Predicting Drug Resistance: Probability and Statistics Meet the Building Blocks of Proteins

Majid Masso School of Systems Biology George Mason University 2014 Joint Mathematics Meeting

Amino Acids – The Protein Building Blocks

- 20 distinct amino acid (aa) types, each assigned a letter: {A, C, D, E, F,G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}
- What is a protein? A linear sequence (chain) of consecutively linked aa's, selected w/replacement from above set (avg. size ~ 300 aa's), which folds into a precise 3D structure
- Protein structure maintained by atomic interactions between structurally neighboring aa's (may be far apart in linear sequence)
- Genes (DNA) are blueprints or codes for making proteins (the workhorses: enzymes, hormones, receptors, antibodies, etc.)

Protein Example: HIV-1 Protease

Each aa comprised of several atoms: identical backbones, unique side chains

Backbone atoms reveal path

Each CA point has 2 labels:

- 1. Amino acid letter
- 2. Sequence position number

Coarse-grained model: one CA atom per aa

Protein Data Bank (PDB, <u>http://www.pdb.org</u>)

🕙 RCSB PDB : Structure Explorer - Mozi	lla Firefox		
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ool:	s <u>H</u> elp		
🔇 🕞 - C 🗙 🏠 (res http:	://www.pdb.org/pdb/explore/ex	plore.do?structureId=3PHV	🗟 🗘 🔹 🖸 Google 🖉
🔟 Most Visited p Getting Started 🔝 Latest He	eadlines 🚞 HIV DBs 🚞 Binf	🚞 Res 🚞 Libs 🚞 GMU 🚞 Accts 🚞 Services 🚞	Search 🚞 Schools 🚞 Tutorials 🚞 News 🚞 Misc 🚞 Confs
SPDB PROTEIN DATA BANK		а мемви An Information Portal t As of Tuesday Mar 10, 2009 🗟 ther	ER OF THE THE PDB MyPDB: Login Register CO Biological Macromolecular Structures re are 56366 Structures @ PDB Statistics @
CONTACT US FEEDBACK HELP PRINT	PDB ID or keyword	Author	ite Search 🕜 Advanced Search
Home Search Structure Queries	Some chains and/or res process	sidues have been updated. Click here for det	tails, or here for details about the remediation
- SPHV	Help Structure Summar	y Sequence Details Biology & Chemistry Mate	erials & Methods Geometry Remediation
Download Files	External Links		
··· ■ FASTA Sequence	3phv 孢 🗎 🖉	Learn more	e: [M] Images and Visualization
 Download Original Files Display Files 	Red - Derived Information	DOI 10.2210/pabop	
 Display Molecule Structural Reports External Links 	Title	X-RAY ANALYSIS OF HIV-1 PROTEINASE 2.7 ANGSTROMS RESOLUTION CONFIRMS STRUCTURAL HOMOLOGY AMONG RETROV ENZYMES	
 Structure Analysis Help 	Authors	Lapatto, R., Blundell, T.L., Hemmings, A., Wilderspin, A., Wood, S.P., Danley, D.E., Geoghegan, K.F., Hawrylik, S.J., Hobart, P.M.	
Quick Tips : ••• X Click the PDB file icon above to view the PDB file.	Primary Citation	Lapatto, R., Blundell, T., Hemmings, A., Overington, J., Wilderspin, A., Wood, S., Merson, J.R., Whittle, P.J., Danley, D.E., Geoghegan, K.F., et al. (1989) X-ray ana HIV-1 proteinase at 2.7 A resolution confirms struc homology among retroviral enzymes. Nature 342 299-302	alysis of ctural 2: Display Options @
	History	Deposition 1991-11-04 Release 1992-01-1 Last Modified (REVDAT) 2003-04-01	15 KiNG Jmol WebMol MBT SimpleViewer MBT Protein Workshop

PDB File Format

HEADER	HYDROLASE(ASPARTIC PROTEINASE)	04-NOV-91	3PHV
TITLE	X-RAY ANALYSIS OF HIV-1 PROTEINASE AT	2.7 ANGSTROMS	
TITLE	2 RESOLUTION CONFIRMS STRUCTURAL HOMOLO	GY AMONG RETR	OVIRAL
TITLE	3 ENZYMES		
COMPND	MOL_ID: 1;		
COMPND	2 MOLECULE: UNLIGANDED HIV-1 PROTEASE;		

.

.

SEQRES 1 A 99 PRO GLN ILE THR LEU TRP GLN ARG PRO LEU VAL THR ILE SEQRES 2 A 99 LYS ILE GLY GLY GLN LEU LYS GLU ALA LEU LEU ASP THR SEORES 3 A 99 GLY ALA ASP ASP THR VAL LEU GLU GLU MET SER LEU PRO 99 GLY ARG TRP LYS PRO LYS MET ILE GLY GLY ILE GLY GLY SEQRES 4 A 5 A 99 PHE ILE LYS VAL ARG GLN TYR ASP GLN ILE LEU ILE GLU SEQRES SEQRES 6 A 99 ILE CYS GLY HIS LYS ALA ILE GLY THR VAL LEU VAL GLY 7 A SEQRES 99 PRO THR PRO VAL ASN ILE ILE GLY ARG ASN LEU LEU THR SEQRES 8 A 99 GLN ILE GLY CYS THR LEU ASN PHE

						Χ	Υ	Ζ		
ATOM	1	N	PRO	А	1	22.644	34.004	35.541	1.00	0.00
ATOM	2	ĊA	PRO	A	1	23.698	34.424	34.629	>1.00	0.00
ATOM	3	C	PRO	A	1	23.670	33.634	33.311	1.00	0.00
ATOM	4	ō	PRO	A	1	23.732	32.407	33.378	1.00	0.00
ATOM	5	CB	PRO	A	1	24.942	33.969	35.398	1.00	0.00
ATOM	6	CG	PRO	A	1	24.473	32.997	36.472	1.00	0.00
ATOM	7	CD	PRO	A	1	23.105	33.581	36.872	1.00	0.00
ATOM	8	N	GLN	А	2	23.620	34.346	32.222	1.00	0.00
ATOM	9	CA	GLN	A	2	23.686	33.843	30.844	>1.00	0.00
ATOM	10	С	GLN	A	2	25.109	34.080	30.312	1.00	0.00
ATOM	11	0	GLN	A	2	25.656	35.175	30.522	1.00	0.00
ATOM	12	CB	GLN	A	2	22.644	34.435	29.949	1.00	0.00
ATOM	13	CG	GLN	A	2	23.093	34.632	28.515	1.00	0.00
ATOM	14	CD	GLN	A	2	24.214	35.667	28.411	1.00	0.00
ATOM	15	OE1	GLN	A	2	25.432	35.285	28.025	1.00	0.00
ATOM	16	NE2	GLN	A	2	23.974	36.937	28.720	1.00	0.00
ATOM	17	N	ILE	A	3	25.696	33.055	29.732	1.00	0.00
	18	CA	ILE	A	3	27.062	33.029	29.263	>1.00	0.00
ATOM	19	С	ILE	A	3	27.209	32.567	27.802	1.00	0.00
ATOM	20	0	ILE	A	3	26.648	31.543	27.438	1.00	0.00
ATOM	21	СВ	ILE	A	3	27.898	32.019	30.081	1.00	0.00
ATOM	22	CG1	ILE	A –	3	27.202	30.675	30.070	1.00	0.00
ATOM	23	CG2	ILE	A	3	28.195	32.529	31.457	1.00	0.00
ATOM	24	CD1	ILE	A	3	26.556	30.287	31.392	1.00	0.00

N C C 0 C C Ċ N Ċ С 0 Ċ С С 0 N Ν С С 0 С С С

С

HIV-1 Protease CA Coordinate Data

	A	В	С	D	Е	F	G	Н
1						Х	Y	Z
2	ATOM	CA	PRO	A	1	23.698	34.424	34.629
3	ATOM	CA	GLN	A	2	23.686	33.843	30.844
4	ATOM	CA	ILE	A	3	27.062	33.029	29.262
5	ATOM	CA	THR	A	4	28.426	33.077	25.718
6	ATOM	CA	LEU	A	5	30.738	30.518	24.158
7	ATOM	CA	TRP	A	6	33.436	32.724	22.604
8	ATOM	CA	GLN	A	7	35.862	31.228	25.107
9	ATOM	CA	ARG	A	8	35.677	28.307	27.53
10	ATOM	CA	PRO	A	9	32.728	28.303	29.863
11	ATOM	CA	LEU	A	10	34.326	28.493	33.308
12	ATOM	CA	VAL	A	11	32.406	29.637	36,403
13	ATOM	CA	THR	A	12	33.031	29.494	40.159
14	ATOM	CA	ILE	A	13	31.807	26.736	42.446
15	ATOM	CA	LYS	A	14	31.406	25.988	46.122
16	ATOM	CA	ILE	A	15	31.756	22.457	47.446
17	ATOM	CA	GLY	A	16	31.721	22.691	51.261
18	ATOM	CA	GLY	A	17	33.076	26.171	51.947
19	ATOM	CA	GLN	A	18	35.737	25.835	49.251
20	ATOM	CA	LEU	A	19	35.495	28.32	46.372
21	ATOM	CA	LYS	A	20	36.239	26.546	43.058
22	ATOM	CA	GLU	A	21	36.094	26.838	39.258
23	ATOM	CA	ALA	A	22	34.676	24.579	36.537
24	ATOM	CA	LEU	Δ	23	33 434	24 022	33,005

Counting Interacting Amino Acids: One Approach

- Consider pairs of neighbor amino acids whose points are within a given distance of each other in the structure
- 20 x 20 = 400 possible ordered pairs (i.e., AC and CA different) No permutation (more approp.): 20 + (20 choose 2) = 210 pairs
- Obtain all pairs from a large diverse set of proteins, and calculate observed relative frequency of interaction for each pair f_{ij}
- Calculate a rate expected by chance for each pair by using a multinomial distribution (n = 2 trials, k = 20 outcomes) p_{ij}
- Inverted Boltzmann principle: propensity for pairwise interaction, also known as a "knowledge-based" empirical potential energy of pairwise interaction, is proportional to $s_{ij} = \log (f_{ij} / p_{ij})$

Our Approach: Four-Body Interactions

- Identify a diverse set of over 1400 structures of protein chains
- Apply Delaunay tessellation (3D) to amino acid points of each protein: convex hull of space-filling tetrahedra, each objectively identifies a quadruplet of nearest neighbor amino acids
- Qhull (free) at http://www.qhull.org, or Matlab (delaunay3)
- Tessellation edges longer than 12 Angstroms removed

Counting Amino Acid Quadruplets

n = size of amino acid alphabet = 20; r = size of the subsets = 4

only realistic choice when identifying quadruplets of interacting amino acids based on the four unordered vertices of tetrahedra in a protein tessellation

Counting Amino Acid Quadruplets Repetitions – yes, permutations – no:

a more "hands-on" counting approach

С D E F	$\begin{pmatrix} 20 \\ 4 \end{pmatrix}$
ССДЕ	$20 \cdot \binom{19}{2}$
	$\binom{20}{2}$
CCCD	20.19
СССС	20

Total: 8,855 distinct quadruplets

Four-Body Statistical Potential

- Knowledge-based, modeled after the inverted Boltzmann principle from statistical mechanics
- f_{ijkl} = observed proportion of all tetrahedra in the 1400+ tessellations whose four vertex amino acid residues are i,j,k,l
- p_{ijkl} = rate expected by chance (multinomial distribution, based on proportions of amino acids of types *i,j,k,l* in the 1400+ proteins)
- For amino acid quadruplet (i,j,k,l), a log-likelihood score (energy of interaction) is given by $s(i,j,k,l) = \log(f_{ijkl} / p_{ijkl})$
- Four-body statistical potential: the collection of 8855 amino acid quadruplet types with their respective scores

Multinomial Reference Distribution

n = number of independent trials of an experiment

k = number of mutually exclusive and exhaustive outcomes for the experiment, say A_1, A_2, \dots, A_k

 $P(A_i) = p_i, i = 1, 2, ..., k$ on each trial with $\sum_{i=1}^{k} p_i = 1$

Let random variable X_i be the number of times A_i occurs in the *n* trials, i = 1, 2, ..., k.

If $x_1, x_2, ..., x_k$ are nonnegative integers such that $\sum_{i=1}^{k} x_i = n$, then the probability that A_i occurs x_i times, i = 1, 2, ..., k is given by

$$P(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k) = \frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$

In our case, each experiment consists of selecting an amino acid (k = 20), and there are n = 4 trials.. Each A_i represents a different amino acid type, where p_i is the proportion of all amino acids in the 1400 + proteins that are of type *i*, and x_i is the number of times that amino acid A_i occurs in the quadruplet. So,

$$P(X_1 = x_1, X_2 = x_2, \dots, X_{20} = x_{20}) = \frac{4!}{\prod_{i=1}^{20} x_i!} \prod_{i=1}^{20} p_i^{x_i}$$

is the random chance of occurrence of any given quadruplet, where $\sum_{i=1}^{20} x_i = 4$.

Four-Body Statistical Potential

Amino Acid	"Pseudo-Energy"
Quadruplet	Log-likelihood s(i,j,k,l)
CCCC CCCH CCCS CCCG CCCF CCCF CCCF CCCP ACCC CCCW CCCHH CCCN HHHH HHHH	3.29042538 2.09542785 1.96177162 1.84022021 1.79961166 1.77139046 1.76378293 1.74840641 1.74777711 1.74711265 1.70747111 1.69741431 1.61473339
HMNP	0.000221495
DGGY	0.000178988
DRSV	9.45855E-05
EHHV	4.979E-06
LRYY	-6.29797E-05
DGKP	-9.73563E-05
NPSS	-0.000100914
IPRW	-0.000136526
MMRT	-0.000168007
GLLP	-0.000294376
EKNT	-0.000312593
EKQR	-0.000343148
HKKW	-0.66398714
KKKP	-0.66875323
CDEQ	-0.67215257
CKKW	-0.75315166
CDKKM	-0.76390474
HHKK	-0.85974
CKKR	-0.88002907
CIKR	-0.90372634
CHKW	-0.94458122
CEEE	-1.02439761
HKKM	-1.14234339

Amino Acid (Residue) Environment Scores

• For each amino acid position, locally sum scores *s*(*i*,*j*,*k*,*l*) of the tetrahedral quadruplets that use the position as a vertex

Example: $q_5 = q(R5) = \sum_{(i,j,k,l)} s(i,j,k,l)$, sum is taken **only** over all tetrahedral quadruplets (i,j,k,l) that include R5

The scores q_i of all amino acid residue positions *i* in a protein form a **3D-1D Potential Profile** vector **Q** = < q₁, q₂, q₃,...,q_N > (N = length of the protein sequence in the structure)

3D-1D Potential Profile: HIV-1 Protease

Computational Mutagenesis: HIV-1 Protease

Experimental Data

- Ritonavir is one of many HIV-1 protease inhibitor drugs, amino acid mutations in protease alter its susceptibility to the drugs
- Susceptibility given by a fold change (FC) value, which can be obtained for each distinct mutant protein by a phenotypic test (expensive and has a long turnaround time)
- Sequencing patient virus (genotypic test) is much faster, cheaper; hence, high interest in predicting phenotype from genotype!
- Dataset: 473 mutant HIV-1 protease proteins, each with an already known phenotype (FC value) WRT drug ritonavir; can be categorized as Sensitive/Resistant (FC cutoff known)
- Question: Can we predict mutant FC values or classes (output) based on R vectors of environmental perturbation scores (inputs)

Experimental Data

ど Genot	ype-Phenoty	pe Datasets - Mozilla Fi	refox								_ 0	×
<u>E</u> ile <u>E</u> dit	<u>V</u> iew Hi <u>s</u> to	ry <u>B</u> ookmarks <u>T</u> ools <u>H</u> e	łp									
Genoty	rpe-Phenotype D	atasets +										
(\)	🕘 hivdb. stanf	ord.edu/cgi-bin/GenoPhenoDS	5.cgi				☆ ⊽ (💈 🚺 🔻 Google		ρ	+	⋒
🔊 Latest I	Headlines 🦲 H	IIV DBs 🦲 Binf 🦲 Res 🦲	Libs 🦲 GMU	🦲 Accts 🦲 Serv	vices 🦲 Search	🦲 Schools 🦲 Ti	utorials 🦲 News	🦲 Misc 🦲 Con	fs 🦲 Journals			
	UNEORD III	NILLID 0 17737										
SH	IV DRU	G RESISTANC	E DATA	BASE								
A curated	d public databa	se designed to represent, sto	re, and analyze	the divergent for	ms of data under	lying HIV drug re	sistance.					
HOME	GENOTYPE-	-RX GENOTYPE-PHEN	O GENOTY	PE-CLINICAL	HIVdb PRO	GRAM						
		Genotype-Pl	henotype	e Datasets	5							
		Version 5.0, March, 21	012									≡
	-											
	 Io acces Brutlag E 	ss high quality filtered dat DL, Shafer RW., Genotyj	asets from HI pic predictors	VDB and analys s of human imr	es using metho nunodeficiend	ids described in ay virus type 1 o	the <u>paper</u> by R drug resistanc	hee SY, Taylor J e.,Proceedings	I, Wadhera G, Be of National Acade	n-Hur A, emy of		
	Science	s of the United States of	America, Oct	25, 2006, click	<u>here.</u>							
	 To acces 	ss complete unfiltered dat	asets from Hl	VDB by gene ar	nd phenotype a:	ssay, click the li	nks below:					
	Gene		Method				Data	1				
	PR	PhenoSense (ViroLogic ¹	^{- M})		11731 phenoty Tab delimited	pe results from 1 Comma separa	727 isolates: ted (Excel)					
		Antivirogram (Virco [™])			10026 phenoty	pe results from '	434 isolates:					
		All Others			Tab delimited	Comma separa e results from 31	ted (Excel) 19 isolates:				-	
					Tab delimited	Comma separa	ted (Excel)					
	RT	PhenoSense (ViroLogic ¹	^{• M})		8884 phenotyp Tab delimited	e results from 10 Comma separa)33 isolates: ted (Excel)					
		Antivirogram (Virco [™])			12357 phenoty	pe results from '	748 isolates:					
		All Others			1286 phenotyp	<u>Comma separa</u> e results from 3:	ted (Excel) 56 isolates:					
					Tab delimited	<u>Comma separa</u>	ted (Excel)					
	Descript	tion of fields in the datase	ets									
	Field	Namo	<u></u>			Description						
	Field	Name				Description				me		~
🥂 sta	n 🗅	Paper Diredic	MAAta	MAA	MAA2	MAA2	BMCR	Table1	🥙 Genot	0	10:02	AM

Statistical Machine Learning Algorithms

- Classification or regression tree, neural network, support vector machine or regression, random forest, Bayesian network, etc
- Predictive models are trained using the available data, learned models are complex nonlinear functions of the inputs
- Free software: Weka (<u>http://www.cs.waikato.ac.nz/ml/weka/</u>)
- User friendly GUI, opens the door to discussing concepts such as:
 - model training, validation, and testing
 - evaluating model performance using resubstitution (training set itself), independent test set, cross-validation, % split
 - defining measures (accuracy, sensitivity, specificity, precision, kappa stat, Matthew's / Pearson's correlation, ROC curves, etc)

Comma Separated Data File for Weka

For each protease mutant, R vector components (inputs) separated by commas, and FC value (or class label) as last component (output)

Weka Explorer						
eprocess Classify Cluster As	ssociate Select attributes Visualiz	e				
Open file	Open URL	Open DB	Undo	Edit	Save	
ilter						_
Choose None						Apply
urrent relation Relation: RTV_2class	Attributery 100		Selected attribute Name: fold	Disks to 2	Type: Nominal	
tristances: 473	Acchbuces: 100			Distinct: 2	Unique: 0 (0%)	
cributes			S	23	in i	
All	None	Invert	R	23	7	
Name 79 79 80 80 81 81 82 82 83 83 84 84 85 85 86 86 87 87 88 88 89 89 90 90 91 91 92 92 93 93 94 94 95 95 96 96 97 97			Class: fold (Nom) 236		237	Visualize All
98 99 99 99 100 fold atus K	Remove	 ▼			Log	¢.
start 🔁 P 🚺	@ Pr Ø M	@ M @ M	🗐 B 🞯 T	🕘 w 🛛 🔷 w	🌆 w 🗀 m	0 11:0

Classification

🛎 Weka Explorer					
Preprocess Classify Cluster Associate	Select attributes Visualize				
Classifier					
Choose 348 -C 0.25 -M 2					
Test options	Classifier output				
O Use training set	Number of Leaves : 12				^
O Supplied test set Set					
⊙ Cross-validation Folds 10	Size of the tree : 23				
O Percentage split % 66				💌 Weka GUI Choo 💶 🗖	
More options	Time taken to build model: 0.16 se	econds		Utellata Environment for	
	=== Stratified cross-validation ==			Knowledge Analysis	
(Nom) fold	=== Summary ===			Version 3.4.12	
Start Stop	Country Classified Tester	115	04 0000 *	(-) 1000 - 2007	
Regult list (right-click for options)	Incorrectly Classified Instances	443 28	94.0003 % 5.9197 %	University of Waikato	
10:21:15 - trees REPTree	Kappa statistic	0.8816		New Zealand	
10:36:10 - trees. 348	Mean absolute error	0.0687		N.S. FORST MARKENING	572
	Root mean squared error	0.2338		AND THAT IS A REAL	
	Relative absolute error	13.7376 %		All and a second	(R)
	Root relative squared error	46.7667 %		A STATE ALL AND A STATE OF	
	Total Number of Instances	473		ALL AND	
	=== Detailed Accuracy By Class ===	=			
				Long to Ba	
	TP Rate FP Rate Precision Re	ecall F-Measure	Class	A CANADA SE	9
	0.928 0.046 0.952 0	0.928 0.94	S	The state of the second	
	0.954 0.072 0.93 0	0.954 0.942	R	The second second second	
	=== Confusion Matrix ===			GUI	
				Simple CLI Explorer	
	a b < classified as			Experimenter KnowledgeFlor	w
	219 17 a = S				
	11 226 b = R				
					_
OK Status				Log	×0
t start	61M. 61M. 61M.	Min	(2) w. (x w)	🖪 W., 🍙 m., 🖪 W	10:43 AM

Trained Classification Tree Model

Regression

Relevant Links

- These slides: <u>http://binf.gmu.edu/mmasso/JMM2014.pdf</u>
- Delaunay tessellation software: Qhull (free) at <u>http://www.qhull.org</u>, or Matlab (delaunay3)
- Weka machine learning software (free): <u>http://www.cs.waikato.ac.nz/ml/weka/</u>)
- PDB codes for dataset of 1417 diverse protein structures: http://proteins.gmu.edu/automute/tessellatable1417.txt
- Four-body statistical potential derived from above dataset: <u>http://proteins.gmu.edu/automute/potential_1417_cut12.txt</u>
- Weka-formatted datasets of 473 HIV-1 protease mutants with known phenotypes, represented using our *in silico* method:
 - (regression) <u>http://proteins.gmu.edu/automute/RTV_train.csv</u>
 - (class.) <u>http://proteins.gmu.edu/automute/RTV_2class.csv</u>