
CSI606

MATLAB

Syllabus

• Instructor - Jeff Solka

• Contact Information
– jlsolka@gmail.com
– 540-653-1982 (W)
– 540-371-3961 (H)

• Dates and Times
– 11/5/2005 10 a.m. - 5 p.m. ST228
– 11/12/2005 10 a.m. - 5 p.m. ST228

• Texts
– Mastering MATLAB 6, Hanselman and Littlefield
– Graphics and GUIs in MATLAB by Marchand

and Holland
– Data Analysis and Graphics Using R (Hardcover)

by John Maindonald, John Braun

• Grades
- Grades are based on 2 labs
– Labs due to me by 12/10/05

Functions

• Script M-Files

– Creating script files

– Running script files

– Useful MATLAB functions for script files

– Examples of script files

• Function M-Files

– Properties of M-File functions

– Syntax

– Examples of function M-Files

– Debugging and Profiling Tools
•

Script M-files

• Sometimes you will need to execute your commands in
MATLAB using a scr ipt file rather than interactively.

• Reasons:

– The number of commands is large.

– You might want to change values of your var iables and
reevaluate the commands.

– You need a history of what you've done.

• This allows you to type MATL AB commands in a text file
and tell MATL AB to execute the commands as if you had
typed them at the command prompt.

• These are called script files or M-files. We can use these
terms interchangeably.

• These must be saved with the .m extension.

• To create a script file on a PC, choose New from the File
menu and select M-file.

• This will open up the Editor/Debugger where you can enter
your MATLAB commands.

•

Example Script File

% This is an example of an M-file

% Generate a matrix of normal random
variables

x=randn(100,5);

% find the mean of each column

x_mu=mean(x)

% find the standard deviaion of each
column

x_std=std(x)

% find the mean & std of the entire data
set

x_mu_all=mean(x(:))

x_std_all=std(x(:))

Some Properties of Script Files

• Once you type the name of your script file at the command
line, MATLAB does the following:

– It searches the current variables and built-in MATLAB
commands.

– If your M-file name is not there, it searches the current
directory.

– If the file is there, it opens it and runs the commands.

– If it is not in the above places, MATLAB searches the
path.

• Variables created by the commands in your M-file stay in
the workspace.

• Commands in your M-file have access to all of the variables
referred to in the M-file.

• Usually, the commands in the M-file are not displayed as
they are executed.

• The command echo on displays the commands to the
command window as they are read and evaluated.

• The command echo off stops this and the command echo
just toggles the state.

Some Useful Script Functions

Recall that MATL AB provides several functions
that are useful in M-files.

disp Display results.

echo Echo the file commands.

input Prompt the user for input.

keyboard Gives temporary control
to the keyboard.

(return quits)
pause Pause until any key is

pressed.

pause(n) Pause for 'n' seconds.

waitforbuttonpress waits for a mouse click

or keystroke over a plot

Functions

• There is a different type of M-file called an M-file
Function.

• You can speed up your code significantly by writing
things as M-file functions rather than just script files.

• Functions can be thought of as black boxes: all you
see is what goes in and what comes out.

• Any commands that are evaluated or variables that
are created are hidden from the user.

• These are very useful for evaluating mathematical
sequences of commands that you might want to use
many times.

• It is similar to the script file, in that it also is a text file
with the .m extension, however intermediate variables
within the function do not appear in or interact with
the MATLAB workspace.

• You create this file in the same manner, but with
slightly different syntax.

• Pages 176-178 of the text lists the rules and criteria
governing Function M-Files.

Functions

• A Function M-file is different from a script file; the key
differences are:

• Functions communicates with the workspace through the
variables passed into it and that are produced from it.

• Any intermediate variables created by the function are
hidden and do not interact with the workspace.

• There is a specific syntax that tells MATLAB that an M-file
is a function and not a script file.

• The first line of an M-file function must be either:

function arg_out = function_name(arg_in)

or

function [arg1,arg2] = func_name(in1,in2)

• It is a good idea to put several comment lines in the
beginning of your function file.

• These will be returned by the help command.

• The first comment line, also called the H1 line, is searched
by the lookfor command.

Functions

• Rules about function M-Files:
• You should always name the function and its file name the same.
• The first time MATLAB executes a Function M-file, it opens the text

file and compiles the commands.
• The function is now represented in memory, which speeds execution

time.

• Other functions that are called by a function M-File are also
compiled.

• In contrast, script M-files are interpreted and are not compiled even
if they are called by another function.

• Here is a simple function that returns a square of the value passed.

• function x = squareit(y)
• %SQUAREIT returns the square of an array or

scalar.
• %This is to show a very simple example of a

function.

• x=y^2;

• » help squareit

• SQUAREIT returns the square of an array or
scalar.

• This is to show a very simple example of a
function.

• » squareit(5)

• ans =

• 25

• »

Function M-files

• Key characteristics:

• Functions can have zero or more input arguments.

• Functions can have zero or more output arguments.

• Functions can be called with fewer input or output variables than
were specified in the function...but not more.

• An error is returned if they are called with more input or output
arguments.

• If a function has more than one output variable, then they are
enclosed in brackets.

function [mu,std] = stats(x)

• The number of input and output arguments that are used when a
function is called are available inside the function.

• These are available with the nargin and nargout variables.

• They are usually used to set default input variables and to determine
what output to use.

• You can also have a variable number of inputs and outputs.

• Use the varargin and varargout functions.

• MATLAB packs the specified inputs and outputs into a cell array.

Functions

• When a function declares one or more output var iables and
you do not want any output, then do not give the output
var iable a value.

• Functions have their own workspace that is created with
each function call and then deleted when the function
completes execution.

• For this reason, you can call var iables the same in both
workspaces.

• I f a predefined var iable (e.g., pi) is redefined in the
MATLAB workspace, it does not carr y over into the
function's workspace and vice versa.

• The input var iables are not copied into the function
workspace, but their values are readable within the function.

• I f any of the values within an input var iable are changed,
then the ar ray is copied into the function workspace.

• I f an output var iable is named the same as an input var iable,
then it is copied.

• To save memory you should extract the por tions of ar rays
that you wish to operate on.

•

Global Var iables and GUIs

• Functions can share var iables with other functions, the
MATLAB workspace, and recursive calls to themselves if the
var iables are declared global.

• To gain access to a global var iable it must be declared
global within each desired workspace.

• The use of global var iables should be avoided as they often
can lead to conflicts, confusion, and be difficult to debug.
To avoid these problems consider the following suggestions
when creating global var iables;

• Use all capital letters in the global var iable’s name.

• Include the M-File name in the var iable’s name.

• I f you can find an alternative to a global, do it.

• MATLAB searches for functions, as mentioned with script
files.

• I f you call a script file within a function, then the scr ipt file
sees only the function workspace, not the MATL AB
workspace.

• Functions can be called recursively.

• This is common with Graphical User Interfaces (GUI ' s).

Functions

• M-file functions stop executing and return when they reach
the end of the file or the command return is reached.

• For error reporting and debugging there are three functions
you can use.

• disp displays a variables value without showing its name;
you can use this with string variables to show messages.

• error displays a string in the command window, aborts the
function execution and returns control to the keyboard.

• warning displays a string as well, but does not abort the
function.

• MATLAB keeps track of the modification date of M-files
that you write.

• If an M-file function is referenced that was previously
compiled into memory, then it compares the dates with the
one on disk.

• If the dates are the same, the compiled code is executed.

• If the file on disk is newer, the newer file is compiled and
used.

Subfunctions and Local
Functions

•
• Function M-files can contain code for more than one

function. These are called subfunctions or local
functions.

• The first function is the primary function and is
invoked with the M-file name.

• Subsequent functions in the file are subfunctions.

• Sub-functions are visible only to the primary function
or other sub-functions in the same file.

• Each sub-function begins with its own function
definition line.

• When you call a function within an M-file, it first
checks to see if it is a sub-function.

Pr ivate M-files

• Private M-Files are standard function M-Files that
reside in a subdirectory (which must be named
‘pr ivate’) of the calli ng function.

• These functions are visible only to the same or parent
directory.

• Since these functions are not visible outside the parent
directory, they are not visible to the command line or
any outside functions.

• Therefore they can use the same names as other
functions in other director ies.

• Once MATL AB checks for sub-functions, it next
checks in the pr ivate directory.

• Directory structure must be maintained. This is a
concern when por ting M-Files.

Creating Your Own Toolbox

• The ‘Toolbox’ directory is a subdirectory containing
completed functions that are cached by MATL AB.
We can add our own subdirectory in there.

• We need to placeReadme.m and Contents.m in our
subdirectory (let’s call i t MyToolBox).

• Readme.m is a script f ile containing comment lines
that descr ibe late breaking changes or undocumented
features of our toolbox.

• Contents.m contains comment lines that li st all M-files
in our Toolbox. The first line should contain the
name of the Toolbox and the second line the date and
version.

• Readme.m is accessed by whatsnew MyToolBox

• Contents.m is accessed by help MytoolBox.

Command and Function Duali ty

• You have used some MATL AB commands such as clear , whos,
dir , ve r , help , etc.. MATL AB lets you create your own new
commands.

• There are two differences that distinguish commands from functions.

• Commands do not have output arguments

• Input arguments to commands are not enclosed in parenthesis.

• Commands are actually interpreted as the following example
indicates.

>> whatsnew M yToolbo x %command form

is interpreted as

>> whatsnew (' MyToolbox')

Here’s an example,

» which color def

C: \ PROGRAM FILES\ MATLAB\ tool box \ local \ colo r def .m

We can also do this:

» s=which('co l ordef')

s =

C: \ PROGRAM FILES\ MATLAB\ tool box \ local \ colo r def .m

Command Function Duality

• The following does not work since it mixes
function and command syntax.

» s=which colordef

??? s=which colordef

|

Missing operator, comma, or semi-
colon.

feval

• You can pass a character string name of a function to another
function for evaluation. You saw this in converting strings with
eval . MATLAB provides a more efficient method for certain cases.
This is feval .

• eval calls the entire MATLAB interpreter to evaluate a string.

• feval executes only functions given by a string.

• feval is usually used inside functions which have the names of other
functions as arguments.

• These are equivalent:

a = feval ('my f unction' , x)

a = myfunctio n(x)

feval works with multiple arguments.

[a,b] = feval ('myfuncti on' ,x , y,z,t)

is the same as

[a,b] = myfun ction (x,y, z,t)

feval is much more efficient than eva l

• Use feval when you have to evaluate a function many times or in an
interative procedure.

in-line functions and feval

• Normally myfunction is the name of an M-file function,
however you can usefeval with inline and express an
entire function as a character str ing.

• Here’s how we would do this with eval

» myfun = '10 0*(y - x^2) ^2 + (1 - x)^2'; %just a
string

» %we can use eval if we set the value s of x
and y first

» x=1.2;

» y=2;
» a=eval (myfu n)

a =

31.4000

var iables had to be defined previous to eval (myfun)

• Here’s what happens when we use inline

» myfuni = in l ine(myfu n, 'x', 'y') % m ake it
inline

myfuni =

Inline functi on:

myfuni (x,y) = 100*(y - x^2)^2 + (1 - x)^2

In-lie functios and feval

Natural argument usage

» a = feval (myfuni ,x,y)

a =

31.4000

» b = feval (myfuni , - 2, 1) % works for any arguments

b =

909

Examine the function

» argnames (myf uni) %ret urns t he arguments f or the
function

ans =

'x'

'y'

» formula(myf uni) %retu r ns t he formula for the
function

ans =

100*(y - x^2)^ 2 + (1 - x)^ 2

MATLAB Debugging

• When developing MATLAB M-Files eventually errors will occur.
MATLAB will tell you when you have errors. There are two types of
errors, syntax and run-time.

• Syntax errors can be generated when an expression or function is
compiled into memory.

• These can be things like

– misspelled variables and function names, misplaced quotes or
parenthesis, etc..

• MATLAB flags these errors immediately and provides feedback
describing the error and where it occurred.

• Syntax errors are usually easy to identify.

• Run-time errors are generated when an operation leads to unnatural
results.

• These can be caused by operations the result in things like

• Empty arrays

• NaNs

• MATLAB flags these errors then returns control to the command
window.

• By their nature, run-time errors can be difficult to debug.

Debugging by Hand

• For simple problems manual debugging techniques
can be quite useful.

• Remove semicolons from selected lines within your
function so that intermediate results are dumped to
the screen.

• Add statements that display variables of interest
within the function.

• Place the keyboard command at places in the
function where you want to examine a variable.

• Remember to use return to exit the keyboard state
at the K>> prompt.

• Change the function M-file into a script M-file by
placing a % before the function definition statement
at the beginning of the M-file.

• This will let you examine the workspace when the
termination occurs.

Debugging Functions
When functions are complicated you can use the MATLAB inline debug commands.

• MATLAB debugging functions do not require you to edit the M-File you are debugging.
Debugging functions are similar to those in other high-level languages. The following table
summarizes the inline debugging commands:

Debugging Command

Description
dbstop in mfile
dbstop in mfile at lineno
Set a breakpoint in mfile (at lineno)
dbstop if warning

error
naninf (or infnan)

Stop on any warning, run-time error, or when a NaN or Inf is generated.
dbclear all

all in filename
in filename
if warning
if error
if naninf (or infnan)

Remove breakpoints.
dbstatus
dbstatus filename

List all breakpoints (in filename).
dbtype mfile

mfile m:n
List mfile with line numbers (between line numbers m and n).
dbstep
dbstep n

Execute one or n-lines and stop.
dbcont

Resume execution.
dbstack

List who called whom.
dbup

Move up one workspace level.
dbdown

Move down one workspace level.

dbquit
Quit debug mode.

The Graphical Debugger

• MATLAB on the PC features an integrated M-
file editor / debugger.

•

• It can be launched right from your M-file editing
session by typing edit at the command prompt.

• Or launch it by choosing File
� �

New or Open.

The Graphical Debugger

• Buttons exist on the toolbar to do rudimentary
procedures such as single step, continue, and
quit debugging.

• You can set and clear breakpoints in an easy
manner.

• You can view the value of a variable or
expression by highlighting it in the editor then
using Text � � Evaluate Selection

Profiling in MATLAB

• MATLAB gives you tools to help you fine-tune, e.g.,
optimize, your code to avoid unnecessary function calls and
calculations.

•
• The Profiler examines a running program to determine

where the program is spending most of its time.

• With the profiler you can identify functions that are
consuming the most time, then determine why you are
calling them and look for ways to minimize their use.

• When you reach the point where most of the time is spent on
calls to a small number of built-in functions, you have
probably optimized the code as much as you can expect.

• Here is a rundown on some of the profiling functions.

• profile on Begin profiling for the session.

• profile report Display a profile report in
HTML.

• profile plot Plot the profile report using a
pareto plot.

• profile off Disable profiling.

Basics of Plott ing

• Gett ing hardcopy

• 2-D Plott ing

• Using the 'plot' function
– Linestyles
– Grids and labels
– Legends and Axes
– Subplots
– Multiple Figure Windows
– Retr ieving Data From Plots
– Other Plott ing Commands

• Special Symbols and Text

• 3-D Plott ing

– The 'plot3' function
– Mesh and Surface Plots
– Contour Plots

Getting Graphics Hardcopy

• You can use the normal Windows 'Pr int' command
from the 'File' menu.

• Use the menu from the Figure window.

• You can Copy/Paste into your document.

• NOTE: in previous versions of MATL AB the default
background color is black. Be sure to invert the
background or else you will have a black figure.

• You can also use the 'pr int' command at the
command line.

• Arguments to the pr int function call different devices.

Plot Function

• The most common command for plotting data in
2-D is the plot function. This function plots sets
of data (vectors) using appropriate axes and
connects the points with straight lines.

» x=0:.1:2*pi; % create horiz vector

» y=cos(x); % find cos of each one

» plot(x,y) % plot

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

plot Function

• plot opens a Figure window, scales the axes to fit the
data and plots the points.

• It adds a scale and tic marks to both axes.

• If a Figure window already exists, then it clears the
current window and draws a new plot.

• You can plot several lines on the same plot by putting
a series of them as arguments to the plot function.

plot(x1,y1,x2,y2)

• If one of the arguments is a matrix and the other a
vector, then it plots each column of the matrix versus
the vector.

• If you provide just one argument, then the following
can happen:

• If it is complex, then it plots the real part versus the
imaginary.

• If it is real-valued, then it plots the vector (or matrix)
versus the index of its values.

Linestyles, Symbols, and Colors

• The default linestyle is a solid line...MATLAB allows you to choose
from several.

solid line
: dotted line
-. dash-dot line

– dashed line

• If you plot several lines on one plot, then MATLAB starts with blue
and cycles through the colors green, red, cyan, magenta, yellow,
black, and white.

• You can use a symbol for each point and they will not be connected
by lines.

• The symbols that are available are:

. point
circle
x x-mark
+ plus
star
s square
d diamond
v down triangle
^ up triangle
< left triangle
right triangle
p pentagram
h hexagram

Linestyles, Symbols, and Colors
• You can select the color of a line or symbol.

b blue
g green

r red
c cyan
m magenta

y yellow
k black

w white

• You can combine both lines and symbols.

• For example, plot the sine and cosine on the same plot, with
the cosine plotted as a line and with symbols.

» y2=s i n(x) ;

» plot (x,y, x,y, ' b*', x, y2,'g - ')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Grids and Labels
• The command grid adds grid lines to the plot at the tic

marks.

• Repeated use of the command toggles the grid lines on
and off.

• You can easily add a title to your plot using:

• title(' My P l ot Title ')

• You can add labels to the horizontal and vertical axes
by using:

xlabel ('Lab el t he X')

ylabel ('Lab el t he Y')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Label the X

L
a

b
e

l
th

e
 Y

Grids and Labels

• Text can be added to any location on the plot with the
text command:

text(x , y,'l abel ')

• where the x and y represent the coordinates of the
center left edge of the str ing in units cor responding to
the axes.

• You can use the function gtext(' label') to place the
label with the mouse.

• Thegtext function activates the cur rent Figure
window, gives you a cross-hair that follows the mouse
and waits for the mouse click.

• The text is placed in the lower left corner of the first
character at that location.

Legends
• MATL AB provides the capabil ity of showing legends

to identify the different data.

• You can move the legend by holding the mouse button
near the lower left corner and dragging.

• You can remove the legend from plots using legend
off .

» x=li nspac e(0, 2*pi, 100);

» sinx =sin(x);

» cosx =cos (x);

» plot (x, si nx,' b*',x , cosx , 'g d')

» lege nd (' sin(x)', 'c os (x)')

» titl e('Sa mple Plot ')

» xlab el ('x axi s')

» ylabel('y axis')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Sample Plot

x axis

y
a

xi
s

sin(x)
cos(x)

Zoom

• zoom on turns zooming on.

• Click left mouse button in the Figure window to
expand by a factor of two.

• Click right mouse button to zoom out by a factor of
two.

• Click and drag rectangle to zoom into a particular
area.

• zoom(n) zooms by a factor of n.

• zoom out returns the plot to its initial state.

• zoom off turns off zoom mode.

• zoom toggles the zoom state.

• For zoom to be used the legend must be turned off.

• Since both zoom and legend respond to mouse clicks
they can interfere with each other.

axes
• You can use the command axis to change the axes of

your plot.

• The argument to this is a four element vector
containing the following information:

• [xmin xmax ymin ymax]

• You can use the function without any arguments to
get the current axes values.

» axis % get current axes values

ans =

0 7 -1 1

» axis([0 10 -2 2]) % reset to new ones

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Sample Plot

x axis

y
a

xi
s

sin(x)
cos(x)

Multiple Plots Per Page
• You have seen that you can plot multiple data against a

single axis using the plot command.
•

• plot(x, sinx ,' b*',x, cos x, ' gd')

• You can also add new plots to an existing plot by using the
hold command.

• hold on tell s MATLAB not to remove the existing axes
when new plot functions are issued.

• I f the new data do not fit within the cur rent axes limits, the
axes are rescaled.

• hold off releases the cur rent figure window for new
plots.

• hold with no arguments toggles the sett ing.

• The color cycle star ts anew with each call to plot . You
might want to specify plot colors when using hold so that
lines aren’ t plotted in the same color .

• ishold returns 1 if hold is on.
» hold

Current plot held

» ishold

ans =

1

subplots

• Sometimes you might want to plot more than one data set on
multiple axes, rather than several plots on one axis. You can
do this with the subplot(m,n,p) command.

• This gives a matrix of m x n plots in a single Figure
window.

• The p stands for the p-th area to be active.

• The subplots are numbered left to right from the top row to
the bottom.

• Be careful about putting too many plots in one Figure
window.

• The active subplot is the one responsive to the previous
commands to a Figure (e.g., axis, xlabel, ylabel, title)

• When you want to go back to one axis in a Figure window,
you must use:

• subplot(1,1,1)

subplots

» subplot(2,2,1),plot(x, cosx)

» title('Cos (x)')

» subplot(2,2,2),plot(x, cosx ,'+')

» title('Cos (x) with Symbols')

» subplot(2,2,3),plot(x, sinx)

» title('Sin(x)')

» subplot(2,2,4),plot(x, sinx ,'o')

» title('Sin(x) with Symbols')

0 2 4 6 8
-1

-0.5

0

0.5

1
Cos(x)

0 2 4 6 8
-1

-0.5

0

0.5

1
Cos(x) with Symbols

0 2 4 6 8
-1

-0.5

0

0.5

1
S in(x)

0 2 4 6 8
-1

-0.5

0

0.5

1
S in(x) with S ymbols

Multiple Figure Windows

• You can create multiple figure windows and plot
different data sets in different ways in each one.

• Select New Figure from the File menu or,

• Use figure(n) in the command window

» figure(1)

» plot(t,r)

» figure(2), polar(t,r)

Multiple Figure Windows

• Every time a new figure window is created, a number
identifying it is returned and stored for future use.

• Each new figure is placed in the default figure
position: click and drag to move figures around.

• Select active figures by ;

• clicking with mouse

• use figure(n) command

• Only the current figure is responsive to commands.

Retrieving Data From Plots

• The function ginput allows you to select points from a plot based on
the position of a mouse click.

• The returned data are not necessarily points from the data set used to
create the plot, but rather the explicit x and y coordinate values
where the mouse was clicked.

• If points are selected outside the plot axes limits, the points returned
are extrapolated values.

• Returned data are with respect to the current or active subplot.

• [x,y]=ginput(n) will retrieve n points. Not specifying n will
allow retrieves until the Return key is pressed.

• Before using ginput, zoom and legend should be turned off, since
all respond to mouse clicks and can interfere with each other.

» [u,v]=ginput(3)

u =

2.5091

2.7273

2.8000

v =

0.5607

0.4451

0.2717

Other 2-D Plots

MATLAB provides a host of specialized 2-D plots.

polar plot of polar coordinates as a function of angle and
radius

bar bar graph

stairs stairstep graph...no spacing or lines

stem stem plot

Errorbar graph with errorbars

feather displays angle and mag as arrows

compass same as above, except it emanates from
origin.

bar3 vertical 3-D bar chart

bar3h horizontal 3-D bar chart

barh horizontal bar chart

pie pie chart

pie3 3-D pie chart

rose draws polar histogram

Polar Plots
• polar(t,r,S) will create a plot in polar

coordinates.

• t is the angle vector in radians
• r is the radius vector
• S is an optional character string describing

color, marker symbol, and linestyle

» t= linspace (0,2*pi);

» r=sin(2*t).* cos (2*t);

» subplot(1,2,1)

» plot(t,r),title('X - Y Plot')

» subplot(1,2,2)

» polar(t,r),title('Polar Plot')

0 2 4 6 8
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
X-Y P lot

P ola r P lot

 0.24997

 0.49994

30

210

60

240

90

270

120

300

150

330

180 0

Other Plotting Commands

• plotmatrix (x,y) scatter plots columns of x
against the columns of y.

• If X is P-by-M and Y is P-by-N, PLOTMATRIX
will produce an N-by-M matrix of axes.

» x=randn (50,3); % 50 rows by 3 cols

» y=randn (3); % 3 rows by 3 cols

» plotmatrix (x,x*y)

» title('Scatter Plots Using
plotmatrix')

Scatter Plots Using plotmatrix

-4 -2 0 2-2 0 2 4-5 0 5

-10

-5

0

5

10

-1

0

1

2
-5

0

5

Other plott ing Commands

• fplot allows you to plot a 1-d function without
creating a data set.

• fplot ('fun',[xmin xmax])

• fplot ('fun',[xmin xmax ymin ymax])

• fun is a symbolic expression in one var iable or
the name of an M-file uses adaptive step control
to produce a representative graph, concentrating
its evaluation in regions where the function’s
rate of change is the greatest.

» fplot ('sin(x)',[0,2*pi])

» title(' fplotof sin(x)')

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
fplot of sin(x)

Other Plotting Commands

• ezplot plots a function over the domain [-
2*pi 2*pi] .

• The x-domain can be specified using the form

• ezplot (‘ FUN’ ,[xmin xmax])

• The x-axis label is the variable name.

• The title is the function ‘ FUN’ .

» ezplot ('sin(x^2)/(x+ eps)')

-6 -4 -2 0 2 4 6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

sin(x^2)/(x+eps)

Special Text Formatting

• You can create multi-line text with any text
string, including titles and axis labels by taking
advantage of string arrays or cell arrays.

» title({'Plot of sin(x)','Using
fplot' })

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Plot of sin(x)
Using fplot

Scatterplot Example

load seamount

%comes with

%the standard

%edition

scatter(x,y,5,z)

Symbols and Special
Characters

• There are over 75 symbols, including Greek letters and other
special characters, that can be included in MATLAB text
strings.

• You access these by embedding a subset of TeX commands
within your string using the \ character.

• The available symbols and the character strings used to
define them are listed in the table on page 375-376 of your
text.

• A limited subset of TeX formatting commands are also
available.

• ^ superscript

• _ subscript

• \ fontnam e font type

• \ fontsiz e font size

• \ bf, \ it, \ sl , \ rm bold, italic, slant,
normal roman

• gtext (' \ fontn ame{couri er } \ fontsize {16 } \ it
x_{ \ alpha} + y^{2 \ pi}')

• Produces x- α� + y2π�

3-D Plotting

• The plot3 function is sim i lar to the 2 - D
plot function , except we are now in th r ee
dimensions. The synta x i s similar to plot
except that y ou need t o p rovide 3 data sets
or vectors.

» t=0:pi/50:1 0*pi;

» plot3(sin(t) , cos (t), t)

»xlabel ('sin(t)'), ylab el ('cos (t)'), zla bel ('t')

» title('Heli x ')

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

5

10

15

20

25

30

35

s in(t)

He lix

cos(t)

t

3-D Plotting

• As you just saw, there is a zlabel function that you can use with 3-D
plots.

• You can use the hold command or several arguments to the plot3 function
just like in the 2-D case.

•
• You have a certain viewpoint with 3-D graphics, specified by azimuth and

elevation.

• The azimuth is the angle with respect to the x=0 plane.

• The elevation is the angle with respect to the z=0 plane.

• You can change this view with the command:

• view([az ,el])

• See the page 398 - 400, of your text for a complete description of the
view command.

• You can interactively rotates the view of a 3-D plot with the command
rotate3d .

• Try the following;

» [x,y,z]=pea ks;

» mesh(x,y,z) ;

» rotate3d

3-D Plotting

• Sometimes we need to view a scalar function of two
variables:

• z=f(x,y)

• A plot of this is a surface in 3 dimensions.

• To plot this in MATLAB, the values of z are stored in
a matrix.

• One way to get these values is to first create a matrix
of x and y values:

[X,Y]=meshgrid(-3:3,1:5)

• meshgrid will duplicate x for each of the rows in y
and will duplicate y as a column for each of the
columns in x.

• This allows all the values of z to be computed in a
single statement.

• If f(x,y) = (x + y)2 then,

Z = (X + Y).^2 % element by element

3-D Plotting

• You can plot a mesh surface defined by the z-
coordinates of points above a rectangular grid in
the x-y plane.

• A mesh is formed by joining adjacent points
with straight lines.

» [X,Y,Z]=peaks(30);

» mesh(X,Y,Z)

•
• peaks is a function of two variables, obtained

by translating and scaling Gaussian
distributions.

Some 3-D Plot Examples

[x,y,z]= peaks;
subplot(2,2,1),mesh(x,y,z)
C = del2(z);
subplot(2,2,2),mesh(x,y,z,C)
subplot(2,2,3),meshc(x,y,z)
subplot(2,2,4),meshz(x,y,z)

Different Shading Pattern
[X,Y]=meshgrid(-3:.2:3,-2:.2:4);
Z=exp(-(X.^2+Y.^2)/3);
subplot(1,1,1)
surf(X,Y,Z)
% plot lines with color of

quadrilateral
shading flat
% interpolate shading across

quadrilaterals
shading interp
% return to original shading
shading faceted

3-D PLOTS – OTHER USEFUL
FUNCTIONS

• Add labels, titles, change axes as with 2-D plots

• Can look at contours of the sur face using
contour function.

• You can rotate the sur face plot using the toolbar
button or rotate3d

Visualizing Volume

• Visualizing volume is the representation of data that

are defined on 3-D grids: f(x,y,z)

• Volume data sets have multidimensional arrays of
scalar or vector data defined on lattice structures.

• We will look only at scalar data.

• Example of scalar data might be air pressure or

temperature at a points in space.

Visualizing Volume

� ����������	�
����������������� ������� �!�"
#���%$ ����$ �&�('
)�*,+�*.-�/1032�4�5�* 6#7.8�9�:�; <�8�=�> ;�7?6@=�>�A :�B�>�C�B�D�E
F.G�H�I�J�FLK

M N"O�P�Q�R�SUT#V�W%X Y(Z W�[�V�\!Y(]^V�_�P�Y(V�O�S�O�`a[�R�Y�R
b c&d(e�c�f�gUhji�k�l�m n oqp m�g�r�r�c�f�s hg�k�l n�tud^i
v i�k�i�wxtyl t.c�f s t.k�c v n r�k�g�f n�tLz

{ |�}�~���}������.�������������3����}�~���}���������}��^�����3��� ~����
�.�������&�^������} }��x����~����^������~ � ���%���}�� �,���
� �����3� ��~�� ������~ ���(���������^�������� �������3���(� �
�,�������

� ���,���. �¡1¢3£�¤�¥�� £�¡3¥��. �¡1¢3£�¤�¥���¤�¡3¥�£�¦^¥�§ ¨q© �.ª�«�¬
�®�¯�°�±^²�®�³a´�µ�¶�·�¸º¹·�¸�¶�´�· ²»¹´�¼1±(¯�½�´�²�®�³¾�·�±�½�¿
À�ÁÃÂÅÄ�ÆÈÇ^ÉLÊ

Contourslice

load mri

%remove empty

%dimension

D = squeeze(D);

x=xlim;

y=ylim;

contourslice(D,[],[],8)

axis ij,xlim(x),ylim(y)

daspect([1 1 1])

ISOSURFACES

• Use isosurface to display overall structure of a

volume.

• You can combine it with isocap.

• This technique can reveal information about data on the
interior of the isosurface.

• The following will create and process some volume data
and create isosurface and isocap.

• To add some other effects, lights will be added.

• isocap indicate values above (default) or below the
value of the isosurface

ISOSURFACES

• Try this example, generating uniform random numbers:

data = rand (1 2,12,12);

data = smooth 3(data, 'bo x' ,5) ;

isoval = 0.5;

H=patch(isosu r face (data , isov al), ...
'FaceColor ' , 'blue' , ' Edgec olor' , 'none' , . . .

'AmbientStr ength' ,.2, ' SpecularStrength' , 0.7, ...
'DiffuseSt r ength' ,.4) ;

isonormals (da t a,H) %produce s smoother lig hting
patch(isocaps (data, isov al), . . .

'FaceColor ' , 'interp' , 'Edg ecolor' , 'none') ;

colormap hsv

daspect ([1 1 1]),axis t i ght, view(3)

camlight righ t , camligh t lef t , lighting phong

ISOSURFACES

ISOSURFACES Without Caps

Slice

• slice displays orthogonal slice planes
through volumetric data.

• Color indicates the scalar value.

• Example:

[x,y,z] = meshgrid(-10:10, -10:2:10, -
10:1.5:10);

v = sqrt(x.^2 + y.^2 + z.^2);

% slice through the 0 planes

slice(x,y,z,v,0,0,0)

colorbar

Slices

Many Others Graphics are
Available

• Texture mapping to a sur face

• Images

• Animation – movies

• Animation – on-the-fly

• Lighting

• Camera graphics

Handle Graphics

• Handle Graphics

• When do you need to use Handle Graphics

• What are Handle Graphics objects.

• Object Handles

• Object Properties

Handle Graphics

• Handle Graphics is the collection of low-level graphics
functions that actually do the work of generating
graphics in MATLAB.

• These details are usually hidden from the user in
graphics files such as plot, axis, etc.

• Handle Graphics can be used to make a small change
or global changes that affect all graphical output.

• We will cover only the highlights of Handle Graphics.

• You are encouraged to refer to Chapter 31 of
Mastering MATLAB 5, if you will be using these
capabilities.

• Appendices B - J contain lists of object properties.

• The MATLAB Help Desk is an excellent resource for
information on Handle Graphics.

Handle Graphics

• Who needs Handle Graphics?

• When you must have more control over your plots.

• When you need to change objects in your graphics
that you cannot do with the high-level plot functions.

• Handle Graphics Objects

• Every component of a graph is an object: axis, text,
lines, etc.

• Each object has a handle associated with it.

• A handle is a number that identifies the object.

• Each object has properties that can be changed: color,
position, etc.

• In MATLAB, a graphics object is a component of a
graph that can be manipulated.

Handle Graphics
• Everything created by a graphics command is a

graphics object.

• Examples:

– Figure windows

– Axes

– Lines

– Surfaces

– Text

• These are arranged in a hierarchy of parent and child
objects.

• The computer screen is the root object and is the
parent of all other objects.

• Figures are the children of the root.

HANDLE GRAPHICS

• Axes and GUI (uicontrol, uimenu,
uicontextmenu) objects are children of figures.

• Line, text, surface, patch and image objects are
children of axes.

• The root can contain one or more figures.

• Each figure can contain one or more sets of axes.

• All functions that create an object will create the
parent if they do not exist.

HANDLE GRAPHICS

• Recall that an object is identified by a handle. When
an object is created, a unique handle is created for it.

• The handle of the root object or computer screen is
always zero.

• Figure handles are usually integers, which are
displayed in the window title bar.

• Other object handles are floating-point numbers.

• You can create a figure object and save its handle in a
variable using the following:

• Hf_fig = figure

• For example, figure creates a figures window and
saves its handle in the variable Hf_fig.

HANDLE GRAPHICS

• There are several MATL AB commands that can be
used to determine the handles of f igures, axes and
other graphics objects.

•
• gcf is a function that ‘gets cur rent f igure’

handle.
•
§ Hf_fig = gcf returns the handle of the

cur rent f igure and assigns it to the var iable.
•
• gca is a function that ‘gets cur rent axes’

handle.
•
§ Ha_ax = gca returns the handle of the

cur rent axes in the current f igure and assigns it to the
var iable.

•
• gco is a function that ‘gets cur rent object’

handle.
•

Hx_obj = gco returns the handle of the cur rent object
(the last object clicked on by the mouse) in the cur rent
figure.

HANDLE GRAPHICS

• You should follow a naming convention for handle
var iables.

• In the Mastering MATLAB book, each handle var iable
star ts with the letter ‘H’ .

• You should also use a naming convention that
describes the type of object referr ed to by the handle.

• Whatever convention you decide to use should
facili tate handle recognition.

• You do not need to save handles for objects unless you
think you wil l need to change the properties of those
objects later on.

• I t is important to save the handles that have floating
point values, because these follow the full precision of
MATL AB.

Handle Graphics

• All graphics objects have properties that define their
characteristics:

Position

Color

Size

...

• You can manipulate your graphics by changing these
properties.

• The properties for each object are unique.

• Some properties are valid for all objects.

• Object properties have property names and their
values.

HANDLE GRAPHICS

• The properties are usually displayed with letters in
mixed case, with the first letter of each word
capitalized. However, MATL AB recognizes a
property regardless of case.

• For example: ‘L ineStyle’

• You only need to use enough letters to uniquely
identify the property.

• For example: ‘Position’ and ‘Pos’ and ‘pos’ would
access the position property.

• When an object is created, it has a set of default
property values.

• You can set or change these at creation time, by
arguments to the object creation function.

HANDLE GRAPHICS
• For example,

• figure (‘ Col or ’ , ‘ whi te ’)

• changes the background color from gray to white.

• You can also change properties later on using the
following two functions. These are the main functions
for manipulating graphics object properties.

• get returns the current value of an object property.

• set allows you to change the values of object
properties.

• The general syntax is:

set(ha ndle, ’ Pro perty Name’ ,Va l ue,. . .)

get(ha ndle, ’ Pro perty Name’ ,Va l ue,. . .)

• You can set several of these property values in one
command.

HANDLE GRAPHICS
• Example:

figure

set(gc f , ’ Col or ’ , ‘ whit e’)

• You can use set(handle,’Proper tyName’) to get a li st
of values that can be used for the object referred to by
handle.

• I f you use set(handle), then you get a li st of proper ties
and possible values (if appropr iate) for the object
belonging to the handle.

• I f you use the function get(handle) then it li sts the
properties and current values for the object.

• I f you want a specific value for a property, use
get(ha ndle, ‘ Pr opert yName’).

• Example:

pos = get(gcf , ‘ Posi ti on’)

HANDLE GRAPHICS

• You can use Handle Graphics to change the printed
output of your graphics.

• For example, you can use it to orient the page
(landscape or portrait) or figure placement.

• Recall that MATLAB sets object properties to their
default values when it is created.

• You can change these by using a special property
name consisting of ‘ Default ’ followed by the object
type and property name.

• For example

‘ Defa ultFi gure Color ’ .

HANDLE GRAPHICS

• You should take care when changing defaults. I f you
change a default in a function or other file, then
always save the previous sett ings using the get
command and restore them when you are done.

• You can use the property-value ‘ remov e’ to reset a
property back to the or iginal defaults:

set(gc f , ’ Def aul t Axes Li neWidt h’ , ’ r emove’)

• You can use the MATL AB default temporar ily using
the proper ty-value ‘ factory’ .

• This changes the default for the current command
only.

HANDLE GRAPHICS

• RECALL :

• Any object that appears in a MATL AB figure is a
par t of Handle Graphics.

• Every object has a unique identifier called a ‘handle’ .

• This handle allows you to modify the object.

• Most of the time you do not need to worr y about
these, but they are always there in the background.

• The Property Editor in MATLAB is one of the
GUIDE tools.

• I t is very useful in GUI development or for editing
graphics objects.

• The Property Editor allows you to change object
properties without knowing their handle or using the
MATL AB command line.

PROPERTY EDITOR

• First, lets review how to edit an object without
the editor .

• Create a figure using

» surf(peaks(25))

» set(gcf ,'Color','blue')

· These commands created a sur face picture
of the ‘peaks’ function and set the background
color to blue.

· You can also change the color (to green)
using

» set(gcf , ’Colo r ’ ,[0 1 0])

Properity Editor

• The Property Editor provides convenient access to
many properties of objects in a graph.

• You can edit these objects:

• Figures
• Axes
• Lines
• Lights
• Patches
• Images
• Surfaces
• Rectangles
• Text
• Root Object

• To start the Property Editor, use the command

» propedit(gcf)

Property Editor

• You can also start the Property Editor selecting it
from the pull-down menu in the figure window.

If you place the cursor over a field, a data tip will
appear that displays the name of the property and its
current value.

• If you keep the Property Editor open, clicking on
other objects in the graph will change the set of panels
to those associated with that object type.

• Simply click on the tab of the panel that contains the
property you want to modify.

• After changing a value of a property, click the Apply
button to make your change permanent.

PROPERTY EDITOR

• If you select multiple objects of the same type, the
Property Editor displays the set of panels specific to
that object type.

• Having selected multiple objects of the same type,
when you change one value it will be applied to all
objects of that type.

• If you select multiple objects of different types, the
Property Editor will only display the Info panel, since
it is common to all object types.

• You can also select objects using the Navigation Bar.

• Here you can see a hierarchical list of all objects in the
current figure.

• You can use the navigation bar to search for a
particular object, or group of objects, in a figure.

• Tag

• Type

• Handle

Property Editor – Creating
Tags

• The navigation bar will list all objects by their type
and their tag, if they have one.

• Tags can help identify which object in a list is being
acted on.

• You can easily create a tag for an object.

• With Plot editing mode enabled, double-click on the
object in a graph.

• Click on the Info tab in the Property Editor

• Enter a text str ing in the Tag field.

• Click on Apply

• Try changing the color of the background using the
property editor

