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Lac Repressor: Structure and Function
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(residues 330-360) beyond core domain



Lac Repressor Experimental Mutagenesis Data

• UCLA researchers (Jeffery H. Miller lab) introduced the same 13 
amino acid substitutions at positions 2-329

• 4041 non-degenerate single point mutants 
223 self-substitutions (control)

• Full activity ( > 200-fold repression of β-galactosidase); moderate 
(20 to 200-fold); low (4 to 20-fold); and inactive (less than 4-fold)

• 2267 full activity mutants; 253 moderate; 355 low; 1166 inactive

• Researchers suggest combining moderate and low 
(i.e., 608 intermediate)



Delaunay Tessellation of Protein Structure

D (Asp) Cα coordinates in 3D

Abstract each amino acid to a point
Atomic coordinates – Protein Data Bank (PDB)
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Delaunay tessellation: 3D “tiling” of space into non-overlapping, 
irregular tetrahedral simplices. Each simplex objectively defines 
a quadruplet of nearest-neighbor amino acids at its vertices. 



Counting Amino Acid Quadruplets
Ordered quadruplets: 204 = 160,000 (too many)
Order-independent quadruplets (our approach):
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Total:  8,855 distinct unordered quadruplets



Delaunay Tessellation: E. coli Lac Repressor

• Ribbon diagram (left) is based on structural coordinates located in 
the PDB accession file 1efa, chain B (residue positions 2 – 331)

• Each of the 330 amino acid residues is represented as a point in
3D, using the Cα coordinates

• Tessellation (right) is performed by using a 12Å edge-length 
cutoff on the allowed simplices (“true” quadruplet interactions)



Four-Body Statistical Potential
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Tessellate

Pool together all simplices from the tessellations, and 
compute observed frequencies of simplicial quadruplets

…
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HIV-1 RT

Training set: over 1,400 diverse 
high-resolution x-ray structures



Four-Body Statistical Potential
• Knowledge-based, modeled after inverse Boltzmann law: 

pi = Frequency (feature i) α e – Energy (feature i) / KT, i.e., Ei α –KT ln pi; 
and Potential (feature i) = Ei – Eref = ∆Ei = –KT ln(pi / pref)

• For amino acid quadruplet (i,j,k,l), a log-likelihood score 
(interaction “pseudo-energy”) is given by s(i,j,k,l) = log(fijkl / pijkl)

• fijkl = observed proportion of training set simplices whose four 
vertex residues are i,j,k,l

• pijkl = rate expected by chance (multinomial distribution, based on 
training set proportions of residues i,j,k,l)

• Four-body statistical potential: the collection of 8855 quadruplet 
(or simplex) types and their respective log-likelihood scores



Four-Body Statistical Potential



Application 1: Protein Topological Score (TS)
• Obtained by summing the log-likelihood scores of all simplicial

quadruplets defined by the protein tessellation
• Global measure of protein sequence-structure compatibility
• Total (empirical or statistical) potential of the protein

TS = ∑î s(î), sum taken over all simplex 
quadruplets î in the entire tessellation.
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Application 2: Residue Environment Scores

• For each amino acid position, locally sum log-likelihood scores 
s(i,j,k,l) of only simplices that use the position as a vertex
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• The scores of all the amino acid positions in the protein structure 
form a Potential Profile vector Q = < q1, q2, q3,…,qN > 
(N = length of primary sequence in the solved structure)



Potential Profile: E. coli Lac Repressor



Computational Mutagenesis Methodology
• Observations: 

• Few solved mutant structures to compare with solved wild type (wt) structure
• Mutant and wt protein structure tessellations are very similar or identical

• Approach: 
• Obtain topological score (TSmut) and potential profile vector (Qmut) for any 

mutant protein by using the wt structure tessellation as a template 
• Simply change the residue label at a given point and re-compute
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Computational Mutagenesis Methodology
• Scalar “Residual Score” of a mutant:

(mutant – wt) topological score difference = TSmut – TSwt
(empirical measure of relative structural change due to mutation)

• Vector “Residual Profile” of a mutant:
R = Qmut – Qwt = (mutant – wt) potential profile vector difference 
(environmental perturbation score for every position in structure)

• Denote R = < EC1, EC2, EC3,…, ECN >
ECi = qi,mut – qi,wt = relative environmental change at position i

• Geometric property: mutation at position i => ECi = residual score



Comprehensive Mutational Profile (CMP)
• At each position, the CMP score is the mean of the residual scores 

associated with all possible amino acid substitutions

• Computationally,

where index i refers to the 20 amino acids, and index j refers to the 
primary sequence position
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CMP – Potential Profile Correlation







Experimental Mutants: Residual Scores 
Elucidate the Structure-Function Relationship



Mutant Residual Profiles as Feature Vectors 
for Decision Tree Classification and Prediction 

• Training set: 4041 experimental mutants with known activity 
(fully active = “unaffected”; intermediate / inactive = “affected”)

• Each feature vector includes three additional components: 
native residue, position number, and replacement residue

• Evaluating model performance: Tenfold cross-validation (10 CV), 
and random split (N% used for training, (100 – N)% are predicted)

• Performance measures:
Q = (TP + TN) / (TP + FP + TN + FN)
BER = 0.5 × [FN / (FN + TP) + FP / (FP + TN)]
MCC = (TP×TN–FP×FN) / [(TP+FN)(TP+FP)(TN+FN)(TN+FP)]½

AUC = Area under ROC (plot of sensitivity vs. 1 – specificity)



Tenfold Cross-Validation Results

• 10 CV results: Q = 78.7%, BER = 0.22, MCC = 0.57, AUC = 0.80

• “Shuffled classes” random control results: Q = 51.1%, BER = 0.51, 
MCC = – 0.01, AUC = 0.50



Learning Curve

• Curve suggests that ~1200 mutant training set is optimal

• Hence, 30% of the 4041 mutants randomly selected for training

• Trained model used for predicting classes of remaining mutants

• Test set: 1316/1586 unaffected and 873/1243 affected correctly 
predicted, with Q = 77.4%, BER = 0.23, MCC = 0.54, AUC = 0.78



Lac Repressor Mutational Array



Conclusions and Future Directions
• Computational mutagenesis was developed through application 

of a four-body, knowledge-based, statistical contact potential
• Residual scores of mutants with experimentally classified activity change 

elucidate the structure-function relationship
• Mutant residual profiles serve as feature vectors for machine learning

• Future Aim: Develop a “universal” classification model to 
predict activity change of a residue replacement in any protein
• Need common attribute set as feature vector components for all mutants
• Instead of entire residual profile, use only EC scores at mutated position 

(i.e., residual score) as well as ordered EC scores at six nearest positions
• Include additional information-rich common attributes
• Already implemented for predicting stability change in mutants (see 

http://proteins.gmu.edu/automute)
• Several candidate activity change mutant protein systems for training: lac

repressor (4041), t4 lysozyme (2015), HIV-1 PR (536), IL-3 (629), …

http://proteins.gmu.edu/automute
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