Machine Learning Methods

Majid Masso, PhD
Bioinformatics and Computational Biology

George Mason University

Introductory Example

» Attributes X and Y measured for each person (example
or instance) 1n a training set of three individuals

¢ (X,Y):(4.9,110), (5.3, 160), (5.6, 120)
 Fit a model to the data

200
190 -
180
170 -
160 -
150 -
140 -
130 -
120 -
110 - y = -444.44x* + 4761.1x - 12584

100

4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1

Introductory Example, Continued

200
190 - =
180 - =

170 -
160 -
150 -
140 -
130 -
120 -
110 - y = -444.44x* + 4761.1x - 12584

100

4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1

* Can the model be used to accurately predict Y attribute
of new people, given the value of their X attribute?

* No! By overfitting the model to the training data, we
are prevented from using it to make reasonable
predictions about new test data.

Introductory Example, Continued

* Perhaps fitting a linear function through the training set
instances would allow for better prediction...or, 1s it too
simple (underfitting)? Perhaps a logistic curve?

200
190 - o
180 - o

170
160 -
150 -
140 |
130
120 -
110 o
100

y = 50x - 126.67

4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1

Example: To Play or Not to Play

Given weather conditions (outlook, temperature,
humidity, windy), should we schedule a game (yes, no)?

Input attributes: x1 = outlook (sunny, overcast, rainy),
x2 = temperature (real #), x3 = humudity (real #), x4 =
windy (yes, no); X = (x1, x2, x3, x4)

Output attribute: Y = play game (yes, no)

Training set: a collection of vectors V = (X,Y) covering
a variety of conditions with known game playing
decisions, from which a model can be learned and used
to make decisions based on new sets of conditions

Data Format in Weka (.artf file)

@Qrelation weather

@attribute outlook {sunny, overcast, rainy}
@attribute temperature real

@attribute humidity real

@attribute windy {TRUE, FALSE}

@attribute play {yes, no}

@data
sunny, 85, 85, FALSE, no
sunny, 80, 90, TRUE, no
overcast, 83,86, FALSE, yes
rainy, 70, 96, FALSE, yes
rainy, 68,80, FALSE, yes
rainy, 65,70, TRUE, no
overcast, 64, 65, TRUE, yes
sunny, 72, 95, FALSE, no
sunny, 69,70, FALSE, yes
rainy, 75, 80, FALSE, yes
sunny, 75,70, TRUE, yes
overcast, 72,90, TRUE, yes
overcast, 81,75, FALSE, yes

rainy, 71,91, TRUE, no

Supervised Classification

Machine learning algorithms: Neural Network (NN), Decision
Tree (DT), Support Vector Machine (SVM), Random Forest (RF)

Training set: collection of instances that an algorithm uses to learn
a model; each instance is provided as a feature vector V = (X,Y),
where X = vector of input attributes (independent variables) and
Y = the class of the instance (dependent variable, output attribute)

Common approach among algorithms: learn a model (complex
nonlinear function) using the training set that can accurately
classify new instances, based on their input attributes

Learned model: a consistent set of relationships or rules between
the attributes of the instances and the class, used for predicting the
class memberships of new, unstudied instances

Neural Network

Decision Tree

Dependent variable: PLAY

Play 9
Don't Play &
QOUTLOOK 7
sunn overcast rain

Play 2 Play 4 Play 3

Don't Play 3 Don't Play 0 Don't Play 2

HUMIDITY ? MWINDY:?

<= 70 =T0 TRUE FALSE
Play 2 Play] Play 0 Play 3

Don't Play O Don't Play 3 Don't Play 2

Don't Play 0

Support Vector Machine

The SVM algorithm

: -F“.'.""m= Epam_: _ | :,. Ll
: o % 0 A |
T |
00 e n o
. 00 : Lif' o . \ \
0 o i ol | 0 ¢ \
0 o | ‘
A \
[J
{
§
Small Margin %rge Margin
Support Vectors

L
® e
o
o feat S
. eatlure &
map
@ @
®] garating
yperplane

complex in low dimensions simple in higher dimensions

Random Forest

Let t = total # of trees, n = total # of instances in
dataset, and M = total # of 1nput attributes

For each decision tree, the training set is obtained by
selecting n istances with replacement (bootstrapping)

A fixed number m<<M i1s chosen, and for each node 1n
every tree, the best split on a random subset of m
attributes 1s used to split the node

No pruning — trees are grown as large as possible
Classification: majority vote (aggregating) among trees

Bootstrapping + aggregating = Bagging

Regression

Suppose output attribute 1s numerical rather than
categorical (such as Y value of introductory example)

Example: suppose “play game” (yes or no) is replaced
with a probability (chance) of playing given weather

Machine learning algorithms: tree regression, support
vector regression

Models similar to those of supervised classification,
except here we predict output values instead of classes

Proteins 101: Crash Course

20 distinct types in nature
(A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)
(R group) for each

e (Can be clustered based on similarities H3C/ \CH3 amino acid
in physico-chemical properties

 Building blocks: amino acids (aa) H 0 } dentical for all
"H;N -C, —C -0" amino acids
e
(Ij Unique side chain

Leucine (Leu or L)

~200 aa’s/protein (widely variable)

successively linked by peptide bonds iR o
. . +H3Nc co++H3NC -0
e Protein structure: primary, R, Ro
secondary, tertiary, quaternary H,0

- H O HO
HN - c Oy N- c -0
R, H R,

peptide bond

Example:HIV-1 Protease (3phv)

Delaunay Tessellation of Protein Structure

D (Asp) .r I - @ C, or center of mass

Abstract each amino acid to a point
Atomic coordinates — Protein Data Bank (PDB)

A22
D3 L6
F7
K4 G62
S64
R C63

Delaunay tessellation: 3D “tiling” of space into non-overlapping,
irregular tetrahedral simplices. Each simplex objectively defines
a quadruplet of nearest-neighbor amino acids at its vertices.

Counting Amino Acid Quadruplets
All quadruplets (including permutations): 20% = 160,000

Permutation-independent quadruplets (our approach):

CDEF (zoj
e N N 4
CCDE 20-[19j

- 2
CCDD (2())
CCcCCD 20-19
CCCC 20

Total: 8,855 distinct quadruplets (no permutations)

Example: HIV-1 Protease (3phv)

Vertices: Weighted side chain center of mass (CM) points for 99 aa’s
Dark line: C-alpha backbone trace (coincides with a vertex for Gly)
Left: ribbon diagram; Right: tessellation (12A filter), “true” neighbors

Four-Body Statistical Potential

Training set: over 1,400 diverse
high-resolution x-ray structures

Tessellate

1jl1 IrtjA 31zm
barnase IL-3 HIV-1 RT t4 lysozyme

. | | |

Pool together all simplices from the tessellations, and
compute observed frequencies of simplicial quadruplets

Four-Body Statistical Potential

Knowledge-based, modeled after inverse Boltzmann principle

For amino acid quadruplet (i,/,4,[), a log-likelihood score (energy
of interaction) 1s given by s(i,j,k,[) = log(f,x; / Py

J;u = observed proportion of tetrahedra in the training set
tessellations whose four vertex residues are i,j,4,/

Py = rate expected by chance (multinomial distribution, based
on the proportion of all residues 1n the training set proteins that
are of the types i,j,k,[)

Four-body statistical potential: the collection of 8855 quadruplet
types and their respective log-likelithood scores

Four-Body Statistical Potential

Amino acid "pPzeudo-Ener y”
auadruplet Log-Tikelihood 5%1,j,k,1}

CCCC 3.20042538
CCCH 2.09542785
CCCS 1.96177162
CCCG 1.84022021
CCCI 1.799611665
CCCF 1.77139046
CCCT 1.763782093
CCCP 1.74840641
ACCC 1.74777711
CCCw 1.74711265
CCHH 1.70747111
CCCM 1.697414351
HHHH 1.61473330
HM P 0. 0002214645
DGy 0. 0001785988
DRSSV G 45855E-0%
EHHW 4. 970E-065
LRYY -6, 20707E-0Q5
DiakP -0, F3563E-05
MPSS -0, 000100914
IPRW -0, 000136526
MMRT -0, 000168007
GLLP -0, 000294376
ERMT -0. 000312553
EKGR -0.000343148
HE K -0. 663598714
KK KP -0.66875323
CDED -0.67215257
) -0.75315166
il -0, 76390474
HHFk k. -0, 85974
CKER -0, 88002907
CIKR -0.90372634
CHEW -0.54458]1 22
CEEE -1.02459761

HE M -1.1425433%9

Application 1: Protein Total Potential (TP)

« Obtained by summing the log-likelthood scores of all simplicial
quadruplets defined by the protein tessellation

* Global measure of protein sequence-structure compatibility

TP = >, s(1), sum taken over all simplex
quadruplets 1 in the entire tessellation.

s(RD,AL) A22

b3 L6 S(RGFEL)
s(R,D,K,S)
K4 G62
ds S64 s(R,S,C,G)
C63

Close-up view of only the four simplices
that use R at position 5 as a vertex

Application 2: Residue Environment Scores

* For each amino acid position, locally sum the scores s(i,j, k1) of
only tetrahedra that use the position as a vertex

s(RD,AL) A22

. L6 S(RGFEL) N
- Example: g5 = g(RS) =3, .) s(i,j. k1),
SRD.K.S) sum 1s taken only over all quadruplets
K4 G62 (i,7,k,[) that use R5
ds S64 s(R,S,C,G)

C63

* The scores of all the amino acid positions in the protein structure
form a Potential Profile vector Q =<gq,, 95, ¢3,....qn>

(N = length of primary sequence in the solved structure)

Computational Mutagenesis Methodology

Observations:

* Few solved mutant structures to compare with solved wild type (wt) structure
« Mutant and wt protein structure tessellations are very similar or identical

e Approach:

 Obtain total potental (TP,,) and potential profile vector (Q,,,) for any single
residue mutant by using the wt structure tessellation as a template

* Simply change the residue label at a given point and re-compute

s(RD,AL) A22 s(LD,A,L) A22
s(R,G,F.L s(I,G,F.L
D3 Lo X " Mutation D3 Lo X)
F7 > F7
s(R,D,K,S) (RS > I5) s(LD,K,S)
K4 G62 K4 G62
S64 s(R,S,C,G) S64 s(1,S,C.,G)
RS C63 IS C63

(TPW'[’ th) (TPmuv Qmut)

Computational Mutagenesis Methodology

Scalar “Residual Score” of a mutant:

(mutant — wt) total potential difference = TP — TP, (relative
change in sequence-structure compatibility upon mutation)

Vector “Residual Profile” of a mutant:

R = Q.. — Q= (mutant — wt) potential profile vector difference
(environmental perturbation score for every position in structure)

Denote R =< EP,, EP,, EP;,..., EP>
EP; = g; o — 9i.w = €nvironmental perturbation at position 1

Geometric property: mutation at position 1 => EP, = residual score

Example: HIV-1 Protease (PR)

Mutation: D25 => A25 (D25A)

Q,,.«(D25A)
(A) Mutant 3D-1D LmLHHl_HWHL JI . n_ﬂnn!‘H rL]'\ JJ i Note: “EC”

| JJuu—Ll’] u[’l‘-l -y = guTr @ vy

1S now “EP”
(B) Native 3D-1D Lijm_“wr"u.wflj f"-"r‘v'll*ﬂu"u"-"l L JL‘.[_‘”_"uﬂl /

A Rmu(D25A) = Q,(D25A) - Q,,,

Residual Profile R .
(A-B)

aM a EC components of R

1 10 20 30 40 50 60 70 80 90 99 .
Residual Score: EC,;

Amino Acid Residue Position Number
b (44 b 29
EC, = 0.43, EC, = 0.01, EC, = 0.31, EC,, = 1.63, EC,, = 1.87, EC, = 3.83, (mutatlon epicenter)
EC,, = 0.67, EC,, = 0.34, EC,, = 0.67, EC,, = 0.49, EC,, = 1.76, EC,, = 1.52,
ECss =1.14, ECs7 = 4.60x10, EC90 =0.63, ECi = 0 for all other positions i

HIV-1 Protease Dataset Example:
Residual Profiles for 536 Experimental Mutants

WT POSITION MUTANT P1 Q2 13 T4 L5 W6 ar7 R& P9 L10 V11 T12 N8 F99 ACTIVITY
PRO 1 HIS 1.89369 | 0.12473 | 0.2462 | 0.01137 0 0 0 0 0 0 0 0.15478 0.2482 0 pos
PRO 1 LEU 1.61399 | 0.21225 | 1.51021 | 0.14456 0 0 0 0 0 0 0 0.05708 0.7566 0 pos
PRO 1 SER 0.80073 | 0.19565 @ 0.14197 | 0.15969 0 0 0 0 0 0 0 0.1124 0.30934 0 int
GLN 2 GLU 0.6395 | 155273 0.24116 0 -1.33969 | 04477 041718 0 0 0 0 0 0.47309 0.29306 | 0.31513 pos
ILE 3 ASN 0.32949 | 0.76726 | -2.46203 | 0.5757 @ -1.49592 0 0.31665 0 0.93573 | 0.49091 | 147315 0 0.46809 0 pos
ILE 3 LEU 0.35974 041178 15984 | 0.10011 | 0.37716 0 0.2498 0 0.42616 | 0.2479 | 0.19533 0 0.50297 0 pos
ILE 3 SER 0.35207 | 0.88747 -1.14271 | 0.53599 -1.30293 0 0.40746 0 0.52978 | 0.29686 -1.07501 0 0.38893 0 neg
ILE 3 THR 0.28471 | 0.89302 03196 | 0.72597 -1.06583 0 0.60907 0 017343 | 01048 | 043737 0 0.29873 0 int
THR 4 ARG | 0.36146 | 0.33689 | 0.18267 0.34217 0.43148 0.00263 0.25453 0 0.16441 0 0 0.03462 0.18464 | 0.18971 int
THR 4 SER 0.03021 | 0.26497 0.21622 | 0.33293 0.23951 0.0838 0.11714 0 0.11618 0 0 0.06209 0.08467 | 0.06375 pos
LEU 5 HIS 0 0.06901 | -1.55951 ' 0.05785 0.978% 0.1661 | 0.55983 0.86038 @ 0.44361 0 0 0 0.09357 | 0.48623 neg
LEU 3 VAL 0 0.00037 | 0.2512 @ 0.07167 | 0.33375 0.05122 0.07882 0.14561 0.02276 0 0 0 0.09464 | 0.01646 neg
TRP 6 CYs 0 0.24419 0 0.521 | 0.58979 112732 0.66335 0.45596 0 0 0 0 0 0.26395 pos
TRP 6 GLY 0 0.18178 0 0.63535 | 0.90704 | -1.28979 | 0.33139 017572 0 0 0 0 0 0.62764 pos
TRP 6 LEU 0 0.03694 0 0.00334 | 0.26617 | 0.26431 | 0.04368 0.14435 0 0 0 0 sss 0 0.08937 pos
GLN T7 HIS 0 0 0.22456 | 0.14707 | 0.05542 | 0.16744 | 0.24723 | 0.08248 0.0548 | 017104 0.14183 | 0.02147 0 0 pos
GLN 7 LEU 0 0 1.13621 | 0.28754 | 0.24948 054479 | 1.00782 | 0.41464 | 037055 121177 | 0.94688 | 0.13142 0 0 neg
GLN 7 PRO 0 0 0.20172 | 0.12112 | 0.03098 | 0.03136 | 0.00232 0.20147 0.33796 | 0.19486 | 0.06676 = 0.14616 0 0 neg
ARG 8 ASN 0 0 0 0 0.38913 | 0.18631 | 0.63722 -2.26973 | 0.61127 0.75384 0 0 0 0 neg
ARG 8 ASP 0 0 0 0 094424 | 029427 | 1.15565 | 4.07861 | 0.73567 | -1.05439 0 0 0 0 neg
ARG 8 GLN 0 0 0 0 0.02021 | 0.48854 0.52975 | 0.80067 0.15343 0.06552 0 0 0 0 int
ARG 8 GLU 0 0 0 0 095011 | 0.35115 | 0.5433 | 3.12437 | 0.62964 | 0.65032 0 0 0 0 neg
ARG 8 GLY 0 0 0 0 0.42784 | 6.00E05 | -1.3967 | -3.00439 | 0.60337 0.61053 0 0 0 0 neg
ARG i HIS 0 0 0 0 0.18617 | 041218 | 0.14344 | 0.53493 0.01364 0.13521 0 0 0 0 neg
ARG 8 LEU 0 0 0 0 0.69068 | 0.95149 0.60797 | 0.0926 | 0.18717 0.90623 0 0 0 0 neg
ARG i LYS 0 0 0 0 0D.61972 | 0.26158 | 0.45997 | -1.35066 | 0.56148 0.48045 0 0 0 0 int
ARG 8 TYR 0 0 0 0 0.46293 | 0.69359 0.68478 0.51269 0.08071 0.13992 0 0 0 0 neg
PRO 9 ARG 0 0 0.53754 | 0.11854 | 0.08246 0 0.06947 | 0.34747 | 0.05305 0.37048 040188 0 0 0 neg
PRO 9 HIS 0 0 0.03502 | 0.01097 | 0.29562 0 0.07942 | 0.04235 0.37048 @ 0.05895 0.01009 0 0 0 neg
. .
° °

@relatio

Qattribu

Data Format in Weka (.artf file)

n 536profiles

te wt {ALA, CYS, ASP, GLU, PHE, GLY, HIS, ILE, LYS, LEU, MET, ASN, PRO, GLN, ARG,

SER, THR, VAL, TRP, TYR}

Qattribu
Qattribu

te position real
te sub {ALA, CYS, ASP, GLU, PHE, GLY, HIS, ILE, LYS, LEU, MET, ASN, PRO, GLN, ARG,

SER, THR, VAL, TRP, TYR}

Qattribu
Qattribu
@Qattribu
Qattribu

Qattribu
Qattribu
Qattribu
Qattribu

@data

PRO, 1,HI
0.01137,
0,0,0,0,
0,0,0,0,
PRO, 1, LE
0.05708,
0,0,0,0,
0.60914,
0.34583,
PRO, 1, SE
0.09538,
0,0,0,0,
0.005,0
6,0,0.30

te Pl real
te Q2 real
te I3 real
te T4 real

te L97 real
te N98 real
te F99 real
te activity {active, inactive}

S,1.89369,0.12473,0.2462, -
0,0,0,0,0,0,0,0.15478,0,0,0,0,0,0,0.03253,0,0,0,0,0.127239,0,0,0,0,0,0,0,0,0,0,0,0,
0,0.87811,0.19179,1.11231,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.08714,0.38016,0.97826,0.08584,0,0.2482,0,active
U,1.61399,-0.21225,1.51021,0.14456,0,0,0,0,0,0,0, -
0,0,0,0,0,0,0.03691,0,0,0,0,2.13064,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.28094,-0.1156, -
0,1.23294,-0.46368,1.06605, -
0,-0.7566,0,active
R,0.80073,0.19565,0.14197,0.159%969,0,0,0,0,0,0,0,0.1124,0,0,0,0,0,0, -
0,0,0,0,0.02238,0, 0,
0,0,0,0,0,0.34489, -
.1527¢,0.22211,0.16134,0.53626,0.1438
934,0,active

Evaluating Algorithm Performance

e Overall goal: Develop model with known examples to accurately
predict class (or value) of instances that have not yet been assayed
experimentally (potentially great savings of time and money)

 Ideal situation: split large original dataset into 3 subsets
o Training set (learn model)
o Validation set (optimize model by tweaking model parameters)
o Test set (evaluate model on new data not used to develop model)

o Errors measured at each step (resubstitution, validation, generalization)

* Approaches: Tenfold cross-validation (10-fold CV);
leave-one-out CV (1.e., N-fold CV, where N = dataset size);
% split (e.g., use only 2/3 for training, 1/3 held out for testing)

Evaluating Algorithm Performance
* 10-fold CV

o Randomly split the dataset instances into 10 equally-sized subsets

o Hold-out subset 1; combine subsets 2-10 into one training set for learning a
model; use trained model to predict classes of instances in subset 1

o Repeat previous step 9 more times (e.g., hold-out subset 2, combine subsets
1 and 3-10 together to train a model, use model to predict subset 2, etc)

o We end up with 10 models, each trained using 90% of the original dataset,
and each used to predict the held-out 10% subset.

o In the end, each instance has one class prediction — compare to actual class

« LOOCYV (leave-one-out CV, or N-fold CV)

o Similar to above, but each subset contains only 1 instance
o Deterministic — no randomness to which instances are grouped as subsets

o Overall prediction accuracy provides rough idea of how a model trained
with the full dataset will perform

* % split (self-explanatory)

Evaluating Algorithm Performance

« Assume 1nstances belong to two generic classes (Pos/Neg)

» Results of comparing predictions with actual classes based on
the approaches described (10-fold CV, LOOCYV, % split) can be
summarized in a confusion matrix:

Predicted as
Pos Neg

Actual Pos TP FN
class Neg FP TN

 C(lassification performance measures:
accuracy = (TP+TN) / (TP+FP+TN+FN); sensitivity = TP / (TP+FN);
specificity = TN / (TN+FP); precision (PPV) = TP / (TP+FP);
BAR = 0.5 x [sensitivity + specificity];
MCC = (TPXTN — FPxFN) / [(TP+FN)(TP+FP)(TN+FN)(TN-+FP)]'2;
AUC = area under ROC curve (plot of sensitivity vs. 1 — specificity)

ROC Curve

Plot of true positive rate (sensitivity) versus false positive rate
(1 — specificity) in the unit square

AUC = probability that classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one

AUC ~ 0.5 (ROC close to diagonal line joining points (0,0)
and (1,1)) suggests no signal in dataset and that trained model
is not likely to perform any better than random guessing

AUC =1 (piecewise linear ROC joining (0,0) to (0,1) and
(0,1) to (1,1)) indicates a perfect classifier

True Positive Rate

(Sensitivity)

ROC Curve

= 8 S
o N =N » oo -
| | | |

AUC = 0. 86 -

..

0O 0.2 04 06 0.8 1
False Positive Rate

(1 - Specificity)

10-Fold CV Weka Output Example

=== Run information ===

Scheme: weka.classifiers.trees.RandomForest -I 100 -K 0 -S 1
Relation: 536profiles
Instances: 536
Attributes: 103
[list of attributes omitted]
Test mode: 10-fold cross-validation

=== (Classifier model (full training set) ===

Random forest of 100 trees, each constructed while considering 7 random features.
Out of bag error: 0.1866

10-Fold CV Weka Output Example, Continued

Time taken to build model:

Stratified cross-validation

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error
Total Number of Instances

Detailed Accuracy By Class

TP Rate FP Rate Precision Recall
0.777 0.138 0.802 0.777
0.862 0.223 0.843 0.862

Confusion Matrix ===

a b <-- classified as
174 50 | a = active
43 269 | b = inactive

17.06 seconds

443

93
0.60418
0.2963
0.3625
60.8836
73.5037

536

o°

o°

F-Measure
0.789
0.853

ROC Area Class
0.894 active
0.894 inactive

	Machine Learning Methods
	Introductory Example
	Introductory Example, Continued
	Introductory Example, Continued
	Example: To Play or Not to Play
	Data Format in Weka (.arff file)
	Supervised Classification
	Neural Network
	Decision Tree
	Support Vector Machine
	Random Forest
	Regression
	Proteins 101: Crash Course
	Example:HIV-1 Protease (3phv)
	Delaunay Tessellation of Protein Structure
	Counting Amino Acid Quadruplets
	Example: HIV-1 Protease (3phv)
	Four-Body Statistical Potential
	Four-Body Statistical Potential
	Four-Body Statistical Potential
	Application 1: Protein Total Potential (TP)
	Application 2: Residue Environment Scores
	Computational Mutagenesis Methodology
	Computational Mutagenesis Methodology
	Example: HIV-1 Protease (PR)
	HIV-1 Protease Dataset Example: �Residual Profiles for 536 Experimental Mutants
	Data Format in Weka (.arff file)
	Evaluating Algorithm Performance
	Evaluating Algorithm Performance
	Evaluating Algorithm Performance
	ROC Curve
	ROC Curve
	10-Fold CV Weka Output Example
	10-Fold CV Weka Output Example, Continued

