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What Constitutes a “Functional Consequence” 
Due to Amino Acid Substitutions?

• Change in protein stability:
• Effect on melting temperature: ∆Tm = Tm (mutant) – Tm (wt)
• Effect on thermal denaturation: ∆∆G = ∆G (mutant) – ∆G (wt)  
• Effect on denaturant denaturation: ∆∆GH2O = ∆GH2O (mutant) – ∆GH2O (wt)

• Change in protein activity:
• Mutant enzymatic activity relative to wt
• Mutant strength of DNA binding relative to wt

• Disease potential of human coding nsSNPs
• Neutral polymorphism or disease-associated mutation?

• For protein (human, bacterial, viral) targets of inhibitor drugs:
• Continued sensitivity or (degree of ) resistance that patients with the mutant 

protein have to the inhibitor
• Inhibitor binding energy to mutant target relative to wt



Delaunay Tessellation of Protein Structure

D (Asp) Cα or center of mass

Abstract each amino acid to a point
Atomic coordinates – Protein Data Bank (PDB)
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Delaunay tessellation: 3D “tiling” of space into non-overlapping, 
irregular tetrahedral simplices. Each simplex objectively defines 
a quadruplet of nearest-neighbor amino acids at its vertices. 



Example 1: HIV-1 Protease (3phv) 
Vertices: Weighted side chain center of mass (CM) points for 99 aa’s
Dark line: C-alpha backbone trace (coincides with a vertex for Gly)
Left: complete tessellation; Right: partial (12A filter), “true” neighbors



Example 2: HIV-1 Reverse Transcriptase (1rtjA)
CM vertices; Left – full tessellation; Right – 12A filter on edges



Counting Amino Acid Quadruplets
Ordered quadruplets: 204 = 160,000 (too many)
Order-independent quadruplets (our approach):
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Total:  8,855 distinct unordered quadruplets



Four-Body Statistical Potential
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Tessellate

Pool together the simplices from all tessellations, and 
compute observed frequencies of simplicial quadruplets

…

Training set: over 1,000 diverse 
high-resolution x-ray structures



Four-Body Statistical Potential
• Knowledge-based, modeled after inverse Boltzmann law: 

pi = Frequency (feature i) ∂ e – Energy (feature i) / KT, i.e., Ei ∂ –KT ln pi; 
and Potential (feature i) = Ei – Eref = ∆Ei = –KT ln(pi / pref)

• For amino acid quadruplet (i,j,k,l), a log-likelihood score 
(interaction “pseudo-energy”) is given by s(i,j,k,l) = log(fijkl / pijkl)

• fijkl = observed proportion of training set simplices whose four 
vertex residues are i,j,k,l

• pijkl = rate expected by chance (multinomial distribution, based on 
training set proportions of residues i,j,k,l)

• Four-body statistical potential: the collection of 8855 quadruplet 
(or simplex) types and their respective log-likelihood scores



Reference (Multinomial) Distribution
• Empirical potential of quadruplet interaction:

s(i,j,k,l) = log(fijkl / pijkl)
• Multinomial distribution:

pijkl = caiajakal

• ai = total number of occurrences of residue i divided by total 
number of residues, in the entire training set of protein structures

• , where n = number of distinct residue types in the
quadruplet, and ti is the number of residues of type i.

• Potential problem: The collection of all amino acids exist in 
hundreds of separate training set structures

• Potential solution: Weighted average of separate multinomials for 
each structure, where weight = proportion of residues in structure



Four-Body Statistical Potential



Application 1:Topological Score of a Protein
• Global measure of sequence-structure compatibility, also referred 

to as the “total (empirical or statistical) potential of the protein”
• Obtained by summing the log-likelihood scores of all simplicial

quadruplets defined by the tessellation

TS = ∑î s(x), sum taken over all simplex 
quadruplets x in the entire tessellation.
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Close-up view of only the four simplices that 
use R at position 5 as a vertex (hypothetical)
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Application 2: Residue Environment Scores
• For each amino acid position, locally sum log-likelihood 

scores s(i,j,k,l) of only simplices that use the amino acid 
point as a vertex
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Example: q5 = q(R5) = ∑(i,j,k,l) s(i,j,k,l), 
sum is taken over all simplex quads 
(i,j,k,l) that contain amino acid R5
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• The scores of all the amino acid positions in the protein 
structure form a Potential Profile vector Q = < q1,…,qN >
(N = length of primary sequence in the solved structure)



Computational Mutagenesis Methodology
• Observation: mutant and wild type (wt) protein structure 

tessellations are very similar or identical

• Approach: obtain topological score and potential profile of mutant 
from wt structure tessellation, by changing residue labels at points
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• Scalar “Residual Score”: mutant – wt 
topological scores = TSmut – TSwt
(empirical measure of overall relative 
structural impact due to mutation)

• Vector “Residual Profile”:
R = Qmut – Qwt = difference between 
mutant and wt potential profile vectors 
(environmental perturbation score for 
every amino acid position in structure)
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Residual Scores Example: 980 Distinct 
Single-Point Mutants in 20 Proteins
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Residual Score Example (Continued)
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Residual Score Example (Continued)
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Structure-Function Correlations Based on 
Residual Scores: nsSNPs

• 1790 nsSNPs corresponding to single amino acid substitutions 
in several hundred proteins with tessellatable structures

• Function: 1332 nsSNPs associated with disease; 458 neutral
• Data obtained from Swiss-Prot and HPI



Structure-Function Correlations Based on 
Residual Scores: Drug Susceptibility
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NFV: -0.26
SQV: -0.19
IDV: -0.48
RTV:  0.09
APV: -0.49
LPV: -0.41
ATV:  0.05

NFV: -0.18
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IDV: -0.93
RTV: -0.87
APV: -0.80
LPV: -0.78
ATV: -0.72
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IDV: -1.00
RTV: -0.99
APV: -1.24
LPV: -1.04
ATV: -1.17



Mutant Residual Profiles: Motivation
• Residual profile vectors encode much more sequence and 

structure information about mutants than scalar residual scores; 
Denote R = < EC1,…,ECN >, where ECi = Environmental Change
at position i relative to wt

• ECi = 0 unless either position i has been mutated, or position i is 
involved in a simplex with a mutated position (structure info)

• For the special case of single point mutants, residual scores are 
explicitly incorporated into the residual profiles (EC score at 
mutated position = residual score of mutant protein)

• Residual profiles of all 19 single point mutants at one position
have identical arrangements of zero and nonzero components; 
only the values of the nonzero components differ (sequence info)



HIV-1 PR Dataset Example: 
Residual Profiles of 536 Experimental Mutants

… …



Machine Learning Algorithms

• Supervised Classification: Neural Network (NN), Decision Tree 
(DT), Support Vector Machine (SVM), Random Forest (RF); 
Regression: Tree regression, Support Vector Regression

• Training set: residual profiles (“attribute” or “feature” vectors) of 
protein mutants (“instances” or “examples”) with experimentally 
measured function (categorical “class” or a numerical “value”)

• Common approach among algorithms: train a model capable of 
accurately classifying or determining the value of each example,
based on the values of the attribute set

• Learned model: a consistent set of relationships or rules (complex 
nonlinear function) between the attributes of the examples and 
their classes (or values), used for predicting the class memberships 
(or values) of new, unstudied instances



Evaluating Algorithm Performance
• Overall goal: Develop model with known examples to accurately 

predict class (or value) of examples that have not yet been assayed 
experimentally (potentially great savings of time and money)

• Approaches: Tenfold cross-validation (CV);
leave-one-out (i.e., jackknife or N-fold CV, N = dataset size);
% split (e.g., use only 2/3 for training, 1/3 held out for testing)

• Classification performance measures:
accuracy = (TP+TN) / (TP+FP+TN+FN); sensitivity = TP / (TP+FN); 
specificity = TN / (TN+FP); precision = TP / (TP+FP);
BER = 0.5 × [FP / (FP+TN) + FN / (FN+TP)];
MCC = (TP×TN – FP×FN) / ◊(TP+FN)(TP+FP)(TN+FN)(TN+FP);
AUC = area under ROC curve (plot of sensitivity vs. 1 – specificity)
For regression models: correlation coefficient, standard error



Algorithm Performance: HIV-1 PR Mutants



Real-World Application:
HIV-1 PR

Table 2. Comparison (C) of predicted (P) and experimental (E) activity for  
HIV-1 protease mutants (+ = active, - = inactive, X = no match) 

# Mutant P E C Ref # Mutant P E C Ref 

1. P1A + +  [1] 25. M46I + +  [2] 
[6] 
[10] 

2. Q2A + +  [1] 26. G48Y + +  [5] 
3. I3A + - X [1] 27. V56R - -  [4] 

[11] 
4. T4A + +  [1] 28. V56C - + X [4] 

[11] 
5. L10F + +  [2] 29. V56K - -  [4] 

[11] 
6. D25N - -  [1] 30. V56T - + X [4] 

[11] 
7. T26S - -  [3] 31. A71V + +  [10] 

[12] 
8. D29R - -  [4] 32. L76M - + X [8] 
9. D29H - -  [4] 33. P79L + - X [4] 
10. D29L - -  [4] 34. V82N - -  [5] 
11. D29M - -  [4] 35. V82Q - -  [5] 
12. D29P - -  [4] 36. V82E - + X [5] 
13. D29S - -  [4] 37. V82S - -  [5] 

[9] 
14. D30F + - X [5] 38. L90M - -  [9] 
15. D30W + - X [5] 39. T96A - -  [1] 
16. V32I - -  [6] 

[7] 
[8] 

40. L97A - -  [1] 

17. L38A - -  [4] 41. N98A + +  [1] 
[4] 

18. L38R - -  [4] 42. N98R + +  [4] 
19. L38N - -  [4] 43. N98C + +  [4] 
20. L38G - -  [4] 44. N98L + - X [4] 
21. L38K - -  [4] 45. N98F + +  [4] 
22. L38S - -  [4] 46. N98P + - X [4] 
23. K45E + +  [5] 47. N98T + +  [4] 
24. K45I + +  [9]       

[1] (Choudhury et al., 2003); [2] (Pazhanisamy et al., 1996); [3] (Konvalinka et al., 
1995); [4] (Manchester et al., 1994); [5] (Lin et al., 1995); [6] (Gulnik et al., 1995); [7] 
(Ridky et al., 1998); [8] (Sardana et al., 1994); [9] (Mahalingam et al., 1999); [10] 
(Mammano et al., 2000); [11] (Shao et al., 1997); [12] (Clemente et al., 2003) 

• Model: two-class decision tree, 
trained with the 536 HIV-1 PR 
mutants

• Test set: experimental activity 
for 47 additional mutants 
discovered while searching the 
literature (12 different studies)

• Residual profiles of the mutants 
fed into model for predictions

• Result: 37/47 (79%) of the 
mutant activity predictions 
match experimental activity



Performance: 2015 T4 Lysozyme Mutants



T4 Lysozyme Mutational Array

Training set mutants (n = 2015) Predicted test set mutants (n = 1101)
Active Inactive Active Inactive



Real-World T4 Lysozyme Prediction Results

• Experimental data (not part of training set) obtained from ProTherm database  
• Result: predictions match experiments for 30/35 (~86%) of the mutants 



Algorithm Performance: T4 Lysozyme 
Activity and Stability Mutants

Left: Random forest algorithm, tenfold cross-validation, 2015 
single-point activity mutants (1724 active and 291 inactive), overall 
accuracy is 80.4% (81.9% active class, 71.8% inactive class). 
Right: Support vector regression algorithm, tenfold cross-
validation, 507 single-point stability mutants.



Universal Models for Single-Point Mutants 
• Current models are protein-specific since residual profile vectors 

of mutants from different proteins have different sizes
• New approach: use a subset of seven components (EC scores) 

extracted from the residual profile vector, corresponding to
• the mutated position (residual score of the mutant protein)
• the six nearest neighbors that participate in simplices with the 

mutated position, ordered by Euclidean distance away
• Include native and new amino acids at the mutated position, 

ordered amino acids at the six neighbors, and ordered primary 
sequence distance of the six neighbors from the mutated position

• Include location (surface, undersurface, or buried) and secondary 
structure (helix, strand, coil, turn) of the mutated position

• Include temperature as well as pH of experimental conditions







∆∆G Dataset Used to Train Models
• Over 1900 single-site mutants derived from 53 proteins with low 

sequence and structure homology

• All protein structures are tessellatable

• Experimental stability of each mutant reported as the free energy 
of unfolding (∆∆G = ∆Gmutant – ∆Gwt) in kcal/mol

• Data collected from the ProTherm database by Capriotti et al.
Bava, K.A., Gromiha, M.M., Uedaira, H., Kitajima, K. and Sarai, A. (2004) ProTherm, version 
4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res.,32, D120–D121.

Capriotti, E., Fariselli, P. and Casadio, R. (2005) I-Mutant2.0: predicting stability changes upon 
mutation from the protein sequence or structure. Nucleic Acids Res.,33, W306–W310.

• Additional experimental data in ProTherm for each mutant 
includes temp. (°C) and pH; relative accessibility (RSA) for each 
mutant computed with the DSSP program by Capriotti et al.





Supervised Classification Performance Measures





Support Vector Regression

Capriotti et al. SVM regression (for comparison): 
r = 0.71, Standard Error = 1.3 kcal/mol, y = 0.5223x – 0.4705



Tree Regression (REPTree)





Conclusions and Future Directions
• A novel computational mutagenesis arising from a four-body, 

knowledge-based statistical potential uniquely characterizes each 
protein mutant using properties of sequence and structure

• Descriptors correlate well with mutant function and are valuable
for developing accurate predictive models by combining with 
machine learning tools (novel approach not described in literature)

• Future work:
• Develop atomic-level four-body statistical potentials

• How to define alphabet?
• Distinguish between protein and ligand atoms?

• Apply to the development of predictive models
• protein-protein interactions
• protein-ligand binding energies
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