
Machine Learning Methods

Majid

Masso, PhD
Bioinformatics and Computational Biology

George Mason University

Introductory Example
•

Attributes

X and Y measured for each person (example

 or instance) in a training set

of three individuals
•

(X,Y): (4.9,110), (5.3, 160), (5.6, 120)

•

Fit a model to the data

y = -444.44x2 + 4761.1x - 12584

100

110

120

130

140

150

160

170

180

190

200

4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1

Introductory Example, Continued

•

Can the model be used to accurately predict Y attribute
of new people, given the value of their X attribute?

•

No! By overfitting

the model to the training data, we
are prevented from using it to make reasonable
predictions about new test data.

y = -444.44x2 + 4761.1x - 12584

100

110

120

130

140

150

160

170

180

190

200

4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1

Introductory Example, Continued
•

Perhaps fitting a linear function through the training set
instances would allow for better prediction…or, is it too
simple (underfitting)? Perhaps a logistic curve?

y = 50x - 126.67

100

110

120

130

140

150

160

170

180

190

200

4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1

Example: To Play or Not to Play
•

Given weather conditions (outlook, temperature,
humidity, windy), should we schedule a game (yes, no)?

•

Input attributes: x1 = outlook (sunny, overcast, rainy),
x2 = temperature (real #), x3 = humidity (real #), x4 =
windy (yes, no); X = (x1, x2, x3, x4)

•

Output attribute: Y = play game (yes, no)

•

Training set: a collection of vectors V

= (X,Y) covering
a variety of conditions with known game playing
decisions, from which a model can be learned and used
to make decisions based on new sets of conditions

Data Format in Weka

(.arff

file)
@relation weather

@attribute outlook {sunny, overcast, rainy}

@attribute temperature real

@attribute humidity real

@attribute windy {TRUE, FALSE}

@attribute play {yes, no}

@data

sunny,85,85,FALSE,no

sunny,80,90,TRUE,no

overcast,83,86,FALSE,yes

rainy,70,96,FALSE,yes

rainy,68,80,FALSE,yes

rainy,65,70,TRUE,no

overcast,64,65,TRUE,yes

sunny,72,95,FALSE,no

sunny,69,70,FALSE,yes

rainy,75,80,FALSE,yes

sunny,75,70,TRUE,yes

overcast,72,90,TRUE,yes

overcast,81,75,FALSE,yes

rainy,71,91,TRUE,no

Supervised Classification
•

Machine learning algorithms: Neural Network (NN), Decision
Tree (DT), Support Vector Machine (SVM), Random Forest (RF)

•

Training set: collection of instances that an algorithm uses to learn
a model; each instance is provided as a feature vector V = (X,Y),
where X

= vector of input attributes (independent variables) and

Y = the class of the instance (dependent variable, output attribute)

•

Common approach among algorithms: learn a model (complex
nonlinear function) using the training set that can accurately
classify new instances, based on their input attributes

•

Learned model: a consistent set of relationships or rules between
the attributes of the instances and the class, used for predicting the
class memberships of new, unstudied instances

Neural Network

Decision Tree

Support Vector Machine

Random Forest
•

Let t = total # of trees, n = total # of instances in
dataset, and M = total # of input attributes

•

For each decision tree, the training set is obtained by
selecting n instances with replacement

(bootstrapping)

•

A fixed number m<<M is chosen, and for each node in
every tree, the best split on a random subset of m
attributes is used to split the node

•

No pruning –

trees are grown as large as possible

•

Classification: majority vote (aggregating) among trees

•

Bootstrapping + aggregating = Bagging

Regression
•

Suppose output attribute is numerical rather than
categorical (such as Y value of introductory example)

•

Example: suppose “play game”

(yes or no) is replaced
with a probability (chance) of playing given weather

•

Machine learning algorithms: tree regression, support
vector regression

•

Models similar to those of supervised classification,
except here we predict output values

instead of classes

Proteins 101: Crash Course
•

Building blocks: amino acids (aa)
•

20 distinct types in nature
(A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)

•

Can be clustered based on similarities
in physico-chemical properties

•

~200 aa’s/protein (widely variable)
successively linked by peptide bonds

•

Protein structure: primary,
secondary, tertiary, quaternary

=

+H3N Cα C
H O

O-
CH2
CH

CH3 H3C

Identical for al l
 amino acids

Unique side chain
(R group) for each
 amino acid

Leucine (Leu or L)

=

+H3N Cα C
H O

O-
R1

+ +H3N
H
Cα
R2

C O-

= O

H2O

+H3N Cα Cα

=

O

R1
C C

H H
N

R2 H
O-

O

=

peptide bond

Example:HIV-1 Protease (3phv)

Delaunay Tessellation of Protein Structure

D3

A22

S64

L6
F7

G62

C63

K4

R5

D (Asp)

Abstract each amino acid to a point
Atomic coordinates –

Protein Data Bank (PDB)

Cα

or center of mass

Delaunay tessellation: 3D “tiling”

of space into non-overlapping,
irregular tetrahedral simplices. Each simplex objectively defines
a quadruplet of nearest-neighbor amino acids at its vertices.

Counting Amino Acid Quadruplets
All quadruplets (including permutations): 204

= 160,000

Permutation-independent quadruplets (our approach):
D F E C

C C D E

C C D D

C C C D

C C C C

20
4

19
20

2

20
2

20 19

20

Total: 8,855 distinct quadruplets (no permutations)

Example: HIV-1 Protease (3phv)
Vertices: Weighted side chain center of mass (CM) points for 99 aa’s
Dark line: C-alpha backbone trace (coincides with a vertex for Gly)
Left: ribbon diagram; Right: tessellation (12A filter), “true”

neighbors

Four-Body Statistical Potential

PDB
Training set: over 1,400 diverse
high-resolution x-ray structures

1bniA
barnase

1jli
IL-3

3lzm
t4 lysozyme

Tessellate

Pool together all simplices

from the tessellations, and
compute observed frequencies of simplicial

quadruplets

…
1rtjA

HIV-1 RT

Four-Body Statistical Potential
•

Knowledge-based, modeled after inverse Boltzmann principle

•

For amino acid quadruplet (i,j,k,l), a log-likelihood score (energy
of interaction) is given by s(i,j,k,l) = log(fijkl

/ pijkl

)

•

fijkl

= observed proportion of tetrahedra

in the training set
tessellations whose four vertex residues are i,j,k,l

•

pijkl

= rate expected by chance (multinomial distribution, based
on the proportion of all residues in the training set proteins that
are of the types i,j,k,l)

•

Four-body statistical potential: the collection of 8855 quadruplet
types and their respective log-likelihood scores

Four-Body Statistical Potential

Application 1: Protein Total Potential (TP)

•

Obtained by summing the log-likelihood scores of all

simplicial
 quadruplets defined by the protein tessellation

•

Global

measure of protein sequence-structure compatibility

TP = ∑î

s(î), sum taken over all

simplex
quadruplets î

in the entire tessellation.

A22

S64

L6
F7

G62

C63

K4

D3

R5

s(R,D,A,L)

s(R,D,K,S)

s(R,S,C,G)

s(R,G,F,L)

Close-up view of only

the four simplices

that use R

at position 5

as a vertex

Application 2: Residue Environment Scores

•

For each amino acid position, locally

sum the scores s(i,j,k,l) of
only

tetrahedra

that use the position as a vertex

A22

S64

L6
F7

G62

C63

K4

D3

R5

s(R,D,A,L)

s(R,D,K,S)

s(R,S,C,G)

s(R,G,F,L)
Example:

q5

=

q(R5) = ∑(i,j,k,l)

s(i,j,k,l),
sum is taken only

over all quadruplets

(i,j,k,l) that use R5

•

The scores of all the amino acid positions in the protein structure
form a Potential Profile

vector Q

= < q1

, q2

, q3

,…,qN >
(N = length of primary sequence in the solved structure)

Computational Mutagenesis Methodology
•

Observations:
•

Few solved mutant structures to compare with solved wild type (wt) structure
•

Mutant and wt protein structure tessellations are very similar or identical
•

Approach:
•

Obtain total potental

(TPmut

) and potential profile vector (Qmut

) for any single
residue mutant by using the wt structure tessellation as a template

•

Simply change the residue label at a given point and re-compute

A22

S64

L6
F7

G62

C63

K4

D3

I5

s(I,D,A,L)

s(I,D,K,S)

s(I,S,C,G)

s(I,G,F,L)
A22

S64

L6
F7

G62

C63

K4

D3

R5

s(R,D,A,L)

s(R,D,K,S)

s(R,S,C,G)

s(R,G,F,L)

(R5 I5)

Mutation

(TPwt

, Qwt

) (TPmut

, Qmut

)

Computational Mutagenesis Methodology

•

Scalar “Residual Score”

of a mutant:
(mutant –

wt) total potential difference = TPmut

– TPwt

(relative
change in sequence-structure compatibility upon mutation)

•

Vector “Residual Profile”

of a mutant:
R

= Qmut

–

Qwt

= (mutant –

wt) potential profile vector difference
(environmental perturbation score for every position in structure)

•

Denote R = < EP1

, EP2

, EP3

,…, EPN

>
EPi

= qi,mut

–

qi,wt

= environmental perturbation at position i

•

Geometric property: mutation at position i => EPi

= residual score

Example: HIV-1 Protease (PR)

(A) Mutant 3D-1D

(B) Native 3D-1D

Residual Profile R
(A –

B)
EC components of R

Residual Score: EC25
(mutation “epicenter”)

Note:

“EC”
 is now “EP”

HIV-1 Protease Dataset Example:
Residual Profiles for 536 Experimental Mutants

… …

Data Format in Weka

(.arff

file)
@relation 536profiles

@attribute wt {ALA, CYS, ASP, GLU, PHE, GLY, HIS, ILE, LYS, LEU, MET, ASN, PRO, GLN, ARG,
SER, THR, VAL, TRP, TYR}
@attribute position real
@attribute sub {ALA, CYS, ASP, GLU, PHE, GLY, HIS, ILE, LYS, LEU, MET, ASN, PRO, GLN, ARG,
SER, THR, VAL, TRP, TYR}
@attribute P1 real
@attribute Q2 real
@attribute I3 real
@attribute T4 real

@attribute L97 real
@attribute N98 real
@attribute F99 real
@attribute activity {active, inactive}

@data
PRO,1,HIS,1.89369,0.12473,0.2462,-
0.01137,0,0,0,0,0,0,0,0.15478,0,0,0,0,0,0,0.03253,0,0,0,0,0.17239,0,0,0,0,0,0,0,0,0,0,0,0,
0,0.87811,0.19179,1.11231,0,0,0,
0,1.08714,0.38016,0.97826,0.08584,0,0.2482,0,active
PRO,1,LEU,1.61399,-0.21225,1.51021,0.14456,0,0,0,0,0,0,0,-
0.05708,0,0,0,0,0,0,0.03691,0,0,0,0,2.13064,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.28094,-0.1156,-
0.60914,0,1.23294,-0.46368,1.06605,-
0.34583,0,-0.7566,0,active
PRO,1,SER,0.80073,0.19565,0.14197,0.15969,0,0,0,0,0,0,0,0.1124,0,0,0,0,0,0,-
0.09538,0,0,0,0,0.02238,0,
0,0,0,0,0,0,0,0,0,0.34489,-
0.005,0.15276,0.22211,0.16134,0.53626,0.1438
6,0,0.30934,0,active

. . .

. . .

Evaluating Algorithm Performance

•

Overall goal:

Develop model with known examples to accurately
predict class (or value) of instances that have not yet been assayed
experimentally (potentially great savings of time and money)

•

Ideal situation: split large original dataset into 3 subsets
o

Training set (learn model)
o

Validation set (optimize model by tweaking model parameters)
o

Test set (evaluate model on new data not used to develop model)
o

Errors measured at each step (resubstitution, validation, generalization)

•

Approaches:

Tenfold cross-validation (10-fold CV);
leave-one-out CV (i.e., N-fold CV, where N = dataset size);
% split (e.g., use only 2/3 for training, 1/3 held out for testing)

Evaluating Algorithm Performance
•

10-fold CV
o

Randomly split the dataset instances into 10 equally-sized subsets

o

Hold-out subset 1; combine subsets 2-10 into one training set for learning a
model; use trained model to predict classes of instances in subset 1

o

Repeat previous step 9 more times (e.g., hold-out subset 2, combine subsets
1 and 3-10 together to train a model, use model to predict subset 2, etc)

o

We end up with 10 models, each trained using 90% of the original

dataset,
and each used to predict the held-out 10% subset.

o

In the end, each instance has one class prediction –

compare to actual class

•

LOOCV (leave-one-out CV, or N-fold CV)
o

Similar to above, but each subset contains only 1 instance

o

Deterministic –

no randomness to which instances are grouped as subsets

o

Overall prediction accuracy provides rough idea of how a model trained
with the full dataset will perform

•

% split (self-explanatory)

Evaluating Algorithm Performance
•

Assume instances belong to two generic classes (Pos/Neg)

•

Results of comparing predictions with actual classes based on
the approaches described (10-fold CV, LOOCV, % split) can be
summarized in a confusion matrix:

•

Classification performance measures:
accuracy

= (TP+TN) / (TP+FP+TN+FN); sensitivity

= TP / (TP+FN);

specificity

= TN / (TN+FP); precision (PPV)

= TP / (TP+FP);
BAR

= 0.5 ×

[sensitivity + specificity];
MCC = (TP×TN –

FP×FN) / [(TP+FN)(TP+FP)(TN+FN)(TN+FP)]1/2;
AUC = area under ROC curve (plot of sensitivity

vs. 1 –

specificity)

TP FN

FP TN

Predicted as
Pos Neg

Pos

Neg
Actual
class

ROC Curve
•

Plot of true positive rate

(sensitivity) versus false positive rate

 (1 –

specificity) in the unit square

•

AUC = probability that classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one

•

AUC ~ 0.5 (ROC close to diagonal line joining points (0,0)
and (1,1)) suggests no signal in dataset and that trained model
is not likely to perform any better than random guessing

•

AUC = 1 (piecewise linear ROC joining (0,0) to (0,1) and
(0,1) to (1,1)) indicates a perfect classifier

ROC Curve

10-Fold CV Weka

Output Example

=== Run information ===

Scheme: weka.classifiers.trees.RandomForest -I 100 -K 0 -S 1
Relation: 536profiles
Instances: 536
Attributes: 103
 [list of attributes omitted]
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Random forest of 100 trees, each constructed while considering 7 random features.
Out of bag error: 0.1866

10-Fold CV Weka

Output Example, Continued
Time taken to build model: 17.06 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 443 82.6493 %
Incorrectly Classified Instances 93 17.3507 %
Kappa statistic 0.6418
Mean absolute error 0.2963
Root mean squared error 0.3625
Relative absolute error 60.8836 %
Root relative squared error 73.5037 %
Total Number of Instances 536

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.777 0.138 0.802 0.777 0.789 0.894 active
 0.862 0.223 0.843 0.862 0.853 0.894 inactive

=== Confusion Matrix ===

 a b <-- classified as
 174 50 | a = active
 43 269 | b = inactive

	Machine Learning Methods
	Introductory Example
	Introductory Example, Continued
	Introductory Example, Continued
	Example: To Play or Not to Play
	Data Format in Weka (.arff file)
	Supervised Classification
	Neural Network
	Decision Tree
	Support Vector Machine
	Random Forest
	Regression
	Proteins 101: Crash Course
	Example:HIV-1 Protease (3phv)
	Delaunay Tessellation of Protein Structure
	Counting Amino Acid Quadruplets
	Example: HIV-1 Protease (3phv)
	Four-Body Statistical Potential
	Four-Body Statistical Potential
	Four-Body Statistical Potential
	Application 1: Protein Total Potential (TP)
	Application 2: Residue Environment Scores
	Computational Mutagenesis Methodology
	Computational Mutagenesis Methodology
	Example: HIV-1 Protease (PR)
	HIV-1 Protease Dataset Example: �Residual Profiles for 536 Experimental Mutants
	Data Format in Weka (.arff file)
	Evaluating Algorithm Performance
	Evaluating Algorithm Performance
	Evaluating Algorithm Performance
	ROC Curve
	ROC Curve
	10-Fold CV Weka Output Example
	10-Fold CV Weka Output Example, Continued

