORITHMS ON REGRESSION APPLICATIONS

Datasets	Algorithms	Time	RMSE		# nodes
		(seconds)	Training	Testing	
Auto-MPG	OS-ELM (Sigmoid)	0.0444	0.0680	0.0745	25
	OS-ELM (RBF)	0.0915	0.0696	0.0759	25
	Stochastic BP	0.0875	0.1112	0.1028	13
	GAP-RBF[18]	0.4520	0.1144	0.1404	3.12
	MRAN[18]	1.4644	0.1086	0.1376	4.46
	RANEKF[18]	1.0103	0.1088	0.1387	5.14
	RAN[18]	0.8042	0.2923	0.3080	4.44
Abalone	OS-ELM (Sigmoid)	0.5900	0.0754	0.0777	25
	OS-ELM (RBF)	1.2478	0.0759	0.0783	25
	Stochastic BP	0.7472	0.0996	0.0972	11
	GAP-RBF[18]	83.784	0.0963	0.0966	23.62
	MRAN[18]	1500.4	0.0836	0.0837	87.571
	RANEKF[18]	90806	0.0738	0.0794	409
	RAN[18]	105.17	0.0931	0.0978	345.58

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Classification results

Table 3. Performance comparison on Classification Applications

Detecato	Learning	Algorithms	Accuracy		
Datasets	mode	Algorithms	Training	Testing	
Image Segment	1-by-1	OS-ELM	96.8160	94.3852	
		ROS-ELM	97.2320	94.8519	
	20-by-20	OS-ELM	96.8147	94.2198	
		ROS-ELM	97.3067	94.9852	
	20-by-30	OS-ELM	96.7440	94.2519	
		ROS-ELM	96.9613	94.9111	
Satellite Image	1-by-1	OS-ELM	91.9324	88.9170	
		ROS-ELM	92.7806	89.8520	
	20-by-20	OS-ELM	91.9436	88.9040	
		ROS-ELM	92.7251	89.7690	
	20-by-30	OS-ELM	91.9729	88.7860	
		ROS-ELM	92.6011	89.6550	

• Result from Liang et al.

Datasets Algorithms Time Accuracy (%) # nodes (seconds) Training Testing **OS-ELM** (Sigmoid) 9.9981 97.00 94.88 180 Image **OS-ELM (RBF)** 12.197 96.65 94.53 180 82.55 2.5776 Segmentation Stochastic BP 83.71 80 GAP-RBF 1724.3 89.93 44.2 MRAN 7004.5 93.30 53.1 _ **OS-ELM** (Sigmoid) 302.48 91.88 88.93 400 Satellite **OS-ELM (RBF)** 319.14 93.18 89.01 400 25 Image Stochastic BP 3.1415 85.23 83.75 MRAN 2469.4 86.36 20.4 -

 TABLE III

 COMPARISON BETWEEN OS-ELM AND OTHER SEQUENTIAL ALGORITHMS ON CLASSIFICATION APPLICATIONS

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Conclusion

overall difference is subtle.

Chapter 5 Conclusion •

performance compared to OS-ELM.
ROS-ELM is a little slower than OS-ELM due to the matrix multiplication in the initialization phase, but the

ROS-ELM proves it generalization and higher

• The combination of ELM and ROS-ELM can be an effective solution in different domains.

