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ABSTRACT
Many correlation filters have been designed to be invariant to certain parameters within a set of input
images. For example, the construction of rotation and scale invariant filtersis well documented. However, an
estimation of ageneric varying parameter is not available by these methods. This paper presents atwo-filter method
that estimates the value of avarying parameter in the input image.
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1. INTRODUCTION

This paper will introduce adual filter system that will estimate the magnitude of avarying parameter for a set
of input images. The set of imagesX ={ Xy, X,, ..., Xy} iscreated by varying a parameter qin asingleimage |, where
g isthe varying parameter or parameters (e.g., rotation, scale, etc.). Infact, g does not have to be defined by the user.

It isthe parameter or parametersthat vary within the training set. Aninherent advantage of the class of filters used
hereisthat the varying parameters do not have to be defined by the user, they only have to be contained within the
training set. A dual filter system will be created from a subset of X that will be capable of recognizing all X; within X
and estimate q for any X;.

Previous work related to thisfilter system have included many methodsto create ag-invariant, singlefilter
recognition system.*® Many of these types of systems require a g-specific transformation of the input image before
thefilter isapplied. An approach that creates afilter invariant to ageneral q isthe synthetic discriminant functions
(SDF) which arereviewed inref. 9. Unlike the previous methods, the SDF class of filters doe not require that a
particular g be defined. Thisclass of filter can beinvariant to any q inherent in atraining set.

SDFs have been used to estimate q for trainingimages™ This estimation was obtained by associating each
image with adifferent value (established in the constraint vector). When an unknown input from the training set was
operated on by the filter the constraint val ue associated with that input was produced, thus indicating which training
input was the actual input. This method only works on the training inputs and not the intermediate cases.

The method used here will use two filters which are members of the SDF class. These filters are Fractional
Power Filters (FPFs) which will be reviewed in Section 2. Section 3 will present the method by which the FPFs can be
used to estimate q. Section 4 will present three examples.

2. REVIEW OF THE FRACTIONAL POWER FILTER
The Fractional Power Filter (FPF)™ is a superset of two standard SDF-class filters: the SDF and the MACE

filter. Thissection will review the SDF, MACE and FPF filters. Again, further understanding of the SDF, the MACE,
and other variants of thisclass of filter isavailable in Kumar (ref 9).



2.1. Synthetic Discriminant Function

The SDF isaweighted linear combination of inputs. For this discussion the inputs are vectors of dimension

K. Givenaset of N column input vectorsv; (i = 1,2,...N) amatrix V' is created by the combination of the Fourier
transforms of the input vectorsasin,

V=[0] 0 | 0] @
where V, isthe Fourier transform of v;.

Each vector \7i isassociated with a constraint value ¢;. Thus, the SDF filter, h, is constrained by,

Vh=c
i : @
Since V isnot square, the pseudo-inverse is used to find h,
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2.2. Minimum Average Correlation Enerqy Filter

The Minimum Average Correlation Energy (MACE) filter issimilar to the SDF but it has the additional
condition of minimizing the correlation surface energy. The MACE filter will only be presented here, however the
derivation is presented in Mahalanobis (ref 12). The MACE filter is computed by,

h=D 1\7[\7TD'1\7]'1C, @
where

Dy = Y8 gl ®
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where V, ; isthei-th element of the k-th vector.

2.3. The Fractional Power Filter

Consider the power term inEq. 5. If thisterm were O then D would become the Identity. In this scenario the
SDF could be computed by Eg. 4. The only difference between the SDF and MACE isthe power terminEq. 5. The
FPF allows this power term to vary between 0 and 2. Thus, the FPF is computed by Eq. 5 where,

D = B8 9., p=[02 ©
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Values of p<0 and p>2 do not seem to alter the performance from the p=0 and p=2 cases respectively. Values of p<0
would enhance the stronger frequencies and provide no real benefit to the filter performance. At p=2 the energy of
the correlation surfaceis minimized. The energy of this surface cannot be lowered by values of p > 2. Thus, the
values of p are kept between 0 and 2 inclusive.



2.4. The Continuum

The important information is the value of output peak of the correlation surface. Consider afilter
constructed from a set of training vectors with avarying parameter . For the training vectors the constrained value
will be the peak value (except for some caseswhere p » 0). For the values of q between the training g’ s the output
peak value will be less than the constrained value. Thisisshownin Kumar (ref. 9) and specifically for the FPF in
Brasher (ref. 11). For anideal casethis behavior isshownin Fig. 1. Thisbehavior will be used to build atwo filter
system. For some casesfor P » O the output values near the constrained value can be actually higher than the

constrained value. For thisreason the dual system tendsto avoid the use of very small g's.

Correlation
Values

'CJ'CI?'CJ
NP~ O

q

Figure 1. Thetypical behavior of the FPFfilter. For differing p’sthe peak vaueis 1 for thetraining g's and lower for
intermediate g's. A larger p produces more droop in the curves.

Theideal behavior shown in Fig. 1 shows peaksin the curve which are the correlation peak values for the
training g’'s. The user definestherange of q's, the distance between the training q' s (by selecting the training set ),
the response of each training q (by selecting the constraint vector), and the curvature of the continuum between the
training g’ s (by selecting ap value).

3.ESTIMATION OF THE VARYING PARAMETER

This section will present amethod by which g can be estimated for a non-training input image. This method
will usetwo (or more in some cases) FPFs and take advantage of the continuum behavior shown in Section 2.4.

3.1. 2-D Inputs

Thefirst order of businessisto convert the FPF equations from 1-D inputs and a 1-D filter to 2-D inputs and
a2-D filter by creating atensor X which is created by a set of training images similar toEq. 1. Thefilter iscreated by
modifying Egs. 4 and 6 to produce,
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3.2. Creation of the Possibility Sets

Given an input with an unknown value of q the response of the FPF will lie somewhere on the curvein Fig. 1.
However, there exist several possible inputsthat create the same output. Thus, asingle peak value creates a set of
possible q values. Thisis graphically displayed in Fig. 2. Thisset of possible q valuesisdenoted by Q={ q;, qy, ...,
Ow }-
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Figure 2. The determination of the set Q isall possible g values for a given pesk correlation value. In this case, there are 6
members of the set Q.

3.3. Parameter Estimation

The creation of onefilter will lead to the creation of one possibility set Q,. By altering training parameters
(set of training inputs, p, and ¢) a second filter can be created that will have a possibility set Q.. The g of theinput
image must bein both Q; and Q,. However, proper construction of the two filters will prevent Q; and Q, from
containing any other common elements. The thrust of thisalgorithm isto create two FPFs such that Q1 C Q2 lisa

set with only one member. That member is the estimation of the g of theinput. In actuality, each member of the Q’s
isasmall range of q valuesto compensate for noise, errors, and other destructive effects.

Proper construction of the two filtersis dependent upon the type of input data. For ageneral case, proper
construction of the two filters would require that one or more of the training parameters be radically different in the
construction of thetwo filters. For the cases when thisis not feasible (limited training range, limited output



resolution due to noise, etc.) more than two filters may need to be used. The goal in amulti-filter system is still the
same: to createaset from Q, C Q, C ... C Q, 2with only one member. That one member isthe estimation of g.

4. EXAMPLE

Three examples are presented in this section. The first considers noiseless images that varying in rotation.
The second exampl e considers noiselessimages that vary in scale. Thethird example considers a data set that varies
in scale and rotation (coupled) and with three different levels of random noise.

4.1. Rotation
This example built two FPFs from athe Fourier transform of rotated versions of theimagein Fig. 3 of awhite

blood cell surrounded by several red blood cells. Thus, gisrotation. The filters were built with the following
parameters:

Filter 1: N=3 gi = 0°, 27°, 54°
p=05c={1,1,1}

Filter 2: N=6 gi = 0°, 12°, 24°, 26°, 48°, 60°
p=13c={1,1,1,1,1,1}
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Figure 3. Aninput image of awhite blood Figure 4. A graph of the continuum for the rotation example case. Measurements
cell surrounded by several red blood cells. were taken in increments of one degree of rotation.

The continuum for thisimageis shown in Fig. 4. Measurements were taken for 1 degree of rotation. The
fact that the curve is extremely smooth indicates that extrapolation to non-measured pointsis very possible.

A test of this algorithm isto rotate the input by some random g within the range used for the construction of
thefilters. The output of the two filters each provide a set of possiblerotations. The intersection of the two set
should have one element which indicates the rotation of the original image.

One caseis shown as an example. The rotation which was randomly selected was q = 43.1 degrees. The
output of thetwo filterswere 0.746 ( Filter 1) and 0.668 (Filter 2). The output of the filter will not exactly match any of



the continuum outputs sinceit is not exactly one of the rotations. So each member of Q has arange (denoted by [])
and the union of the two sets searches for acommon range. The Q setsare

Filter 1Q ={ [34], [20,21], [37,38], [43,44] }
Filter 2Q ={ [0,1], [11,12], [12,13], [21,22], [26,27), [32,33], [39,40], [4344] } .

The union of the two sets produces only one member [43,44]. Thisrangeisexamined more closely. The peak
measurements that are shown in the continuum and the unknown input are shown in the Table 1.

q Filter 1 Filter 2

43 0.7457 0.6673
unknown 0.746 0.668
44 0.7535 0.6793

By linear extrapolation the unknown is estimated to be 43.04 (Filter 1) and 43.05 (Filter 2). The correct rotation was
43.1.

4.2. Scale

The continuum of the FPF isthe main attribute used in this system. If the continuum is smoothly resembling
the ideal case shown in Fig. 1 then this proposed system performswell. This example considers the case where the
same input image varied in scale. The filters were built with the following parameters:

Filter 1: N=3 i = 100%, 90%, 80%
p=08 c={1,11}
Filter 2: N=6 i = 100%, 93%, 86%, 79%, 72%, 65%

p=13 c={111111}

Thefilter performanceis shownin Fig. 5. Again the continuum is quite predictable and estimation of the
scale parameter g isquite possible. Estimation of an input with unknown istrivial once the smooth curves are
generated, and this estimation follows the procedure of the previous example.
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Figure 5. A graph of the continuum for the scale varying case. Measurements were taken in increments of 1% changein scale.
Thus, g=1 indicates 100% scale, g=2 indicates 99% scale, etc.



4.3. Scale, Rotation and Noise

Thefinal case allows q to represent both scale and rotation changes. Thetwo filters used the parametersin
the previous two examples to create thefilters. The filter responses are shown in Fig. 6. Again thefilter responses
are quite smooth and predictable.
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Figure 6. A graph of the continuum for the coupled scale-rotation case. The increments of rotation and scale were the same asthe
previous examples.

Thefilters were trained on noiselessimages. The filters were then tested with noisy versions of the scaled-
rotated input. Threetestswereran using different levels of noise. The noise allowed the original value of a pixel to
vary up to 10%, 20% or 30% for the respectivetests. The continuum for each of the noise tests were created and
subtracted from the original continuum. Then the average and standard deviation for the absol ute val ues of
differences between the continuums was computed. Table 2 shows the results for the three noise tests for each filter.

Table 2.
10% 10% 20% 20% 30% 30%
Filter 1 Filter 2 Filter 1 Filter 2 Filter 1 Filter 2
Average 0.0035 0.0098 0.0037 0.017 0.0066 0.032
Std. Dev. 0.0098 0.0081 0.0027 0.013 0.0048 0.027
Max 0.072 0.037 0.012 0.054 0.023 011

The differenceswere low in al casesin the presence of noise. Thereason for thisisthat the FPF performs
well in the presence of noise under certain conditions. The FPF trades generalization (small p) with discrimination
(large p). A good generalizing filter can produce reasonable resultsin the presence of noise. Thus, in noisy
environments the value of p may be lowered to compensate for noise. As seen in the table the FPF with the smaller p

performed better in the presence of noise. It isshould be noted that this tradeoff of generalization versus

discrimination applies only to images with significant lower frequency content which is quite common.
These FPFs are also smooth and predictable even in the presence of noise. Once the FPF curves are known

the prediction of q becomestrivial and follows the procedure shown in the first example.




5. SUMMARY

This paper presented a dual FPF method to estimate the value of avarying parameter g, where g is scale,
rotation, etc. Two FPFs are constructed using vastly different parameters. Aninput with an unknown qis correlated
with thetwo filters. The resultant peak values of each filter produced respective sets of possible q values. The
intersection of these sets produced asingle valid element that is the estimation of g. Exampleswhere qisrotation, q
isscale variances, and g is coupled scale-rotation are shown. The final example consider noisy inputs where the
noise could differ the original value by 30%.

Symbols

The FPF constraint vector.

A matrix that is determined in the FPF process
Thefilter created by the FPF process.

Animage

The number of elementsin animage.

The number of imagesin X

Thefractional power used in creating the FPF
aparameter tovary (i.e., scale, rotation, etc.)

The set of possible q valuesfor aspecified problem.

A matrix created from a set of vectors{v,v,,...,Vn}
Animage from the set X

The set of images.

X modified by the elementsin D.
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