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What Constitutes a Consequence of Single 
Residue Replacements in Proteins?

• Relative activity change; relative stability change; relative 
change in inhibitor binding energy to a target protein; neutrality 
versus disease association of protein mutations; etc. …

• No universally applicable formulas for inferring one mutant 
property based on knowledge of any other property
– Example: We previously developed models for predicting stability

change upon mutation, but these cannot be used to infer activity change

• Here we report on the development of a model for predicting 
activity change upon mutation



Mutant Dataset for Model Training

• 8561 single residue replacements in 7 diverse proteins
• Mutant activity experimentally determined and reported 

qualitatively: 5251 unaffected (U) and 3310 affected (A)

Protein Source Function Mutant 
Data 

PDB 
Code 

SCOP 
Class 

PR HIV-1 proteinase U:   218 
A:   294 3phvA all β 

RT HIV-1 transferase U:   170 
A:   196 1rtjA α / β 

lys phage T4 hydrolase U: 1364 
A:   638 3lzmA α + β 

GVP phage f1 DNA binding 
(replication) 

U:   130 
A:   221 1gvpA all β 

barn E. coli RNase U:   643 
A:     34 1bniA α + β 

lac E. coli DNA binding 
(regulation) 

U: 2256 
A: 1773 1efaB all α 

IL-3 human signaling 
(growth factor) 

U:   395 
A:   229 1jliA all α 

 



Structure-Based Computational Mutagenesis

• Makes use of a four-body 
potential energy function that 
we previously developed

• Scores quantify the energy of 
interaction for every quadruplet 
of amino acid residues



Structure-Based Computational Mutagenesis
• The four-body potential and the computational mutagenesis 

technique utilize Delaunay tessellation of protein structure
• Creates a 3D tetrahedral tiling of the space occupied by a protein
• Each tetrahedron defines a residue quadruplet at the four vertices
• Tessellation also identifies a local structural neighborhood for

every amino acid residue in a protein



Computational Mutagenesis: IL-3 Example

Residual score = EC21

D21

Environmental change (EC) 
scores for the D21S mutant

D21 vertex is 
shared by 14 
tetrahedra and 
has 11 neighbors

IL-3
tessellation



Representing Mutants via Common Attributes

• For a protein mutation at position N, nonzero EC scores occur only 
at N and its structural neighbors defined by tessellation

• Every position has at least 6 neighbors, can be ordered based on
Euclidean distance from position N (tessellation edge-lengths)

• So, the 8561 mutants have 7 common EC values: residual score 
(EC score at N), and ordered EC scores of the 6 closest neighbors

• Calculate values for 20 additional sequence and structure features 
characterizing each mutant

• Result: each mutant represented as a 27-dimensional feature vector



Residual Scores Elucidate a 
Structure – Function Relationship



Random Forest (RF) Model and Performance
• Evaluation: tenfold cross-validation (10-fold CV)

• ACC = accuracy (% correct); S/P = sensitivity/precision; 
BER = balanced error rate (BAR = 1 – BER); MCC = 
Matthew’s correlation coefficient; AUC = area under ROC

• ALL = combined dataset of all 8561 protein mutants

Data ACC S(U) P(U) S(A) P(A) BER MCC AUC 
PR 0.83 0.74 0.83 0.89 0.82 0.18 0.64 0.89 
RT 0.73 0.72 0.71 0.74 0.75 0.27 0.46 0.78 
lys 0.82 0.88 0.87 0.71 0.73 0.21 0.59 0.89 
GVP 0.74 0.72 0.62 0.75 0.82 0.27 0.45 0.78 
barn 0.97 0.99 0.97 0.50 0.71 0.26 0.57 0.88 
lac 0.84 0.86 0.85 0.81 0.82 0.16 0.67 0.92 
IL-3 0.85 0.87 0.93 0.79 0.66 0.17 0.62 0.88 
ALL 0.84 0.89 0.85 0.76 0.81 0.18 0.65 0.91 

 



Statistical Significance of RF Model 
Trained Using the Combined Dataset



Protein-Specific Comparisons With 
Related Methods SIFT, MAPP, and Pmut

Protein / 
Method ACC S(U) P(U) S(A) P(A) BER MCC 

PR        
AUTO-MUTE 0.83 0.74 0.83 0.89 0.82 0.18 0.64 

SIFT 0.78 0.70 0.66 0.82 0.85 0.24 0.51 
MAPP 0.76 0.62 0.89 0.92 0.68 0.23 0.55 

Pmut 0.61 0.09 0.95 0.99 0.60 0.46 0.21 
RT        
AUTO-MUTE 0.73 0.72 0.71 0.74 0.75 0.27 0.46 

MAPP 0.64 0.85 0.44 0.56 0.90 0.30 0.37 
Pmut 0.56 0.05 0.90 0.99 0.55 0.48 0.15 

lys        
AUTO-MUTE 0.82 0.88 0.87 0.71 0.73 0.21 0.59 

SIFT 0.63 0.59 0.82 0.72 0.45 0.35 0.29 
MAPP 0.73 0.70 0.87 0.79 0.56 0.26 0.46 

Pmut 0.52 0.42 0.77 0.74 0.37 0.42 0.15 
lac        
AUTO-MUTE 0.84 0.86 0.85 0.81 0.82 0.16 0.67 

SIFT 0.68 0.78 0.70 0.57 0.66 0.33 0.35 
MAPP 0.69 0.72 0.72 0.66 0.66 0.31 0.38 

Pmut 0.61 0.77 0.66 0.36 0.49 0.44 0.14 
 

*AUTO-MUTE is our method

*

*

*

*



Performance of RF Model Trained Using the 
Combined Dataset on an Independent Test Set

• Obtained a diverse set of 248 single residue substitutions, each
with known impact on activity, from Protein Mutant Database

• These mutations occur in 51 proteins not related to the 7 proteins 
used for model training

• The 51 proteins have 3D coordinate files in PDB – required in 
order for us to tessellate and generate 248 mutant feature vectors

• Comparison of RF model predictions with known impact on 
activity for 248 mutants: ACC = 0.84, MCC = 0.54, BER = 0.24



Conclusion

• Improved performance of our RF model due to:
– training on a large and diverse dataset of mutants
– use of structure-based attributes obtained from a computational mutagenesis 

technique relying on a four-body potential

• Public accessibility to RF model for making predictions: 
http://proteins.gmu.edu/automute/AUTO-MUTE_Activity.html
(also accessible from my homepage: http://binf.gmu.edu/mmasso) 

• Above activity prediction website provides access to all datasets, 
as well as mutant feature vectors, as downloadable text files

http://proteins.gmu.edu/automute/AUTO-MUTE_Activity.html
http://binf.gmu.edu/mmasso
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