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Four-Body Statistical Potential
• Protein structures are represented as 

discrete sets of points in 3D, each 
corresponding to an amino acid (aa)

• Delaunay tessellation of a protein 
structure yields an aggregate of space-
filling, non-overlapping, irregular 
tetrahedra (simplices) that each define 
a quadruplet of nearest-neighbor aa’s

• A four-body statistical potential 
function is derived via tessellation of a 
training set of structures, assigning a 
log-likelihood score to all possible 
quadruplets of aa’s
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Computational Mutagenesis Methodology
• Total Potential or Topological Score of a protein structure, a  

global measure of sequence-structure compatibility, is obtained by 
summing the scores of all the simplices in the tessellation

• Individual Residue Potential or Residue Environment Score of each 
aa in a protein structure is obtained by locally summing the scores
of only the simplices that use the aa’s point representation as a 
vertex; the scores of all the aa’s form a Potential Profile vector

• Assumption: minor structural differences 
and similar tessellations between each 
mutant and the wild-type (wt) protein

• Approach: the total potential and potential 
profile of every mutant can be derived 
from the tessellation of the wt structure
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Computational Mutagenesis Methodology
Based on the methodology, each mutant is characterized by 
a scalar Residual Score and a vector Residual Profile:

• Residual Score – difference between mutant and wt      
total potentials

Measures the relative change in mutant sequence-structure 
compatibility from wt

• Residual Profile – difference between mutant and wt 
potential profiles

Quantifies environmental perturbations from wt at every aa
position
Each component in the profile is referred to as an environmental 
change (EC) score for the corresponding aa position  



Comprehensive Mutational Profile (CMP)
• At each residue position in a protein structure, a CMP 

score is obtained by calculating the mean of the 20 
residual scores associated with all possible aa 
replacements (including the degenerate mutant obtained 
by substituting the wt aa with itself, with residual score 0)

• Mathematically,

where index i refers to the 20 aa’s, and index j refers to 
the position in the 1° sequence of the protein
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CMP Example: HIV-1 Protease
• PDB ID: 3phv (monomer, 99 aa’s)
• Functional as a homodimer

Interface: P1-T4 and C95-F99
Catalytic triad: D25-T26-G27
Flap region: M46-V56



CMP Example: HIV-1 Protease



HIV-1 Protease Experimental Data

• Synthesis and analysis of 536 single site missense 
mutants

336 published mutants: Loeb, D.D., Swanstrom R., Everitt, L., 
Manchester, M., Stamper, S.E. & Hutchison III, C.A. (1989) Complete 
mutagenesis of the HIV-1 protease. Nature 340, 397-400.

200 mutants provided by R. Swanstrom (UNC)

• Each mutant placed in one of 3 phenotypic categories, 
positive, negative, or intermediate, based on activity 
(ability to process the Pol polyprotein)

• Residual scores of the mutants can be used to elucidate 
the structure-function relationship in HIV-1 protease



HIV-1 Protease Experimental Data



Structure-Function Correlations Based on 
Residual Scores: HIV-1 Protease

How significant are the differences in class-pair means?
Pos-Neg: p = 1.65 × 10-11; Int-Neg: p = 9.90 × 10-6; and Pos-Int: p = 0.086.



Structure-Function Correlations Based on 
Residual Scores: Bacteriophage T4 Lysozyme

• Experimental data: 2015 single site mutants generated by 
introducing the same 13 aa replacements at 163/164 positions -
all but M1 (PDB ID: 3lzm)

Rennell, D., Bouvier, S.E., Hardy, L.W. & Poteete, A.R. (1991) Systematic 
mutation of bacteriophage T4 lysozyme. J. Mol. Biol. 222, 67-88.

• Four mutant activity classes: high, medium, low, negative
• Investigators recommend data analysis using only two classes 

(active = high + med, inactive = low + neg): p = 0.0003



Structure-Function Correlations Based on 
Residual Scores: E. coli Lac Repressor

• Experimental data: 4041 single site mutants generated by 
introducing the same 13 aa replacements at positions 2-329 
(PDB ID: 1efaB)

Markiewicz, P., Kleina, L.G., Cruz, C., Ehret, S. & Miller, J.H. (1994) Genetic studies 
of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors 
reveals essential and non-essential residues, as well as "spacers" which do not require 
a specific sequence. J. Mol. Biol. 240, 421-433.

• Four mutant activity classes based on degree of repression of   
β-galactosidase: fully active (greater than 200-fold), moderate (20 
to 200-fold), low (4 to 20-fold), inactive (less than 4-fold)

• Investigators suggest combining moderate + low = intermediate
• Recent computational studies using this data set define two classes: 

unaffected (fully active) and affected (all other classes combined)
• All 328 lac repressor residue positions were annotated and 

clustered into 15 groups based on their structural locations, 
functional roles, and level of tolerance to mutations



Structure-Function Correlations Based on 
Residual Scores: E. coli Lac Repressor

How significant are the differences in class-pair means?
full-inter: p = 4.64 × 10-7; full-inactive: p = 1.95 × 10-36; and inter-inactive: p = 6.57 × 10-10.



Lac Repressor: CMP vs. Potential Profile



Distribution of Lac Repressor Residue Positions

Apply chi-square test with 18 df: χ2 = 51.11, so reject null 
hypothesis that no association exists between structural/functional 
groups and quadrant locations, with p < 0.0001 



Characterizing Structural or Functional Roles 
of Lac Repressor Residues Based on 

Residual Scores and Residue Environment Scores



Mutant Residual Profiles: Motivation
• Residual profile vectors encode much more sequence and structure

information about the mutants than residual scores; hence, they 
may prove to be more useful for classification and inference for
mutants belonging to different activity classes

• Nonzero components (EC scores) of a mutant residual profile 
identify the mutated position(s) as well as all of their topological 
nearest-neighbors based on tessellation (i.e., all positions that 
participate in simplices with the mutated positions)

• For any single site mutant, the EC score at the residual profile
component corresponding to the mutated position is precisely the
residual score of the mutant

• A consequence of the above is that all 19 single site mutants at a 
particular position have residual profiles w/ identical arrangements 
of zero and nonzero components (only the EC scores at any given 
nonzero component differ among the 19 residual profiles)



HIV-1 Protease Dataset: 
Residual Profiles of the Experimental Mutants 
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In each of the 536 rows, the initial three components identify 
the mutant. This is followed by the 99-dimensional residual 
profile. The final component is the mutant activity class.



Supervised Classification

• Algorithms: Neural Network (NN), Decision Tree (DT), 
Support Vector Machine (SVM), Random Forest (RF)

• Implementations available with the Weka suite of 
machine learning tools: http://www.cs.waikato.ac.nz/ml/weka/

• Training set: Residual profile vectors for the mutants of a 
protein that have been studied experimentally, along with 
the activity class of each mutant (i.e., supervised)

• Each mutant (represented as a residual profile + activity 
class) is referred to as an instance; each component of 
the residual profiles is referred to as an attribute



Model Performance: HIV-1 Protease Mutants



AUC Summary for HIV-1 Protease ROC Curves

Pos
(1-against-1)

Int
(1-against-1)

Neg
(1-against-1)

Others
Combined

(1-against-all)

Pos ---
0.6522 (SVM)
0.5869 (DT)
0.6225 (NN)

0.8182 (SVM)
0.8414 (DT)
0.7877 (NN)

0.7389 (SVM)
0.7732 (DT)
0.7282 (NN)

Int ---
0.7558 (SVM)
0.7726 (DT)
0.7511 (NN)

0.6731 (SVM)
0.6632 (DT)
0.6814 (NN)

Neg ---
0.7810 (SVM)
0.8324 (DT)
0.7764 (NN)

• Most disparate signals stem from residual profiles of the positive and negative 
mutants, followed closely by the intermediate and negative mutants

consistent with biological notion that fully active and inactive mutants display the 
greatest differences in structural and functional properties, while partially active and 
inactive mutants display significant, albeit less dramatic differences

• Residual profiles of mutants in the positive and intermediate classes display the 
least divergent signals

reflects the fact that both classes contain mutants that are more or less functionally 
active and display at most minimal structural changes from wt 



Reliability/Reproducibility of Model Predictions
• 60/40 split test option => model learned with 60% of the mutants is used to predict the 

activity classes of the remaining 40%; 60 runs => expect  approx. 24 predictions/mutant
• Apply two-class decision tree learning (default costs)
• For each mutant, nc (ni) = total # of correct (incorrect) predictions
• Mutant reliability metric: m = (nc – ni) / (nc + ni)
• m = 0 => equal # of correct and incorrect predictions; m = 1 => all predictions correct; 

m = –1 => all predictions incorrect



Assessment of the Statistical Significance for 
the Number of Correctly Classified Instances

• Random split: 436 HIV-1 protease mutants used as a training set 
for decision tree learning; remaining 100 mutants form a test set

• Training: 121 pos, 66 int, 249 neg; Testing: 19 pos, 18 int, 63 neg
• Result below based on two classes (similar method for 3 classes):



Assessment of the Statistical Significance for 
the Number of Correctly Classified Instances

• Training: 187 active, 249 inactive; Testing: 37 active, 63 inactive
• Let X = X1+X2+ …+X100, where each Xi is a Bernoulli random 

variable representing the outcome of a test set instance prediction.
• µ = E(X) = 37·(187/436) + 63·(249/436) = 52 
• σ2 = Var(X) = 100·(187/436)·(249/436) = 24.5
• So σ = 4.95, and p-value is

where Φ is the cumulative dist. fn. for a standardized normal var.

674 52( 74; 52) ( 4.44) 1 (4.44) 4.42 10
4.95

XP X P P zµ
µ

σ
−− − > = = > = > ≈ −Φ = × 

 

Summary of Results Based on Two and Three Classes



Model Performance: T4 Lysozyme Mutants



T4 Lysozyme Mutational Array

Training set mutants (n = 2015) Predicted test set mutants (n = 1101)
Active Inactive Active Inactive



T4 Lysozyme Prediction Results

• Predicted activities 
compared with exp. 
activity from 8 labs

• Exp. data obtained from
ProTherm database  

• Exp. activity ≤ 5 inactive, 
and values > 5 active

• Result: 30/35 correct 
predictions, ~86%



Lac Repressor Decision Tree Model Performance: 
Two Activity Classes (Unaffected/Affected)

• Accuracy: 78.67%
• AUC ± SE: 0.8023 ± 0.0068
• Control: activity labels randomly shuffled among the 4041 mutant residual 

profile vectors in the training set prior to applying decision tree learning



Learning Curve Example: Lac Repressor
• Stratified training sets randomly chosen with replacement in 

increments of 100 mutants
• At each training set size, mean 10 CV accuracy based on average 

of 10 runs using two-class decision tree supervised learning
• Error bars represent ±1 std. dev. from the mean



Lac Repressor Mutational Array

Training set mutants (n = 4041) Predicted test set mutants (n = 2229)
Unaffected Affected Unaffected Affected



Clinical Application: Prediction of Drug 
Resistance Protein Mutational Patterns 

• Nearly 400 (single and multiple) mutants of 
HIV-1 protease, isolated and sequenced from 
over 4000 patients

• Monogram Biosciences PhenoSense assay:
High: 152 distinct mutational patterns 
assayed for NFV
Low: 84 patterns assayed for ATV

• Mutant fold change = IC50(mutant) / IC50(wt)
• Subscripts in table = no. of assayed mutants; 

fold change value in table = median value
• Individual fold changes all show small abs. 

dev. from median, reflecting assay consistency
• Clinical cutoffs (based on latest data, studies 

still underway):
2 classes: Sensitive ≤ 10, Resistant > 10
3 classes: S ≤ 2.5, 2.5 < I ≤ 10, R > 10

• Each of the 7 inhibitors uses a distinct training 
set; separate models are trained and their 
performance is evaluated for each drug

• For each inhibitor, the learned models are used 
to predict the susceptibility of the unassayed 
mutational patterns for the given drug



ROC Curves Based on Two-Class Training Sets



Factors Contributing to Classification Capability
Factors
F1: values (magnitude and sign) of the 

non-zero components in each vector
F2: location of the non-zero components in 

each vector 
F3: number of non-zero components in 

each vector

Controls
C1: multiply each non-zero vector component by a random 

number generated from the interval [-2, 2] (removes 
influence of F1, measures contributions of F2 and F3) 

C2: randomly shuffle the components of each vector in C1 
independently (removes influences of F1 and F2, 
measures contribution of F3)

Graphed ROC Example: RTV
• Apply Random Forest (RF) 

supervised classification
• Shuffled classes control: S, R class 

labels randomly shuffled among 
mutant vectors prior to RF learning
RF Results For All Inhibitors



RF AUCs Based on Three Susceptibility Classes



Graphed RF ROC Example: RTV
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99Mutant Activity Class Distribution in 
• Given d(A,B) = mean Euclidean distance between all possible pairs 

of mutants (one from class A, and the other from class B), 
d(pos,pos) < d(pos,inter) < d(inter,inter) < d(pos,neg) < d(inter,neg) < d(neg,neg)

• order agrees with biological notions on impact of mutations
• mutant pairs for which at least one of the mutants represents a NC 

substitution drive the order of the mean distances



Clustering Example: HIV-1 Protease
• Ron Shamir’s Expander software: 

http://www.cs.tau.ac.il/~rshamir/expander/expander.html
• Similar to k-means, but no a priori value of k needed; algorithm 

derives optimal number of clusters
• Leaves open the question of how well the residual profiles can be 

used to classify mutants with differing levels of activity



Test Options
• Use (partitioned) training set only—for assessing performance

Tenfold cross-validation (10 CV): Stratified partitioning of the instances 
into ten equally sized subsets

1. One subset is held out, while the other nine subsets (90% of the original 
instances) are combined to form a modified training set 

2. The supervised classification algorithm is used to learn a model with the 
modified training set; the learned model is used to predict the activity classes 
of the instances in the hold-out subset (the test set)

3. The process is repeated ten times, whereby each subset serves once as a hold-
out for prediction; hence, a single activity prediction is made for each instance

Leave-one-out (or N CV, where N = size of full training set): Each subset 
consists of one instance; no stratification by definition; deterministic
% split: Stratified partitioning of the instances into two (not necessarily 
equal) subsets; larger subset serves as a training set for model building, 
and smaller subset is a test set

• Use the full training set (for model building) and an independent 
test set (for example, to predict the activity classes of mutants 
that have not been studied experimentally, if performance as 
described above is acceptable)



Evaluation of Model Performance (Two Classes: P, N)
• Confusion matrix: tabulated number of test predictions (shown)
• Sensitivity = TP / (TP + FN), Specificity = TN / (TN + FP),     

and 1-Specificity = FP / (FP + TN)
• Sensitivity = True Positive Rate (TPR) 

1-Specificity = False Positive Rate (FPR)

• Accuracy = (TP + TN) / (TP + FP + TN + FN); simple measure, 
but highly sensitive to class skew in test sets

• Default costs assigned prior to model building are 0 (TP, TN) and 
1 (FP, FN); ↑ FP cost only → ↓ no. of FP’s → ↑ specificity; ↑ FN 
cost only → ↓ no. of FN’s → ↑ sensitivity

• ROC (Receiver-Operating Characteristic) Curve: Plot of TPR vs. 
FPR in unit square using 10 CV for a range of FN/FP cost ratios

• Area under ROC curve (AUC): performance measure that is 
insensitive to unequal class distributions in test sets

Perfect classifier: Piecewise linear ROC joining (0,0) to (0,1) and (0,1) to (1,1); AUC = 1.0
Random guessing model: Diagonal line ROC joining (0,0) to (1,1); AUC = 0.5

TNFP

FNTP

Predicted as
Pos              Neg

Pos

Neg
Actual
class



Application to Multiple (n > 2) Classes
• One-against-all approach (use all training set instances)

1. Choose one class as a reference (class 1); combine all other classes 
together by re-labeling as non-reference (class 2)

2. Apply ROC analysis to this two-class system
3. Repeat n times so that each class serves as a reference once
4. Overall AUC for the multi-class system is a weighted average of the two-

class AUCs (each two-class AUC weight is the proportion of mutants 
belonging to the respective reference class in the training set); this 
method is sensitive to class skew in theory, but performs well in practice

• One-against-one approach (truncate the original training set)
1. Choose one pair of classes; form a truncated training set consisting of 

only instances that belong to either of these two classes
2. Apply ROC analysis to this two-class system
3. Repeat n(n-1)/2 times, so that every pair of classes is considered
4. Overall AUC for the multi-class system is a simple average of the two-

class AUCs; this method remains insensitive to class skew in test sets



Factors Contributing to Classification Capability
Factors
F1: no. of non-zero components in each vector
F2: value (magnitude and sign) of the non-zero 

components in each vector
F3: location of the non-zero components in each 

vector 
F4: no. of non-zero columns in each group of 

vectors (submatrix of the training set) 
representing all mutants generated by amino 
acid substitutions at the same position

F5: location of the non-zero columns in each 
group

Controls
C1: multiply each non-zero vector component by a different random 

no. generated from the interval [-2, 2] (removes influence of F2, 
measures contributions of F1 and F3) 

C2: randomly shuffle the components of each vector independently 
(removes influence of F3, measures contributions of F1 and F2) 

C3: composite of C1 followed by C2 (removes influences of F2 and 
F3, measures contribution of F1) 

C4: randomly shuffle the columns within each group independently 
(removes influence of F5, measures contributions of F2 and F4) 

C5: composite of C1 followed by C4 (removes influences of F2 and 
F5, measures contribution of F4)

Ten independent versions of each control training set were prepared, 
and two-class decision tree learning (default costs) was applied 



Decision Tree
• Default cost model learned from the training set of 536 

experimental HIV-1 protease mutants (active/inactive)  



Alternative Testing Approaches and Learning Curves
• Apply RF supervised learning to the 142 RTV mutants
• 100 stratified 66/34 random splits: accuracy = 83.2%, std. dev. = 4.7%
• 100 iterations of 10 CV: accuracy over 1000 folds = 84.3%, std. dev. = 9.5%
• Leave-one-out (142 CV): accuracy = 85.9%

• Learning Curves using the 142 
RTV mutants and DT, SVM, and 
RF supervised learning

• Stratified training sets randomly 
chosen with replacement in 
increments of 20 mutants

• Mean 10 CV accuracy based on 
average of 10 runs

• Error bars = ±1 std. dev.
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