

Department of Computer Engineering IC@Network Lab

Cognitive States Detection in fMRI Data Analysis using incremental PCA

Hoang Trong Minh Tuan, Yonggwan Won*, Hyung-Jeong Yang

International Conference on Computational Science and its Applications (ICCSA 2007)

Agenda

- Chapter 1: Introduction
- Chapter 2: Data Description
- Chapter 3: Previous works
- Chapter 4: iPCA
- Chapter 5: Experimental results

functional Magnetic Resonance Imaging

Application

- Investigating internal activities in human brain.
- Disease detection (Alzheimer, Parkinson)

• How

 Measure changes in blood oxygen level dependent (BOLD) response using fMRI scanner

Data result

• Three-dimensional images showing changes in BOLD via time

Chapter

Introduction

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

functional Magnetic Resonance Imaging

• Research interest:

- Obtain a comprehensive understanding of human brain activity elucidating the relationship between structure and function.
- Identify the cognitive states from fMRI images

Data characteristics

- Sparse: (dozens of data) hard and costly to collect data
- · High-dimensions: up to hundred thousands of voxels
- Noises: nontask-related brain tissue activations + head motion + machine artifact, etc.

Data description

Input-output mapping •

 $f: fMRI - sequence - images(t_1, t_2) \rightarrow Cognitive - States$

- fMRI-sequence-images (t_1, t_2) : a sequence of time-series fMRI images collected during interval [t₁, t₂]
- Cognitive-States: a set of cognitive states to be detected •
- Information •
 - Picture vs. Sentence
 - t₂-t₁ = 8s

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Data description

- Sentence •
 - Positive: "It is true that the star is below the plus" •

- Negative: "It is not true that the star is above the plus" •
- **Pictures**
 - Symbols: +, *, ,...

Table 1. Dataset Information									
Subject ID	04799	04820	04847	05675	05680	05710			
# features	79184	80240	75168	82160	80992	74144			

able 1 Detect information

Data description

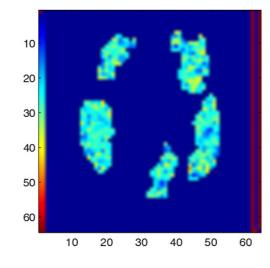
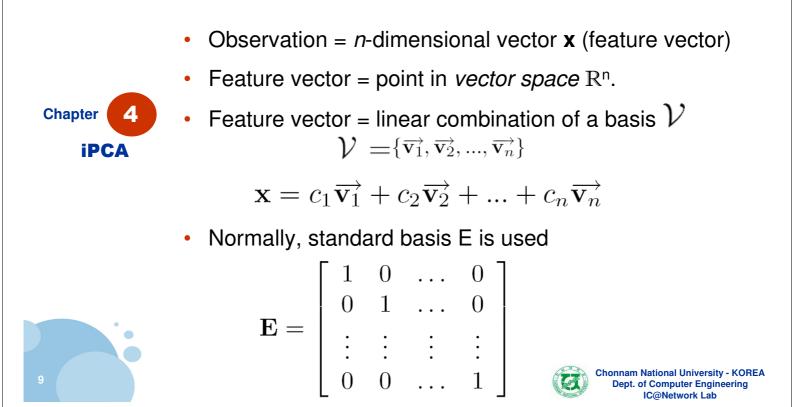


Figure 1. fMRI image of the subject ID 05710 when reading a sentence 'It is not true that the star is above the plus.' in a trial at slice z=6 of 8-th snapshot.

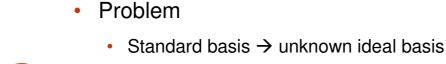
Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Previous works

• Unsupervised learning method: clustering



- Independent Component Analysis
 Select *n* most discriminating voxels
- Select *n* most active voxels
- Select *n* most active voxels per Region of Interests
- PCA (on powerful computers)



Incremental Principal Component Analysis

Principal Component Analysis

- Keep most p significant principal components of the new eigenspace
- Incremental PCA:
 - One-by-one update the $v_{i,i}$ to minimize the reconstruction error

$$\sum_{k} \left\| \left(\tilde{\mathbf{x}}_{k} - \mathbf{x}_{k}
ight) \right\|$$

Incremental Principal Component Analysis

Assume

with j = 1...n.

- $\overrightarrow{\mathbf{v}_i} = [v_{i,1}, ..., v_{i,n}]^T$ (i = 1...p) eigenspace
- **a**_k the projection of **x**_k onto the *p*-dimensional eigenspace (k=1...m)

 $a_{k,i} = v_{i,1} \cdot x_{k,1} + v_{i,2} \cdot x_{k,2} + \dots + v_{i,n} x_{k,n}$ with $i = 1 \dots p$.

• $\tilde{\mathbf{x}}_k = [\tilde{x}_{k,1}, \tilde{x}_{k,2}, \dots, \tilde{x}_{k,n}]$ the reconstructed point $\tilde{x}_{k,j} = v_{1,j}.a_{k,1} + v_{2,j}.a_{k,2} + \dots + v_{p,j}.a_{k,p}$

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Incremental Principal Component Analysis

- Basic idea: for each new sample x_{k+1}
 - 1. Computer $\mathbf{\acute{a}}_{k+1}$ by projecting \mathbf{x}_{k+1} on to the current principal components $\overrightarrow{\mathbf{v}_i}$ (i = 1...p)
 - 2. Estimate the residue vector (reconstruction error) $e_i = \|\mathbf{x}_{k+1} - \tilde{\mathbf{x}}_{k+1}\| \ (i = 1...p)$
 - 3. Update the estimates of $\overrightarrow{\mathbf{v}_i}$, (i = 1...p), and output the actual projected point for sample \mathbf{x}_{k+1} : \mathbf{a}_{k+1}
- Magnitudes of updates
 - is proportional to the residual vector
 - is inversely proportional to the past data captured

Chapter

iPCA

Δ

Incremental Principal Component Analysis

Algorithms

Step 1: Initialize the *p* principal components $\overrightarrow{\mathbf{v}_1}$ to unit vectors, i.e. $\overrightarrow{\mathbf{v}_1} = [100...0]^T, \overrightarrow{\mathbf{v}_2} = [010...0]^T, \overrightarrow{\mathbf{v}_3} = [001...0]^T$, etc., and d_i to small positive values.

Step 2: For each samples \mathbf{x}_{k+1} , assign $\mathbf{u}_1 = \mathbf{x}_{k+1}$, and start updating \mathcal{V}

▶ find the component $a_{k+1,i}$ by projecting \mathbf{x}_{k+1} onto $\overrightarrow{\mathbf{v}_i}$

 $\begin{array}{c} \blacktriangleright \text{ estimate the residue vector (error)} \\ \mathbf{e} = \mathbf{u}_i - a_{k+1,i}.\overrightarrow{\mathbf{v}_i^i} \\ \hline \quad \mathbf{b} \text{ calculate the past data captured by} \\ \overrightarrow{\mathbf{v}_i^i} : d_i \leftarrow \lambda d_i + a_{k+1,i}^2 \\ \hline \quad \mathbf{b} \text{ update the principal component:} \\ \overrightarrow{\mathbf{v}_i^i} \leftarrow \overrightarrow{\mathbf{v}_i^i} + \frac{a_{k+1,i}.\mathbf{e}_i}{d_i} \end{array}$

 $\bullet \text{ repeat with the remainder of } \mathbf{u}_{i+1}:$ $\mathbf{u}_{i+1} = \mathbf{u}_i - a_{k+1,i}.\overrightarrow{\mathbf{v}_i}$

Step 2.2: do re-orthonormalization to maintain orthonormality of the system.

Step 3: Finally, project the whole data to the new eigenspace model with p principal components

Experiment process

Pre-process:

Remove noise

Chapter 5

Experiments

Chapter

iPCA

- Collect task-related images only
- Classify data to 'Picture vs. Sentence' study only
- Gaussian Naïve Bayes classifier
 - Classification errors are computed using k-fold crossvalidation

Apply for full feature set and compare with *p*=250 principal components

Table 2. Single subject cognitive state detector using GNB for Picture vs. Sentence study using iPCA

Feature selection	Average	Subject					
	Performance	04799	04820	04847	05675	05680	05710
All features ($\sim 80,000$)	63.75%	53.75%	57.50%	75.00%	58.75%	67.50%	70.00%
iPCA(250)	83.75%	80.00%	80.00%	90.00%	88.75%	78.75%	85.00%

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Picture-Sentence study

Compare with previous methods

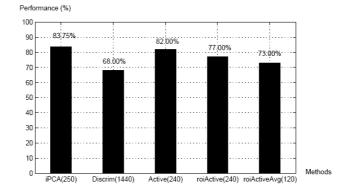


Figure 3. Comparison between iPCA and other feature selection methods using GNB classifier for 'Picture vs. Sentence' study

Tasks in order study

•	Consider trials in Picture - Sentence order
---	---

Table 3. Experimental results for trials with Picture-Sentence sequence study using iPCA

	Feature selection	Average	$\operatorname{Subject}$						
		Performance	04799	04820	04847	05675	05680	05710	
	iPCA(250)	87.08%	97.50%	87.50%	80.00%	80.00%	87.50%	90.00%	

Consider trials in Sentence – Picture order

Table 4. Experimental results for trials with Sentence-Picture sequence study using iPCA

Feature selection	Average	$\operatorname{Subject}$						
reature selection	Performance	04799	04820	04847	05675	05680	05710	
iPCA(250)	92.91%	100.00%	95.00%	85.00%	92.50%	92.50%	92.50%	

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

Utilize regions of Interests

In brains, there are regions which active the most for a particular task → Regions of Interest

Table 5. Comparison between iPCA and Domain-Expert-Depending-Selection (DEDS) method

Feature Selection metho	Average Performance				
reature Selection metho	Picture-Sentence sequence	Sentence-Picture sequence			
iPCA(250)	0.87 ± 0.06	$0.93 {\pm} 0.05$			
$DEDS(8,470 \sim 11,136)$	0.80 ± 0.034	0.90 ± 0.26			

Table 6. Single-subject cognitive state detector using GNB for Affirmative vs. Negative Sentence study using iPCA

Feature selection	Average	Subject					
Teature selection	Performance	04799	04820	04847	05675	05680	05710
All features ($\sim 80,000$)	58.33%	72.50%	62.50%	47.50%	55.00%	55.00%	57.50%
iPCA(250)	80.41%	75.00%	82.50%	77.50%	92.50%	80.00%	75.00%

Conclusion

- Dimension reduction or knowledge extraction from fMRI data is considered as a challenged problem.
 - Only need to keep the first p eigenstructures \rightarrow algorithms can be applied to personal computer.
- The temporal and spatial data fMRI's feature vectors can be reduced.
- The results proved the new eigenspace can capture enough information.

Chonnam National University - KOREA Dept. of Computer Engineering IC@Network Lab

