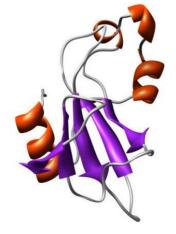

Using Biology to Teach Geometry: Protein Structure Tessellations in Matlab

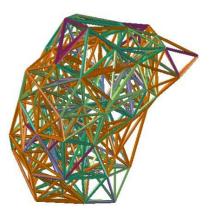
Majid Masso, Ph.D.

Laboratory for Structural Bioinformatics

George Mason University

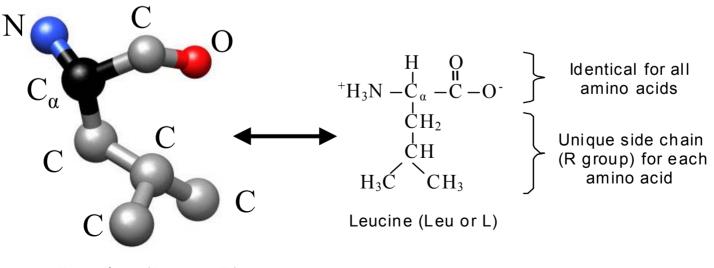

http://binf.gmu.edu/mmasso mmasso@gmu.edu

Proteins in Brief


- Intra- and inter-cellular workhorses of all organisms
- Building blocks: amino acids
 - 20 distinct types in nature (A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)
 - ~200 ordered, successively linked amino acids/protein (varies widely across proteins, from tens to thousands)
- Protein structure representations:

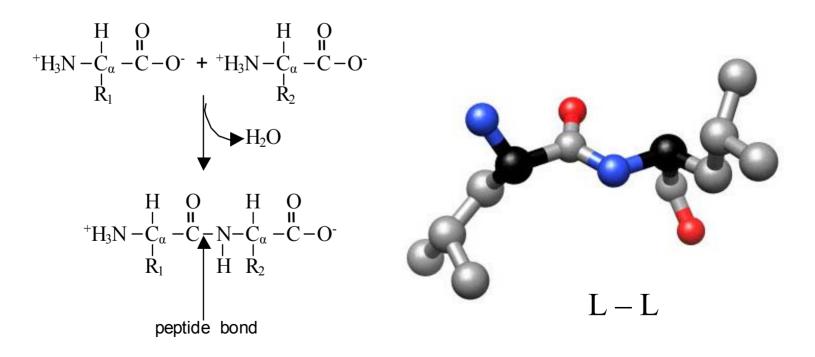
all-atom

backbone ribbon



tessellation

Amino Acids


- Atomic constituents: carbon (C), nitrogen (N), oxygen (O), and hydrogen (H)
- Amino Acids C (cysteine) and M (methionine) each also contain a sulfur (S) atom
- Coordinates of hydrogen atoms are only available for structures solved at very high resolution
- Example –

Leucine (Leu or L)

Peptide Bond

- Backbone linkage between consecutive amino acids in the growing, linear protein chain (the "primary sequence")
- Links the backbone C atom of amino acid *n*–1 to the backbone N atom of amino acid *n*, with release of H₂O

Protein Data Bank (PDB, <u>http://www.pdb.org</u>)

🖲 RCSB PDB : Structure Explorer - Mozilla Firefox								
Eile Edit View Higtory Bookmarks Tools Help								
< > - C 🗙 🏠 🖙 http://www.pdb.org/pdb/explore/explore.do?structureId=3PHV 🛛 🔂 🔂 - 🖸 Google 🔎								
🔟 Most Visited 🌮 Getting Started 🔝 Latest He	🕐 Most Visited 🌸 Getting Started 🔊 Latest Headlines 📄 HIV DBs 📄 Binf 📄 Res 📄 Libs 📄 GMU 📄 Accts 📄 Services 📄 Search 📄 Schools 🦳 Tutorials 📄 News 📄 Misc 📄 Confs							
PROTEIN DATA BANK		ам An Information Port As of Tuesday Mar 10, 2009 🔊		jical Macromo		s		
CONTACT US FEEDBACK HELP PRINT	PDB ID or keyword	Author	Site Search	🔗 Advanced Searc	h			
Home Search Structure Queries Some chains and/or residues have been updated. Click here for details, or here for details about the remediation process								
··· ■ 3PHV	External Links							
Download Files		1						
🐃 🗏 FASTA Sequence	3phv 💽 🗎 🕜	DOI 10.2210/	more: [M] ndh3nhv/ndh	Images and Vis	ualization			
 Download Original Files Display Files 	Red - Derived Information		papoprinipap	<< Asymm	netric Unit >			
 Display Molecule Structural Reports External Links 	Title	X-RAY ANALYSIS OF HIV-1 PROTEIN 2.7 ANGSTROMS RESOLUTION CONFI STRUCTURAL HOMOLOGY AMONG RE ENZYMES	IRMS	10	Z			
 Structure Analysis Help 	Authors	Lapatto, R., Blundell, T.L., Hemmin A., Wilderspin, A., Wood, S.P., Dar D.E., Geoghegan, K.F., Hawrylik, S.J., Hobart, P.M.						
Quick Tips : •• X Click the PDB file icon above to view the PDB file.	Primary Citation	Lapatto, R., Blundell, T., Hemmings, A., Overington, J., Wilderspin, A., Wo S., Merson, J.R., Whittle, P.J., Danley D.E., Geoghegan, K.F., et al. (1989) X-ra HIV-1 proteinase at 2.7 A resolution confirms homology among retroviral enzymes. Nature 299-302 [Abstract] Publiced	bod, /, ay analysis of s structural e 342:	Display C	Options @			
	History	Deposition 1991-11-04 Release 1992 Last Modified (REVDAT) 2003-04-01	-01-15	ן We MBT Sin	iiNG mol ppleViewer in Workshop	~		

PDB File Format

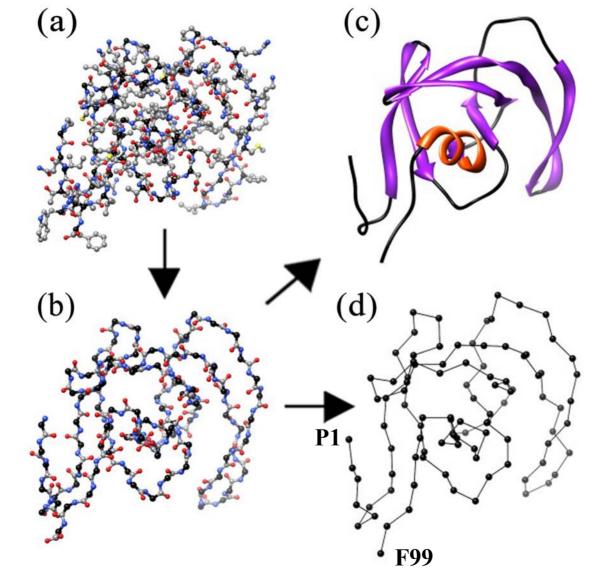
HEADER	HYDROLASE(ASPARTIC PROTEINASE) 04-NOV-91	3phv
TITLE	X-RAY ANALYSIS OF HIV-1 PROTEINASE AT 2.7 ANGSTROMS	
TITLE	2 RESOLUTION CONFIRMS STRUCTURAL HOMOLOGY AMONG RETRO	VIRAL
TITLE	3 ENZYMES	
COMPND	MOL_ID: 1;	
COMPND	2 MOLECULE: UNLIGANDED HIV-1 PROTEASE;	

.

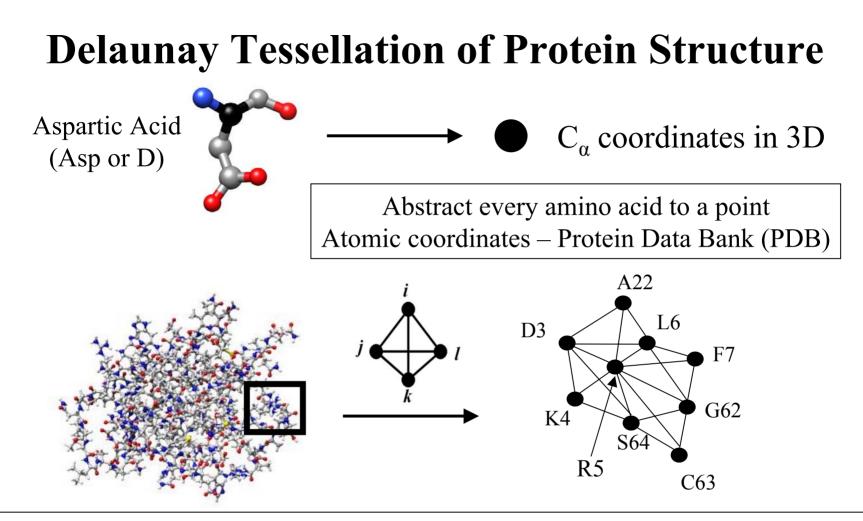
.

SEQRES 1 A 99 PRO GLN ILE THR LEU TRP GLN ARG PRO LEU VAL THR ILE SEQRES 2 A 99 LYS ILE GLY GLY GLN LEU LYS GLU ALA LEU LEU ASP THR SEORES 3 A 99 GLY ALA ASP ASP THR VAL LEU GLU GLU MET SER LEU PRO 99 GLY ARG TRP LYS PRO LYS MET ILE GLY GLY ILE GLY GLY SEQRES 4 A 5 A 99 PHE ILE LYS VAL ARG GLN TYR ASP GLN ILE LEU ILE GLU SEQRES SEQRES 6 A 99 ILE CYS GLY HIS LYS ALA ILE GLY THR VAL LEU VAL GLY 7 A SEQRES 99 PRO THR PRO VAL ASN ILE ILE GLY ARG ASN LEU LEU THR SEQRES 8 A 99 GLN ILE GLY CYS THR LEU ASN PHE

						Χ	Y	Ζ		
ATOM	1	N	PRO	А	1	22.644	34.004	35.541	1.00	0.00
ATOM	2	CA	PRO	A	1	23.698	34.424	34.629	>1.00	0.00
ATOM	3	С	PRO	А	1	23.670	33.634	33.311	1.00	0.00
ATOM	4	0	PRO	A	1	23.732	32.407	33.378	1.00	0.00
ATOM	5	СВ	PRO	A	1	24.942	33.969	35.398	1.00	0.00
ATOM	6	CG	PRO	A	1	24.473	32.997	36.472	1.00	0.00
ATOM	- 7	CD	PRO	A	1	23.105	33.581	36.872	1.00	0.00
ATOM	8	N	GLN	А	2	23.620	34.346	32.222	1.00	0.00
ATOM	9	CA	GLN	A	2	23.686	33.843	30.844	>1.00	0.00
ATOM	10	C	GLN	A	2	25.109	34.080	30.312	1.00	0.00
ATOM	11	0	GLN	A	2	25.656	35.175	30.522	1.00	0.00
ATOM	12	CB	GLN	A	2	22.644	34.435	29.949	1.00	0.00
ATOM	13	CG	GLN	A	2	23.093	34.632	28.515	1.00	0.00
ATOM	14	CD	GLN	A	2	24.214	35.667	28.411	1.00	0.00
ATOM	15	OE1	GLN	A	2	25.432	35.285	28.025	1.00	0.00
ATOM	16	NE2	GLN	A	2	23.974	36.937	28.720	1.00	0.00
ATOM	17	N	ILE	A	3	25.696	33.055	29.732	1.00	0.00
ATOM	18	CA	ILE	A	3	27.062	33.029	29.263	≥1.00	0.00
ATOM	19	C	ILE	А	3	27.209	32.567	27.802	1.00	0.00
ATOM	20	0	ILE	A	3	26.648	31.543	27.438	1.00	0.00
ATOM	21	CB	ILE	A	3	27.898	32.019	30.081	1.00	0.00
ATOM	22	CG1	ILE	A	3	27.202	30.675	30.070	1.00	0.00
ATOM	23	CG2	ILE	А	3	28.195	32.529	31.457	1.00	0.00
ATOM	24	CD1	ILE	A	3	26.556	30.287	31.392	1.00	0.00

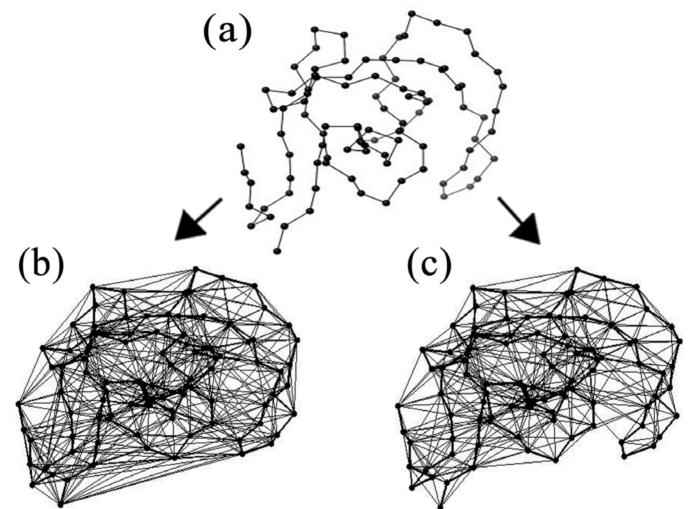

N C C 0 C C Ċ N Ċ С 0 Ċ С С 0 N Ν С С 0 С С С

С


HIV-1 Protease CA Coordinate Data

	A	В	С	D	E	F	G	Н
1						Х	Y	Z
2	ATOM	CA	PRO	A	1	23.698	34.424	34.629
3	ATOM	CA	GLN	A	2	23.686	33.843	30.844
4	ATOM	CA	ILE	A	3	27.062	33.029	29.262
5	ATOM	CA	THR	A	4	28.426	33.077	25.718
6	ATOM	CA	LEU	A	5	30.738	30.518	24.158
7	ATOM	CA	TRP	A	6	33.436	32.724	22.604
8	ATOM	CA	GLN	A	7	35.862	31.228	25.107
9	ATOM	CA	ARG	A	8	35.677	28.307	27.53
10	ATOM	CA	PRO	A	9	32.728	28.303	29.863
11	ATOM	CA	LEU	A	10	34.326	28.493	33.308
12	ATOM	CA	VAL	A	11	32.406	29.637	36.403
13	ATOM	CA	THR	A	12	33.031	29.494	40.159
14	ATOM	CA	ILE	A	13	31.807	26.736	42.446
15	ATOM	CA	LYS	A	14	31.406	25.988	46.122
16	ATOM	CA	ILE	A	15	31.756	22.457	47.446
17	ATOM	CA	GLY	A	16	31.721	22.691	51.261
18	ATOM	CA	GLY	A	17	33.076	26.171	51.947
19	ATOM	CA	GLN	A	18	35.737	25.835	49.251
20	ATOM	CA	LEU	A	19	35.495	28.32	46.372
21	ATOM	CA	LYS	A	20	36.239	26.546	43.058
22	ATOM	CA	GLU	A	21	36.094	26.838	39.258
23	ATOM	CA	ALA	A	22	34.676	24.579	36.537
24	ATOM	CA	I FI I	Д	23	33 434	24 022	33,005

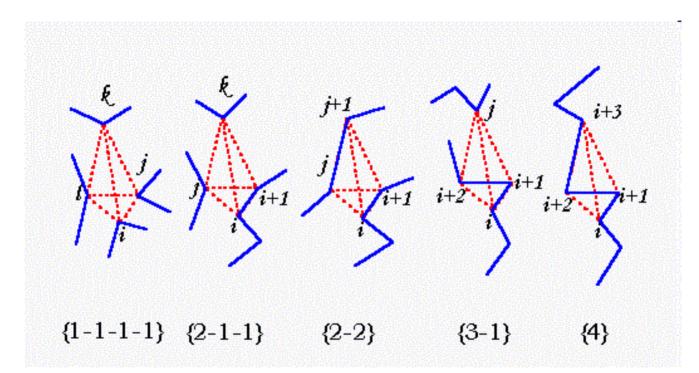
Example: HIV-1 Protease (PDB ID: 3PHV)



(a) all-atom (b) backbone only (c) ribbon diagram (d) C_{α} trace

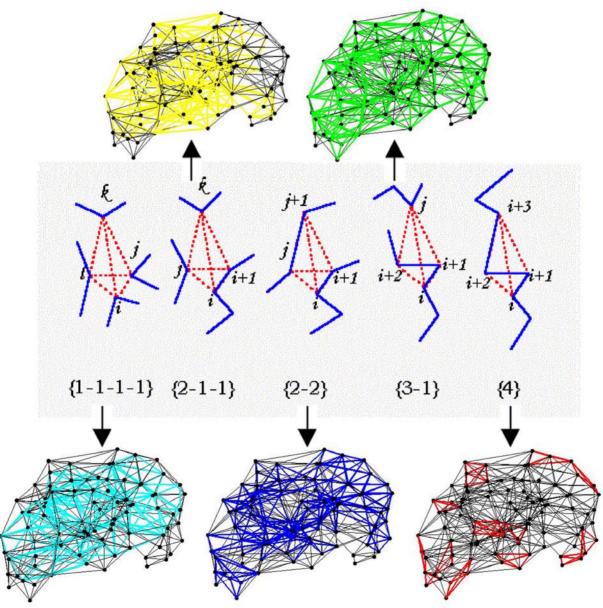
Delaunay tessellation: 3D "tiling" of space into non-overlapping, irregular tetrahedral simplices. Each simplex objectively identifies a quadruplet of nearest-neighbor amino acids at its vertices.

Tessellation Example: HIV-1 Protease (PR)



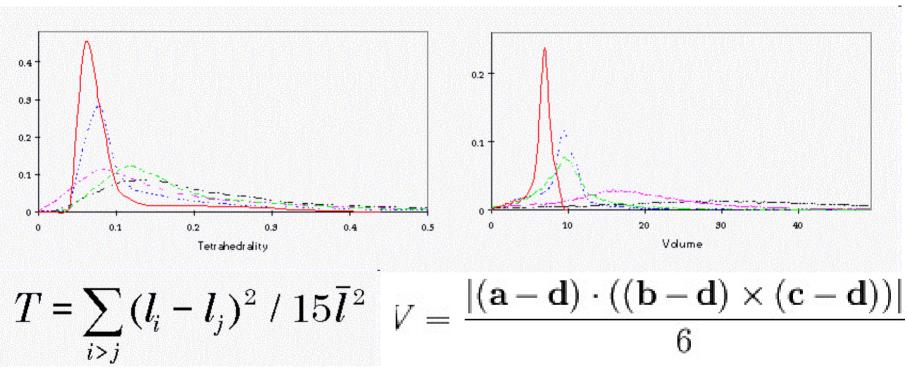
(a) C_{α} trace (b) complete tessellation (convex hull of simplices) (c) tessellation subject to a 12 Angstrom edge length cutoff

Delaunay Tessellation in Matlab


```
% Maiid Masso. George Mason University, Manassas, VA
% Coordinates of the points (CA atoms) representing each of the N amino acids, each
column vector is N-dimensional
x=[]:v=[]:z=[]:
% CA trace
plot3(x,y,z);
% Overlap graphs
hold on:
% Or just CA points
plot3(x,y,z,'.');
% No axes
axis off:
% Concatenate, w is an Nx3 matrix, each row gives the 3D coordinates of one CA
point, each CA point is indexed by its row number in w, from 1 to N
w=[x(:) y(:) z(:)];
% Tessellation, T is an rx4 matrix, r is the total number of tetrahedral simplices
in the tessellation, the 4 numbers in each row are the indices (row numbers in w) of
the CA points forming the vertices of a tetrahedral simplex
T=delaunay3(x,y,z);
% Full tessellation (convex hull of tetrahedral simplices)
% FaceAlpha is the the transparency of the triangular faces (set to 0)
tetramesh(T,w,'FaceAlpha',0);
% Alternative is tessellation subject to a 12.0 A edge-length cutoff
s=size(T);
r=s(1,1);
k=1:
for i=1:r
 e=T(i,1);f=T(i,2);q=T(i,3);h=T(i,4);
 if(sqrt((w(e,1)-w(f,1))/2+(w(e,2)-w(f,2))/2+(w(e,3)-w(f,3))/2) <=12.0 &&
sqrt((w(e,1)-w(q,1))^2+(w(e,2)-w(g,2))^2+(w(e,3)-w(g,3))^2)<=12.0 &&
sqrt((w(e,1)-w(h,1))^2+(w(e,2)-w(h,2))^2+(w(e,3)-w(h,3))^2)<=12.0 &&
sqrt((w(f,1)-w(g,1))^2+(w(f,2)-w(g,2))^2+(w(f,3)-w(g,3))^2)<=12.0 &&
sqrt((w(f,1)-w(h,1))^2+(w(f,2)-w(h,2))^2+(w(f,3)-w(h,3))^2)<=12.0 &&</pre>
sqrt((w(q,1)-w(h,1))^2+(w(q,2)-w(h,2))^2+(w(q,3)-w(h,3))^2)<=12.0)
  t(k,1)=e;t(k,2)=f;t(k,3)=q;t(k,4)=h;
  k=k+1;
 end
end
tetramesh(t,w,'FaceAlpha',0);
```

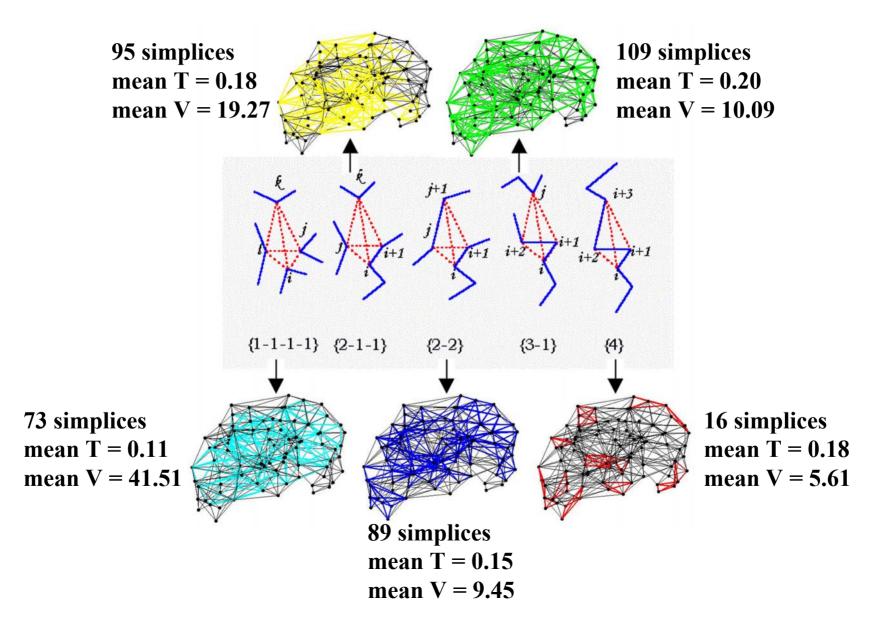
Five Simplex Categories

Singh et al. (1996) J. Comput. Biol., 3, 213-222


Simplex Categories Example: HIV-1 PR

Simplex Categories in Matlab

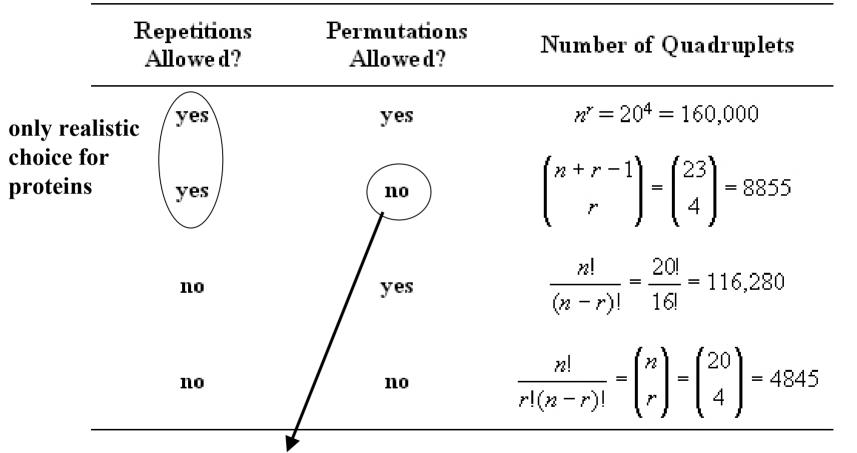
```
% Get breakdown for all 5 simplex types in modified (12 A cutoff) tessellation t
a1=1:a2=1:a3=1:a4=1:a5=1:
sb=size(t); rb=sb(1,1);
for i=1:rb
S=sort(t(i,:));
% Type 4
if (S(2)-S(1)=1 \&\& S(3)-S(2)=1 \&\& S(4)-S(3)==1)
P(a1,:)=t(i,:);a1=a1+1;
% Type 3-1
elseif (((s(2)-s(1)==1 && s(3)-s(2)==1) && s(4)-s(3)>1) || ((s(3)-s(2)==1 &&
5(4)-5(3)==1) & 5(2)-5(1)>1))
Q(a2,:)=t(i,:);a2=a2+1;
% Type 2-2
elseif (((s(2)-s(1)==1 && s(4)-s(3)==1) && s(3)-s(2)>1))
R(a3,:)=t(i,:):a3=a3+1:
% Type 2-1-1
elseif ((((s(2)-s(1)==1 && s(3)-s(2)>1) && s(4)-s(3)>1) || ((s(2)-s(1)>1 &&
S(3)-S(2)=1) & S(4)-S(3)>1) || ((S(2)-S(1)>1) & S(3)-S(2)>1) & S(4)-S(3)=1))
U(a4,:)=t(i,:);a4=a4+1;
% Type 1-1-1-1
else V(a5,:)=t(i,:);a5=a5+1;
end
end
% Select individually from below to overlap graph of entire modified tessellation t
tetramesh(P,w, 'FaceAlpha', 0, 'EdgeColor', 'red', 'LineWidth', 2);
tetramesh(Q,w, 'FaceAlpha', 0, 'EdgeColor', 'green', 'LineWidth', 2);
tetramesh(R,w, 'FaceAlpha', 0, 'EdgeColor', 'blue', 'LineWidth', 2);
tetramesh(U,w, 'FaceAlpha', 0, 'EdgeColor', 'yellow', 'LineWidth', 2);
tetramesh(V,w,'FaceAlpha',0,'EdgeColor','cyan','LineWidth',2);
```


Tetrahedrality and Volume

Vectors **a**, **b**, **c**, and **d** represent the 3D coordinates of the tetrahedral vertices.

Singh et al. (1996) J. Comput. Biol., 3, 213-222

Tetrahedrality and Volume Example: HIV-1 PR



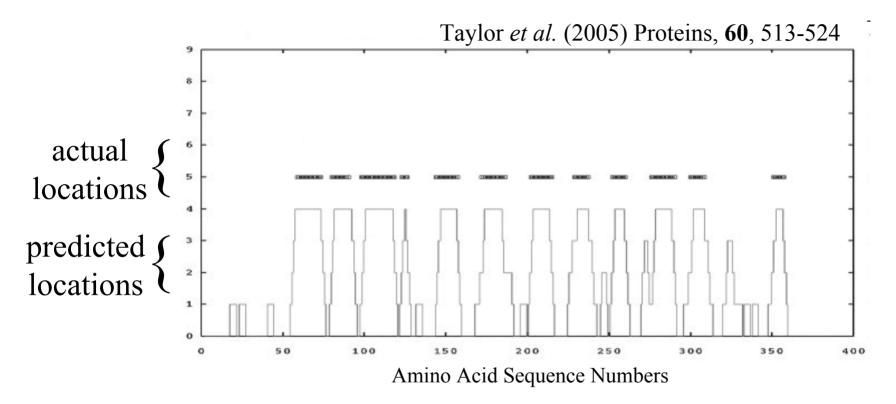
Tetrahedrality and Volume in Matlab

```
% Compute mean volume and mean tetrahedrality for each of the 5 simplex types
% Code below is for simplices of type 4 (matrix P) - replace P with Q.R.U.V for others
sumTet=0:sumVol=0:
sc=size(P):rc=sc(1,1);
for i=1:rc
e=P(i,1);f=P(i,2);q=P(i,3);h=P(i,4);
L1=sqrt((w(e,1)-w(f,1))^2+(w(e,2)-w(f,2))^2+(w(e,3)-w(f,3))^2);
L2=sqrt((w(e,1)-w(g,1))^2+(w(e,2)-w(g,2))^2+(w(e,3)-w(g,3))^2);
L3=sqrt((w(e,1)-w(h,1))^2+(w(e,2)-w(h,2))^2+(w(e,3)-w(h,3))^2);
L4=sqrt((w(f,1)-w(g,1))^2+(w(f,2)-w(g,2))^2+(w(f,3)-w(g,3))^2);
L5=sqrt((w(f,1)-w(h,1))^2+(w(f,2)-w(h,2))^2+(w(f,3)-w(h,3))^2);
L6=sqrt((w(g,1)-w(h,1))^2+(w(g,2)-w(h,2))^2+(w(g,3)-w(h,3))^2);
Lavg = (L1+L2+L3+L4+L5+L6)/6;
Tet(i)=((L2-L1)^2+(L3-L1)^2+(L4-L1)^2+(L5-L1)^2+(L6-L1)^2+(L3-L2)^2+(L4-L2)^2+(L5-L2)^2+
ret(1)=((L2-L1)^2+(L3-L1)^2+(L4-L1)^2+(L5-L1)^2+(L6-L1)^2+(L3-L2)^2+(L4-L2)^2+(L5-L2)^2
(L6-L2)^2+(L4-L3)^2+(L5-L3)^2+(L6-L3)^2+(L5-L4)^2+(L6-L4)^2+(L6-L5)^2)/(15*(Lavg^2));
Vol(i)=abs((w(e,1)-w(f,1))*(w(e,2)-w(f,2))*(w(e,3)-w(g,3)) +
(w(e,1)-w(g,1))*(w(e,2)-w(f,2))*(w(e,3)-w(f,3)) -
(w(e,1)-w(f,1))*(w(e,2)-w(g,2))*(w(e,3)-w(f,3)) -
(w(e,1)-w(f,1))*(w(e,2)-w(g,2))*(w(e,3)-w(f,3)) -
(w(e,1)-w(f,1))*(w(e,2)-w(f,2))*(w(e,3)-w(g,3)) -
(w(e,1)-w(g,1))*(w(e,2)-w(f,2))*(w(e,3)-w(f,3)) ) / 6;
sumTet=sumTet+Tet(i); sumVol=sumVol+Vol(i);
end
end
meanTet=sumTet/rc; meanVol=sumVol/rc;
```

Counting Amino Acid Quadruplets

n = size of amino acid alphabet = 20; r = size of the subsets = 4

only realistic choice to get enough quadruplets for each of the 8855 types (by tessellating a large, diverse set of protein structures) and obtain a frequency distribution


Counting Amino Acid Quadruplets Repetitions – yes, permutations – no:

a more "hands-on" counting approach

С D E F	$\binom{20}{4}$
ССДĘ	$20 \cdot \binom{19}{2}$
	$\binom{20}{2}$
CCCD	20.19
СССС	20

Total: 8,855 distinct quadruplets

Predicting Alpha Helix Locations in Proteins

Amino acid *i* can participate in up to 4 distinct simplices consisting of consecutive amino acids at the vertices: (i, i+1, i+2, i+3), (i-1, i, i+1, i+2), (i-2, i-1, i, i+1), and (i-3, i-2, i-1, i). The step-graph shows the number of such simplices ("t-number" values of 0, 1, 2, 3, or 4) for each amino acid in protein structure 2mnr. Amino acids with a t-number of 4 strongly correlate with those occurring in alpha helices.

References

- To obtain a copy of these slides: (<u>http://binf.gmu.edu/mmasso/MAA2010.pdf</u>)
- Protein structure repository: Protein Data Bank (<u>http://www.pdb.org</u>)
- Structure visualization: Chimera (<u>http://www.cgl.ucsf.edu/chimera/</u>)
- Delaunay tessellation:
 - Matlab (<u>http://www.mathworks.com/</u>)
 - Qhull (<u>http://www.qhull.org/</u>)
- Programming and data formatting: Perl (<u>http://www.activestate.com/activeperl/</u>)