
Functional Analysis of the *Escherichia coli Lac* Repressor: A Computational Mutagenesis Approach

Majid Masso, Ph.D.

Laboratory for Structural Bioinformatics George Mason University

http://binf.gmu.edu/mmasso mmasso@gmu.edu

Lac Repressor: Structure and Function

Headpiece (residues 1-59)

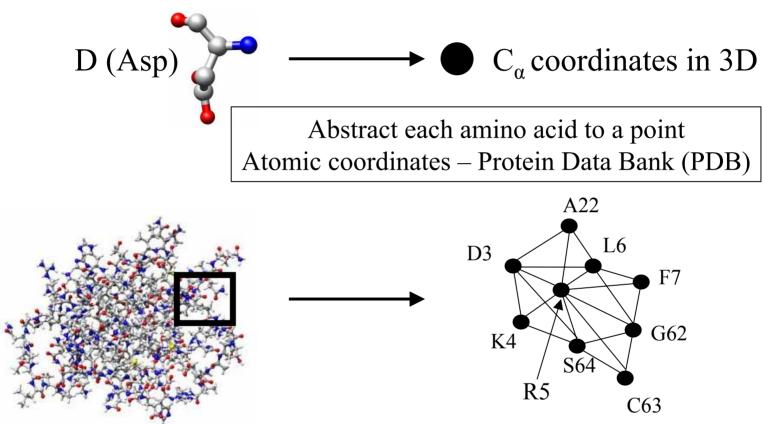
Sugar binding site (cleft between core domains)

Both core domains involved in homodimerization

Both core domains share similar 2° structure arrangement

DNA binding domain HTH motif

> N-terminal core domain (residues 61-160 and 293-320)

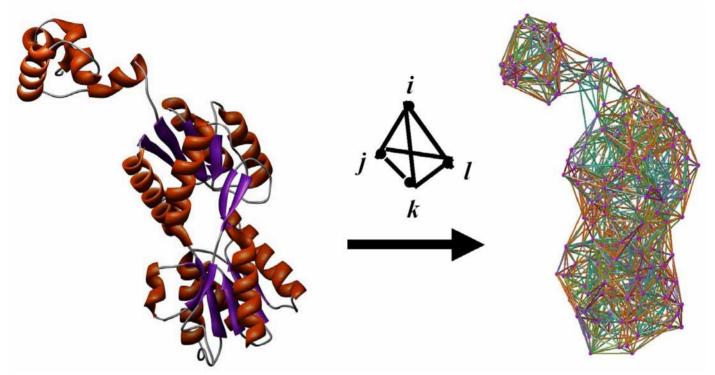

C-terminal core domain (residues 165-290)

Not shown: Leucine zipper tetramerization domain (residues 330-360) beyond core domain

Lac Repressor Experimental Mutagenesis Data

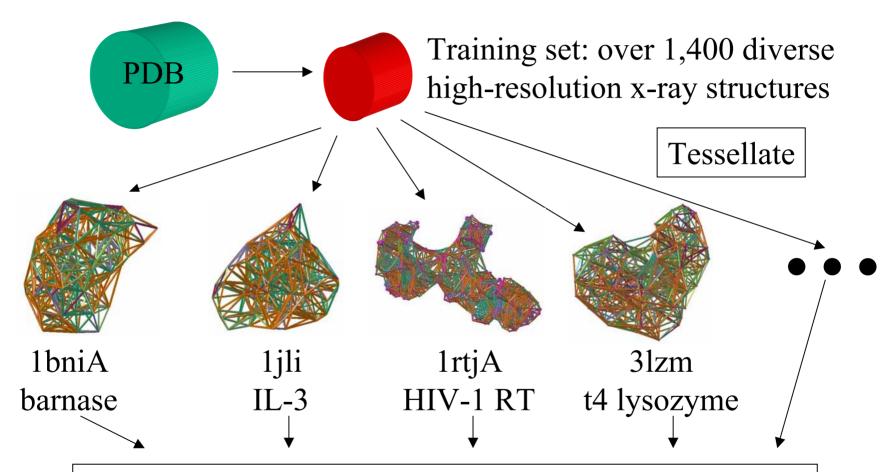
- UCLA researchers (Jeffery H. Miller lab) introduced the same 13 amino acid substitutions at positions 2-329
- 4041 non-degenerate single point mutants 223 self-substitutions (control)
- Full activity (> 200-fold repression of β -galactosidase); moderate (20 to 200-fold); low (4 to 20-fold); and inactive (less than 4-fold)
- 2267 full activity mutants; 253 moderate; 355 low; 1166 inactive
- Researchers suggest combining moderate and low (i.e., 608 intermediate)

Delaunay Tessellation of Protein Structure


Delaunay tessellation: 3D "tiling" of space into non-overlapping, irregular tetrahedral simplices. Each simplex objectively defines a quadruplet of nearest-neighbor amino acids at its vertices.

Counting Amino Acid Quadruplets Ordered quadruplets: 20⁴ = 160,000 (too many) Order-independent quadruplets (our approach):

C C C C 20


Total: 8,855 distinct unordered quadruplets

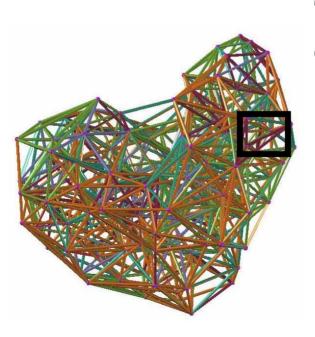
Delaunay Tessellation: E. coli Lac Repressor

- Ribbon diagram (left) is based on structural coordinates located in the PDB accession file 1efa, chain B (residue positions 2 – 331)
- Each of the 330 amino acid residues is represented as a point in 3D, using the C_{α} coordinates
- Tessellation (right) is performed by using a 12Å edge-length cutoff on the allowed simplices ("true" quadruplet interactions)

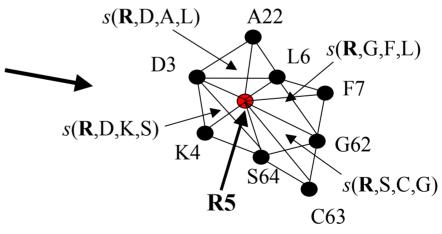
Four-Body Statistical Potential

Pool together all simplices from the tessellations, and compute observed frequencies of simplicial quadruplets

Four-Body Statistical Potential

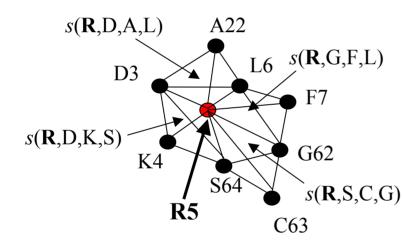

- Knowledge-based, modeled after inverse Boltzmann law: $p_i = \text{Frequency (feature } i) \alpha e^{-\text{Energy (feature } i) / KT}$, i.e., $E_i \alpha - KT \ln p_i$; and Potential (feature i) = $E_i - E_{ref} = \Delta E_i = -KT \ln(p_i / p_{ref})$
- For amino acid quadruplet (i,j,k,l), a log-likelihood score (interaction "pseudo-energy") is given by $s(i,j,k,l) = \log(f_{ijkl} / p_{ijkl})$
- f_{ijkl} = observed proportion of training set simplices whose four vertex residues are *i*,*j*,*k*,*l*
- p_{ijkl} = rate expected by chance (multinomial distribution, based on training set proportions of residues *i*,*j*,*k*,*l*)
- Four-body statistical potential: the collection of 8855 quadruplet (or simplex) types and their respective log-likelihood scores

Four-Body Statistical Potential


Amino Acid	"Pseudo-Energy"
Quadruplet	Log-likelihood s(i,j,k,l)
CCCC	3.29042538
CCCH	2.09542785
CCCS	1.96177162
CCCG	1.84022021
CCCF	1.79961166
CCCF	1.77139046
CCCP	1.76378293
ACCC	1.74840641
CCCW	1.74777711
CCCHH	1.74711265
CCCN	1.70747111
HHHH	1.69741431
	1.61473339
HMNP	0.000221495
DGGY	0.000178988
DRSV	9.45855E-05
EHHV	4.979E-06
LRYY	-6.29797E-05
DGKP	-9.73563E-05
NPSS	-0.000100914
IPRW	-0.000136526
MMRT	-0.000168007
GLLP	-0.000294376
EKNT	-0.000312593
EKQR	-0.000343148
HKKW KKKP CDEQ CKKW CDDM HHKK CKKR CIKR CIKR CHKW CEEE HKKM	-0.66398714 -0.66875323 -0.67215257 -0.75315166 -0.76390474 -0.85974 -0.88002907 -0.90372634 -0.94458122 -1.02439761 -1.14234339

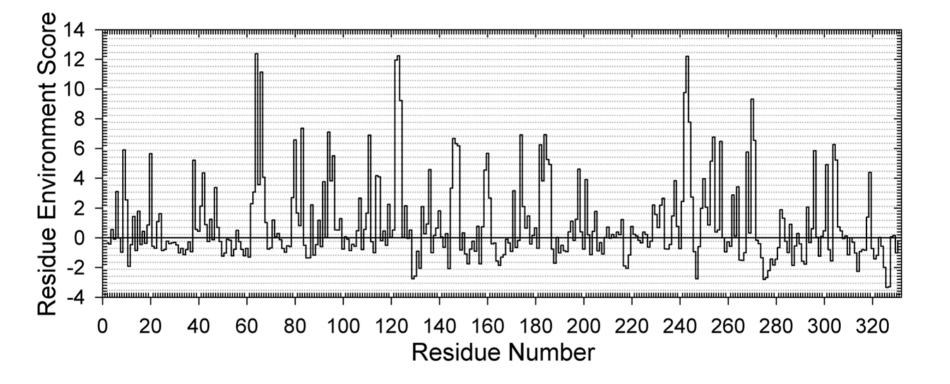
Application 1: Protein Topological Score (TS)

- Obtained by summing the log-likelihood scores of **all** simplicial quadruplets defined by the protein tessellation
- Global measure of protein sequence-structure compatibility
- Total (empirical or statistical) potential of the protein

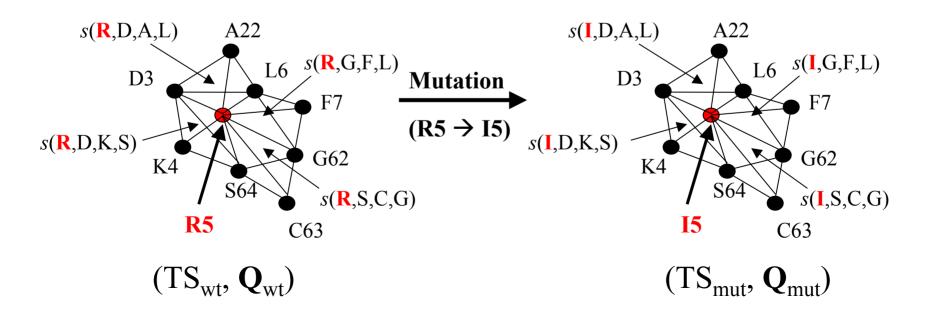

 $TS = \sum_{\hat{i}} s(\hat{i})$, sum taken over **all** simplex quadruplets \hat{i} in the entire tessellation.

Close-up view of **only** the four simplices that use **R** at position **5** as a vertex

Application 2: Residue Environment Scores


• For each amino acid position, locally sum log-likelihood scores *s*(*i*,*j*,*k*,*l*) of only simplices that use the position as a vertex

Example: $q_5 = q(R5) = \sum_{(i,j,k,l)} s(i,j,k,l)$, sum is taken **only** over all simplex quadruplets (i,j,k,l) that use R5


The scores of all the amino acid positions in the protein structure form a Potential Profile vector Q = < q₁, q₂, q₃,...,q_N> (N = length of primary sequence in the solved structure)

Potential Profile: E. coli Lac Repressor

Computational Mutagenesis Methodology

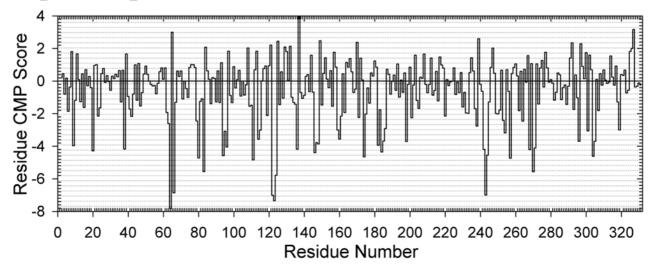
- Observations:
 - Few solved mutant structures to compare with solved wild type (wt) structure
 - Mutant and wt protein structure tessellations are very similar or identical
- Approach:
 - Obtain topological score (TS_{mut}) and potential profile vector (\mathbf{Q}_{mut}) for any mutant protein by using the wt structure tessellation as a template
 - Simply change the residue label at a given point and re-compute

Computational Mutagenesis Methodology

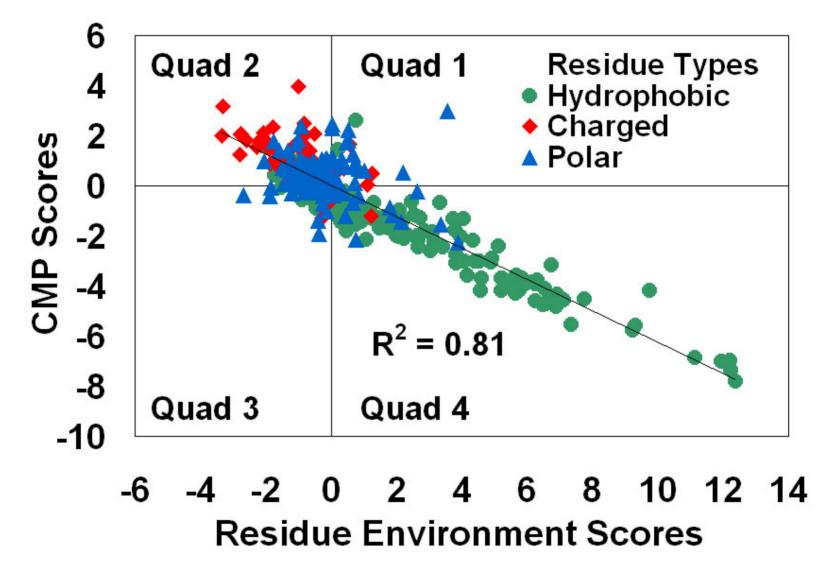
- Scalar "Residual Score" of a mutant: (mutant – wt) topological score difference = TS_{mut} – TS_{wt} (empirical measure of relative structural change due to mutation)
- Vector "Residual Profile" of a mutant:

 $\mathbf{R} = \mathbf{Q}_{mut} - \mathbf{Q}_{wt} = (mutant - wt)$ potential profile vector difference (environmental perturbation score for every position in structure)

- Denote $\mathbf{R} = \langle EC_1, EC_2, EC_3, ..., EC_N \rangle$ $EC_i = q_{i,mut} - q_{i,wt}$ = relative environmental change at position i
- Geometric property: mutation at position $i => EC_i = residual score$

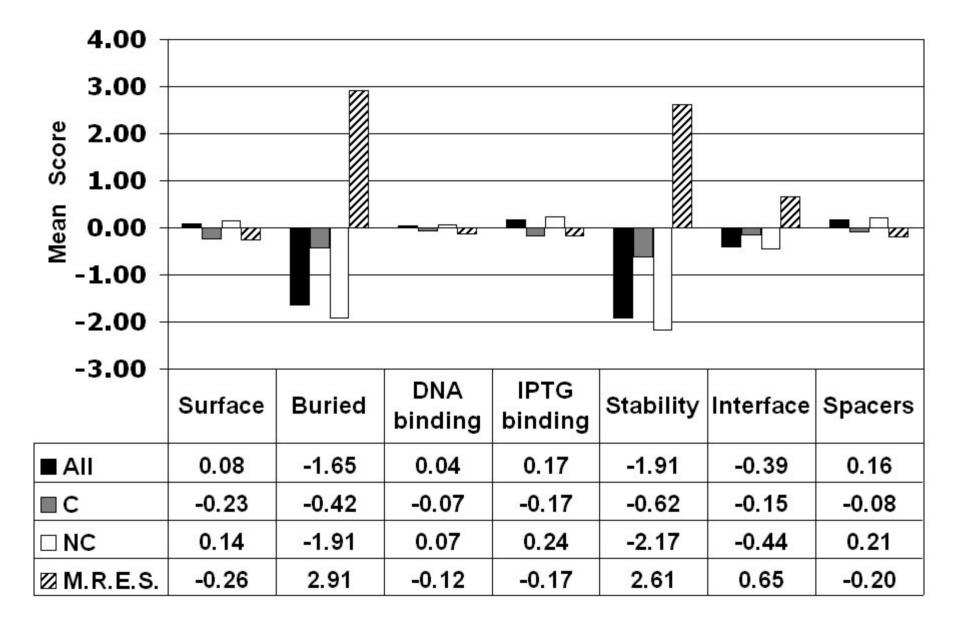

Comprehensive Mutational Profile (CMP)

- At each position, the **CMP score** is the mean of the residual scores associated with all possible amino acid substitutions
- Computationally,

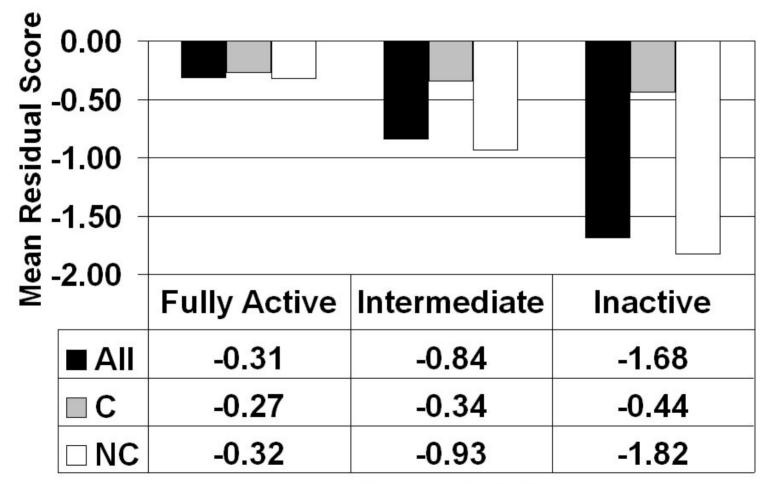

 $CMP_{j} = \frac{1}{20} \sum_{i=1}^{20} [(\text{mutant topological score})_{ij} - (\text{wt topological score})]$ $= \frac{1}{20} \sum_{i=1}^{20} (\text{mutant residual score})_{ij}$

= $\{\text{mean residual score}\}_{i}$

where index *i* refers to the 20 amino acids, and index *j* refers to the primary sequence position



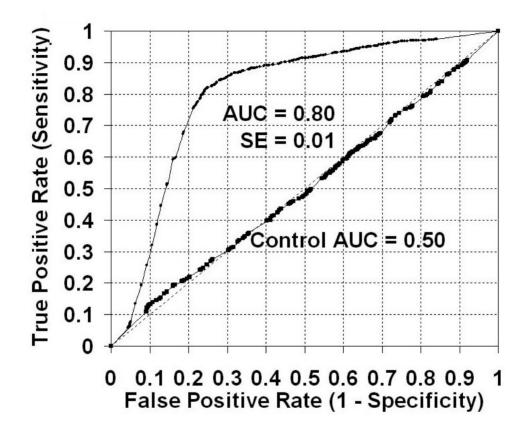
CMP – Potential Profile Correlation



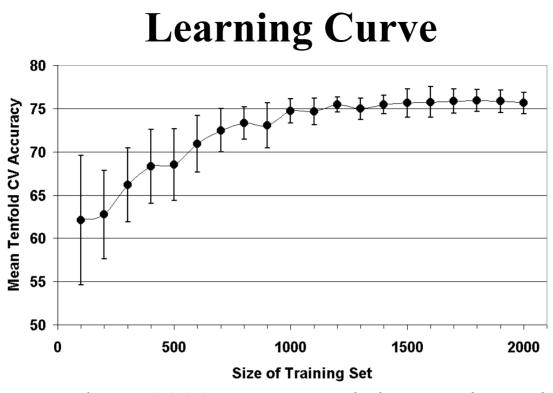
	Residue Groups							
Graph Quadrants	Surface	Buried	DNA binding	IPTG binding	Stability	Interface	Spacers	Total
Q1	8	10	0	2	1	6	4	31
Q2	49	12	9	9	8	15	20	122
Q3	13	5	4	2	2	5	6	37
Q4	31	46	5	4	25	17	10	138
Total	101	73	18	17	36	43	40	328

Distribution of *lac* repressor residue positions

Experimental Mutants: Residual Scores Elucidate the Structure-Function Relationship

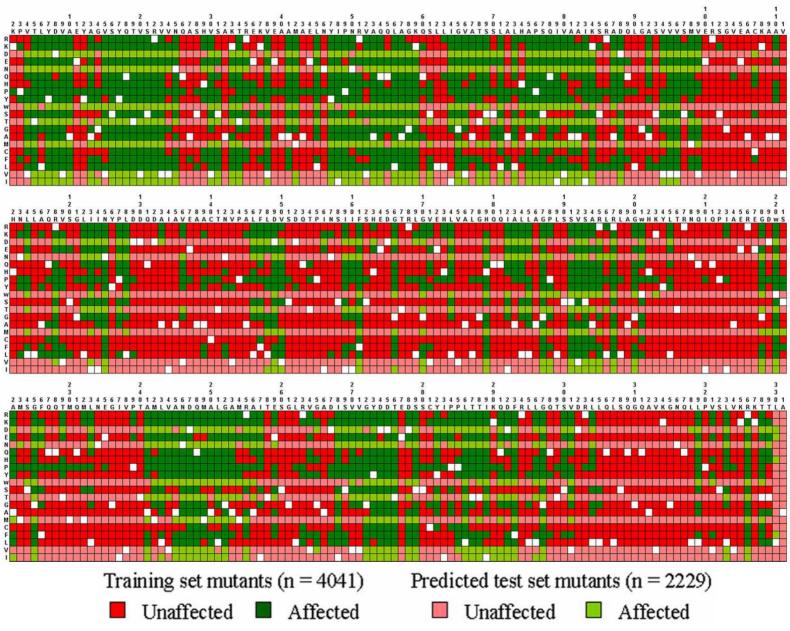


Mutant Activity


Mutant Residual Profiles as Feature Vectors for Decision Tree Classification and Prediction

- Training set: 4041 experimental mutants with known activity (fully active = "unaffected"; intermediate / inactive = "affected")
- Each feature vector includes three additional components: native residue, position number, and replacement residue
- Evaluating model performance: Tenfold cross-validation (10 CV), and random split (N% used for training, (100 N)% are predicted)
- Performance measures: Q = (TP + TN) / (TP + FP + TN + FN) $BER = 0.5 \times [FN / (FN + TP) + FP / (FP + TN)]$ $MCC = (TP \times TN - FP \times FN) / [(TP + FN)(TP + FP)(TN + FN)(TN + FP)]^{\frac{1}{2}}$
 - AUC = Area under ROC (plot of *sensitivity* vs. 1 *specificity*)

Tenfold Cross-Validation Results

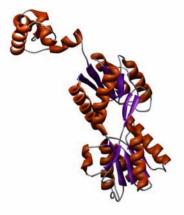


- 10 CV results: Q = 78.7%, BER = 0.22, MCC = 0.57, AUC = 0.80
- "Shuffled classes" random control results: Q = 51.1%, BER = 0.51, MCC = -0.01, AUC = 0.50

- Curve suggests that ~1200 mutant training set is optimal
- Hence, 30% of the 4041 mutants randomly selected for training
- Trained model used for predicting classes of remaining mutants
- Test set: 1316/1586 unaffected and 873/1243 affected correctly predicted, with Q = 77.4%, BER = 0.23, MCC = 0.54, AUC = 0.78

Lac Repressor Mutational Array

Conclusions and Future Directions


- Computational mutagenesis was developed through application of a four-body, knowledge-based, statistical contact potential
 - Residual scores of mutants with experimentally classified activity change elucidate the structure-function relationship
 - Mutant residual profiles serve as feature vectors for machine learning
- Future Aim: Develop a "universal" classification model to predict activity change of a residue replacement in any protein
 - Need common attribute set as feature vector components for all mutants
 - Instead of entire residual profile, use only EC scores at mutated position (i.e., residual score) as well as ordered EC scores at six nearest positions
 - Include additional information-rich common attributes
 - Already implemented for predicting stability change in mutants (see http://proteins.gmu.edu/automute)
 - Several candidate activity change mutant protein systems for training: *lac* repressor (4041), t4 lysozyme (2015), HIV-1 PR (536), IL-3 (629), ...

Acknowledgements and References

Iosif Vaisman (PI)

Kahkeshan Hijazi

Nida Parvez

Publications

Software

AUTO-MUTE – server (Masso) Qhull – tessellation (Barber) Glisten – tessellation visualization (Carr) Chimera – ribbon diagrams (Ferrin) Ad hoc Java programs – potential (Taylor), residual profiles (Lu)

Weka – machine learning (Witten, Frank)

- 1. Masso M. and Vaisman I.I. Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach. *Biochem Biophys Res Comm* 2003; **305**: 322-326.
- 2. Masso M., Lu Z., and Vaisman I.I. Computational studies of protein structure-function correlations. *Proteins* 2006; **64**: 234-245.
- 3. Masso M. and Vaisman I.I. A novel sequence-structure approach for accurate prediction of resistance to HIV-1 protease inhibitors. *Proc IEEE BIBE* 2007; 952-958.
- 4. Masso M. and Vaisman I.I. Accurate prediction of enzyme mutant activity based on a multibody statistical potential. *Bioinformatics* 2007; **23**: 3155-3161.
- 5. Barenboim M., Masso M., Vaisman I.I., and Jamison D.C. Statistical geometry based prediction of non-synonymous SNP functional effects using random forest and neuro-fuzzy classifiers. *Proteins* 2008 (in press).

