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Lac Repressor: Structure and Function
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Lac Repressor Experimental Mutagenesis Data

« UCLA researchers (Jeffery H. Miller lab) introduced the same 13
amino acid substitutions at positions 2-329

* 4041 non-degenerate single point mutants
223 self-substitutions (control)

* Full activity ( > 200-fold repression of B-galactosidase); moderate
(20 to 200-fold); low (4 to 20-fold); and inactive (less than 4-fold)

o 2267 full activity mutants; 253 moderate; 355 low; 1166 inactive

* Researchers suggest combining moderate and low
(1.e., 608 intermediate)



Delaunay Tessellation of Protein Structure
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Delaunay tessellation: 3D “tiling” of space into non-overlapping,
irregular tetrahedral simplices. Each simplex objectively defines
a quadruplet of nearest-neighbor amino acids at its vertices.




Counting Amino Acid Quadruplets
Ordered quadruplets: 20* = 160,000 (too many)

Order-independent quadruplets (our approach):
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Total: 8,855 distinct unordered quadruplets



Delaunay Tessellation: E. coli Lac Repressor

Ribbon diagram (left) 1s based on structural coordinates located 1n
the PDB accession file 1efa, chain B (residue positions 2 — 331)

Each of the 330 amino acid residues is represented as a point in
3D, using the C  coordinates

Tessellation (right) is performed by using a 12A edge-length
cutoff on the allowed simplices (“true” quadruplet interactions)



Four-Body Statistical Potential

Training set: over 1,400 diverse
high-resolution x-ray structures

Tessellate

barnase IL-3 HIV-1 RT  t4 lysozyme

. , ’ ’

Pool together all simplices from the tessellations, and
compute observed frequencies of simplicial quadruplets




Four-Body Statistical Potential

Knowledge-based, modeled after inverse Boltzmann law:

p, = Frequency (feature i) o ¢ ~Enerey (featwre /K75 o " F .o —KT In p;
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For amino acid quadruplet (i,j,k,/), a log-likelthood score
(interaction “pseudo-energy”) is given by s(i,/,k,1) = 10g(f,;; / p;i)

J;u = observed proportion of training set simplices whose four
vertex residues are i,j,k,/

Py = rate expected by chance (multinomial distribution, based on
training set proportions of residues i,j,k, /)

Four-body statistical potential: the collection of 8855 quadruplet
(or stmplex) types and their respective log-likelihood scores



Four-Body Statistical Potential

amino acid "Pseudo-Ener y“
quadruplet Log-11kelihood s%1,j,k,1)

CCCC 3.28042558
CCCH 2.08542785
CCCs 1.96177162
CCCG 1.84022021
CCCT 1.795961166
CCCF 1.77159046
CCCT 1.76378295
CCCP 1.74840641
ACCC 1.74777711
CCCw 1.74711264%
CCHH 1.70747111
CCCM 1.697471431
HHHH 1.6147353%
HMRP 0.000227455
DGy 0. 000178988
DREV O.45855E-04%
EHHW 4. 970E-06
LRYY -6, 29797E-05
DiakP -0, F73563E-0%
MPSS -0, 000100914
IPRW -0, 000136526
MMRT -0, 000168007
GLLP -0. 000294376
EKMNT -0.0003125%93
EKGR -0.000545148
HE KW -0.653598714
KERKP -0.66875523
CDEQ -0.67215257
C kW -0.75315166
CODM -0.76350474
HHFkE -0.855974
CKKR -0, BB002907
CIKR -0.90372634
CHEW -0.54458122
CEEE -1.02459761

HE M -1.1425453%9



Application 1: Protein Topological Score (TS)

« Obtained by summing the log-likelihood scores of all simplicial
quadruplets defined by the protein tessellation

* Global measure of protein sequence-structure compatibility

« Total (empirical or statistical) potential of the protein

TS = > s(1), sum taken over all simplex
quadruplets 1 in the entire tessellation.

s(RD,AL)  A22

R.G,F.L
D3 L6 S )
\ F7
s(R,D,K,S)
K4 G62
ds 564 s(R.,S,C,G)
C63

Close-up view of only the four simplices
that use R at position 5 as a vertex



Application 2: Residue Environment Scores

* For each amino acid position, locally sum log-likelihood scores
s(i,j,k,[) of only simplices that use the position as a vertex

s(RDAL)  A22

D3 L6 S(R,G,F,L) o
- Example: g, = g(RS5) = Z(i’ 1y, s(i,j. k1),
S(RD.K.S) sum 1s taken only over all simplex
K4 G62 quadruplets (i,j,k,/) that use R5
s S64 s(R.S.C,G)

C63

* The scores of all the amino acid positions in the protein structure
form a Potential Profile vector Q =<gq,, 95, ¢3,-.,4n>

(N = length of primary sequence in the solved structure)
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Computational Mutagenesis Methodology

Observations:

« Few solved mutant structures to compare with solved wild type (wt) structure

« Mutant and wt protein structure tessellations are very similar or identical

Approach:

 Obtain topological score (TS, ) and potential profile vector (Q,,,) for any
mutant protein by using the wt structure tessellation as a template

* Simply change the residue label at a given point and re-compute

s(RD,AL)  A22 s(LD,ALL)  A22
s(R,G,F,L) s(LG,F,L

D3 L6 Mutation D3 L6 3 )

F7 > F7

s(R,D,K,S) (RS > I5) s(LD,K,S)

K4 G62 K4 G62

50908 S(RS.CO) 04N 5(1,8,C,G)
R5 C63 IS C63

(TSwta th) (TSmuv Qmut)



Computational Mutagenesis Methodology

Scalar “Residual Score” of a mutant:

(mutant — wt) topological score difference = TS_— TS,
(empirical measure of relative structural change due to mutation)

Vector “Residual Profile” of a mutant:

R=0Q, . — Q. = (mutant — wt) potential profile vector difference
(environmental perturbation score for every position in structure)

Denote R=<FEC,, EC,, EC,;,..., ECy >
EC; = ¢ i — 9i.w = relative environmental change at position 1

Geometric property: mutation at position 1 => EC, = residual score



Comprehensive Mutational Profile (CMP)

* At each position, the CMP score 1s the mean of the residual scores
associated with all possible amino acid substitutions

* Computationally,
CMP, =3

=45 2., [(mutant topological score), — (wt topological score)]
=25 212:01 (mutant residual score);,
= {mean residual score}j
where index i refers to the 20 amino acids, and index j refers to the
primary sequence position

4 T
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CMP - Potential Profile Correlation

CMP Scores
N

Quad 1 Residue Types
® Hydrophobic
¢ Charged

A Polar

R?=0.81
Quad 3 Quad 4
6 4 2 0 2 4 6 8 10 12 14

Residue Environment Scores




Distribution of lac repressor residue positions

Residue Groups

Graph DNA IPTG

Gt Surface Buried liniciiap; Biadia Stability Interface Spacers Total
Ql 8 10 0 2 1 6 4 31
Q2 49 12 9 9 8 15 20 122
Q4 31 46 5 4 25 17 10 138

Total 101 73 18 17 36 43 40 328
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Experimental Mutants: Residual Scores
Elucidate the Structure-Function Relationship
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Mutant Residual Profiles as Feature Vectors
for Decision Tree Classification and Prediction

Training set: 4041 experimental mutants with known activity
(fully active = “unaffected”; intermediate / inactive = “affected”)

Each feature vector includes three additional components:
native residue, position number, and replacement residue

Evaluating model performance: Tenfold cross-validation (10 CV),
and random split (N% used for training, (100 — N)% are predicted)

Performance measures:

Q=(TP+TN) /(TP + FP + TN + FN)

BER =0.5 x [FN/(FN + TP) + FP / (FP + TN)]

MCC = (TPXTN-FPxFN) / [(TP+FN)(TP+FP)(TN+FN)(TN+FP)]”
AUC = Area under ROC (plot of sensitivity vs. 1 — specificity)



Tenfold Cross-Validation Results
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10 CV results: Q = 78.7%, BER =0.22, MCC = 0.57, AUC =0.80

“Shuffled classes” random control results: Q =51.1%, BER =0.51,
MCC =-0.01, AUC =0.50



Learning Curve
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Curve suggests that ~1200 mutant training set 1s optimal

(=]

Hence, 30% of the 4041 mutants randomly selected for training

Trained model used for predicting classes of remaining mutants

Test set: 1316/1586 unaffected and 873/1243 affected correctly
predicted, with Q = 77.4%, BER = 0.23, MCC = 0.54, AUC =0.78



Lac Repressor Mutational Array
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Conclusions and Future Directions

» Computational mutagenesis was developed through application
of a four-body, knowledge-based, statistical contact potential

» Residual scores of mutants with experimentally classified activity change
elucidate the structure-function relationship

« Mutant residual profiles serve as feature vectors for machine learning

« Future Aim: Develop a “universal” classification model to
predict activity change of a residue replacement 1n any protein
« Need common attribute set as feature vector components for all mutants

 Instead of entire residual profile, use only EC scores at mutated position
(1.e., residual score) as well as ordered EC scores at six nearest positions

e Include additional information-rich common attributes

« Already implemented for predicting stability change in mutants (see
http://proteins.gmu.edu/automute)

» Several candidate activity change mutant protein systems for training: lac
repressor (4041), t4 lysozyme (2015), HIV-1 PR (536), IL-3 (629), ...


http://proteins.gmu.edu/automute
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