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Introductory Example
•

 
Attributes

 
X and Y measured for each person (example

 or instance) in a training set
 

of three individuals
•

 
(X,Y): (4.9,110), (5.3, 160), (5.6, 120)

•
 

Fit a model to the data

y = -444.44x2 + 4761.1x - 12584
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Introductory Example, Continued

•
 

Can the model be used to accurately predict Y attribute 
of new people, given the value of their X attribute? 

•
 

No! By overfitting
 

the model to the training data, we 
are prevented from using it to make reasonable 
predictions about new test data.

y = -444.44x2 + 4761.1x - 12584
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Introductory Example, Continued
•

 
Perhaps fitting a linear function through the training set 
instances would allow for better prediction…or, is it too 
simple (underfitting)? Perhaps a logistic curve?

y = 50x - 126.67
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Example: To Play or Not to Play
•

 
Given weather conditions (outlook, temperature, 
humidity, windy), should we schedule a game (yes, no)?

•
 

Input attributes: x1 = outlook (sunny, overcast, rainy), 
x2 = temperature (real #), x3 = humidity (real #), x4 = 
windy (yes, no); X = (x1, x2, x3, x4) 

•
 

Output attribute: Y = play game (yes, no)

•
 

Training set: a collection of vectors V
 

= (X,Y) covering 
a variety of conditions with known game playing 
decisions, from which a model can be learned and used 
to make decisions based on new sets of conditions



Data Format in Weka
 

(.arff
 

file)
@relation weather

@attribute outlook {sunny, overcast, rainy}

@attribute temperature real

@attribute humidity real

@attribute windy {TRUE, FALSE}

@attribute play {yes, no}

@data

sunny,85,85,FALSE,no

sunny,80,90,TRUE,no

overcast,83,86,FALSE,yes

rainy,70,96,FALSE,yes

rainy,68,80,FALSE,yes

rainy,65,70,TRUE,no

overcast,64,65,TRUE,yes

sunny,72,95,FALSE,no

sunny,69,70,FALSE,yes

rainy,75,80,FALSE,yes

sunny,75,70,TRUE,yes

overcast,72,90,TRUE,yes

overcast,81,75,FALSE,yes

rainy,71,91,TRUE,no



Supervised Classification
•

 
Machine learning algorithms: Neural Network (NN), Decision 
Tree (DT), Support Vector Machine (SVM), Random Forest (RF)

•
 

Training set: collection of instances that an algorithm uses to learn 
a model; each instance is provided as a feature vector V = (X,Y), 
where X

 
= vector of input attributes (independent variables) and  

Y = the class of the instance (dependent variable, output attribute)

•
 

Common approach among algorithms: learn a model (complex 
nonlinear function) using the training set that can accurately 
classify new instances, based on their input attributes

•
 

Learned model: a consistent set of relationships or rules between 
the attributes of the instances and the class, used for predicting the 
class memberships of new, unstudied instances



Neural Network



Decision Tree



Support Vector Machine



Random Forest
•

 
Let t = total # of trees, n = total # of instances in 
dataset, and M = total # of input attributes

•
 

For each decision tree, the training set is obtained by 
selecting n instances with replacement

 
(bootstrapping)

•
 

A fixed number m<<M is chosen, and for each node in 
every tree, the best split on a random subset of m 
attributes is used to split the node

•
 

No pruning –
 

trees are grown as large as possible

•
 

Classification: majority vote (aggregating) among trees

•
 

Bootstrapping + aggregating = Bagging



Regression
•

 
Suppose output attribute is numerical rather than 
categorical (such as Y value of introductory example)

•
 

Example: suppose “play game”
 

(yes or no) is replaced 
with a probability (chance) of playing given weather

•
 

Machine learning algorithms: tree regression, support 
vector regression

•
 

Models similar to those of supervised classification, 
except here we predict output values

 
instead of classes



Proteins 101: Crash Course
•

 
Building blocks: amino acids (aa)
•

 

20 distinct types in nature 
(A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)

•

 

Can be clustered based on similarities 
in physico-chemical properties

•

 

~200 aa’s/protein (widely variable) 
successively linked by peptide bonds

•
 

Protein structure: primary, 
secondary, tertiary, quaternary 
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Example:HIV-1 Protease (3phv)



Delaunay Tessellation of Protein Structure
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D (Asp)

Abstract each amino acid to a point
Atomic coordinates –

 

Protein Data Bank (PDB)

Cα

 

or center of mass

Delaunay tessellation: 3D “tiling”
 

of space into non-overlapping, 
irregular tetrahedral simplices. Each simplex objectively defines 
a quadruplet of nearest-neighbor amino acids at its vertices. 



Counting Amino Acid Quadruplets
All quadruplets (including permutations): 204

 
= 160,000

Permutation-independent quadruplets (our approach):
D F E C 

C C D E 

C C D D 

C C C D 

C C C C 

20
4

 
 
 

19
20

2
 
  
 

20
2

 
 
 

20 19

20

Total:  8,855 distinct quadruplets (no permutations)



Example: HIV-1 Protease (3phv) 
Vertices: Weighted side chain center of mass (CM) points for 99 aa’s
Dark line: C-alpha backbone trace (coincides with a vertex for Gly)
Left: ribbon diagram; Right: tessellation (12A filter), “true”

 
neighbors



Four-Body Statistical Potential

PDB
Training set: over 1,400 diverse 
high-resolution x-ray structures

1bniA
barnase

1jli
IL-3

3lzm
t4 lysozyme

Tessellate

Pool together all simplices
 

from the tessellations, and 
compute observed frequencies of simplicial

 
quadruplets

…
1rtjA

HIV-1 RT



Four-Body Statistical Potential
•

 
Knowledge-based, modeled after inverse Boltzmann principle

•
 

For amino acid quadruplet (i,j,k,l), a log-likelihood score (energy 
of interaction ) is given by s(i,j,k,l) = log(fijkl

 

/ pijkl

 

)

•
 

fijkl

 

= observed proportion of tetrahedra
 

in the training set 
tessellations whose four vertex residues are i,j,k,l

•
 

pijkl

 

= rate expected by chance (multinomial distribution, based 
on the proportion of all residues in the training set proteins that 
are of the types i,j,k,l)

•
 

Four-body statistical potential: the collection of 8855 quadruplet 
types and their respective log-likelihood scores



Four-Body Statistical Potential



Application 1: Protein Total Potential (TP)

•
 

Obtained by summing the log-likelihood scores of all
 

simplicial
 quadruplets defined by the protein tessellation

•
 

Global
 

measure of protein sequence-structure compatibility

TP = ∑î

 

s(î), sum taken over all
 

simplex 
quadruplets î

 
in the entire tessellation.
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Close-up view of only

 

the four simplices

 
that use R

 

at position 5

 

as a vertex



Application 2: Residue Environment Scores

•
 

For each amino acid position, locally
 

sum the scores s(i,j,k,l) of 
only

 
tetrahedra

 
that use the position as a vertex
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Example:

 
q5

 

=
 

q(R5) = ∑(i,j,k,l)

 

s(i,j,k,l), 
sum is taken only

 
over all quadruplets 

(i,j,k,l) that use R5

•
 

The scores of all the amino acid positions in the protein structure 
form a Potential Profile

 
vector Q

 
= < q1

 

, q2

 

, q3

 

,…,qN > 
(N = length of primary sequence in the solved structure)



Computational Mutagenesis Methodology
•

 
Observations: 
•

 

Few solved mutant structures to compare with solved wild type (wt) structure
•

 

Mutant and wt protein structure tessellations are very similar or identical
•

 
Approach: 
•

 

Obtain total potental

 

(TPmut

 

) and potential profile vector (Qmut

 

) for any single 
residue mutant by using the wt structure tessellation as a template 

•

 

Simply change the residue label at a given point and re-compute
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Computational Mutagenesis Methodology

•
 

Scalar “Residual Score”
 

of a mutant:
(mutant –

 
wt) total potential difference = TPmut

 

– TPwt

 

(relative 
change in sequence-structure compatibility upon mutation)

•
 

Vector “Residual Profile”
 

of a mutant:
R

 
= Qmut

 

–
 

Qwt

 

= (mutant –
 

wt) potential profile vector difference 
(environmental perturbation score for every position in structure)

•
 

Denote R = < EP1

 

, EP2

 

, EP3

 

,…, EPN

 

>
EPi

 

= qi,mut

 

–
 

qi,wt

 

= environmental perturbation at position i

•
 

Geometric property: mutation at position i => EPi

 

= residual score



Example: HIV-1 Protease (PR)

(A) Mutant 3D-1D

(B) Native 3D-1D

Residual Profile R
(A –

 

B)
EC components of R

Residual Score: EC25
(mutation “epicenter”)

Note:
 

“EC”
 is now “EP”



HIV-1 Protease Dataset Example: 
Residual Profiles for 536 Experimental Mutants

… …



Data Format in Weka
 

(.arff
 

file)
@relation 536profiles

@attribute wt {ALA, CYS, ASP, GLU, PHE, GLY, HIS, ILE, LYS, LEU, MET, ASN, PRO, GLN, ARG, 
SER, THR, VAL, TRP, TYR}
@attribute position real
@attribute sub {ALA, CYS, ASP, GLU, PHE, GLY, HIS, ILE, LYS, LEU, MET, ASN, PRO, GLN, ARG, 
SER, THR, VAL, TRP, TYR}
@attribute P1 real
@attribute Q2 real
@attribute I3 real
@attribute T4 real

@attribute L97 real
@attribute N98 real
@attribute F99 real
@attribute activity {active, inactive}

@data
PRO,1,HIS,1.89369,0.12473,0.2462,-
0.01137,0,0,0,0,0,0,0,0.15478,0,0,0,0,0,0,0.03253,0,0,0,0,0.17239,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.87811,0.19179,1.11231,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.08714,0.38016,0.97826,0.08584,0,0.2482,0,active
PRO,1,LEU,1.61399,-0.21225,1.51021,0.14456,0,0,0,0,0,0,0,-
0.05708,0,0,0,0,0,0,0.03691,0,0,0,0,2.13064,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.28094,-0.1156,-
0.60914,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.23294,-0.46368,1.06605,-
0.34583,0,-0.7566,0,active
PRO,1,SER,0.80073,0.19565,0.14197,0.15969,0,0,0,0,0,0,0,0.1124,0,0,0,0,0,0,-
0.09538,0,0,0,0,0.02238,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0.34489,-
0.005,0.15276,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.22211,0.16134,0.53626,0.1438
6,0,0.30934,0,active

.  .  .

.  .  .



Evaluating Algorithm Performance

•
 

Overall goal:
 

Develop model with known examples to accurately 
predict class (or value) of instances that have not yet been assayed 
experimentally (potentially great savings of time and money)

•
 

Ideal situation: split large original dataset into 3 subsets
o

 

Training set (learn model)
o

 

Validation set (optimize model by tweaking model parameters)
o

 

Test set (evaluate model on new data not used to develop model)
o

 

Errors measured at each step (resubstitution, validation, generalization)

•
 

Approaches:
 

Tenfold cross-validation (10-fold CV);
leave-one-out CV (i.e., N-fold CV, where N = dataset size);
% split (e.g., use only 2/3 for training, 1/3 held out for testing)



Evaluating Algorithm Performance
•

 
10-fold CV
o

 

Randomly split the dataset instances into 10 equally-sized subsets

o

 

Hold-out subset 1; combine subsets 2-10 into one training set for learning a 
model; use trained model to predict classes of instances in subset 1

o

 

Repeat previous step 9 more times (e.g., hold-out subset 2, combine subsets 
1 and 3-10 together to train a model, use model to predict subset 2, etc)

o

 

We end up with 10 models, each trained using 90% of the original

 

dataset, 
and each used to predict the held-out 10% subset. 

o

 

In the end, each instance has one class prediction –

 

compare to actual class

•
 

LOOCV (leave-one-out CV, or N-fold CV)
o

 

Similar to above, but each subset contains only 1 instance

o

 

Deterministic –

 

no randomness to which instances are grouped as subsets

o

 

Overall prediction accuracy provides rough idea of how a model trained 
with the full dataset will perform

•
 

% split (self-explanatory)



Evaluating Algorithm Performance
•

 
Assume instances belong to two generic classes (Pos/Neg)

•
 

Results of comparing predictions with actual classes based on 
the approaches described (10-fold CV, LOOCV, % split) can be 
summarized in a confusion matrix: 

•
 

Classification performance measures:
accuracy

 
= (TP+TN) / (TP+FP+TN+FN); sensitivity

 
= TP / (TP+FN); 

specificity
 

= TN / (TN+FP); precision (PPV)
 

= TP / (TP+FP);
BAR

 
= 0.5 ×

 

[sensitivity + specificity];
MCC = (TP×TN –

 

FP×FN) / [(TP+FN)(TP+FP)(TN+FN)(TN+FP)]1/2;
AUC = area under ROC curve (plot of sensitivity

 

vs. 1 –

 

specificity)

TP FN

FP TN

Predicted as
Pos                      Neg

Pos

Neg
Actual
class



ROC Curve
•

 
Plot of true positive rate

 
(sensitivity) versus false positive rate

 (1 –
 

specificity) in the unit square 

•
 

AUC = probability that classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative one

•
 

AUC ~ 0.5 (ROC close to diagonal line joining points (0,0) 
and (1,1)) suggests no signal in dataset and that trained model 
is not likely to perform any better than random guessing

•
 

AUC = 1 (piecewise linear ROC joining (0,0) to (0,1) and 
(0,1) to (1,1)) indicates a perfect classifier



ROC Curve



10-Fold CV Weka
 

Output Example

=== Run information ===

Scheme:       weka.classifiers.trees.RandomForest -I 100 -K 0 -S 1
Relation:     536profiles
Instances:    536
Attributes:   103
              [list of attributes omitted]
Test mode:    10-fold cross-validation

=== Classifier model (full training set) ===

Random forest of 100 trees, each constructed while considering 7 random features.
Out of bag error: 0.1866



10-Fold CV Weka
 

Output Example, Continued
Time taken to build model: 17.06 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances         443               82.6493 %
Incorrectly Classified Instances        93               17.3507 %
Kappa statistic                          0.6418
Mean absolute error                      0.2963
Root mean squared error                  0.3625
Relative absolute error                 60.8836 %
Root relative squared error             73.5037 %
Total Number of Instances              536     

=== Detailed Accuracy By Class ===

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
  0.777     0.138      0.802     0.777     0.789      0.894    active
  0.862     0.223      0.843     0.862     0.853      0.894    inactive

=== Confusion Matrix ===

   a   b   <-- classified as
 174  50 |   a = active
  43 269 |   b = inactive
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