CSI606
Introduction to R

Jeff Solka

Additional
References

o Modern Applied Statistics with S,
B. Ripley and W. Veneables

o Introductory Statistics with R,
Peter Dalgaard.

o S Programming, W. Veneables and
B. Ripley.

o A Handbook of Statistical Analysis
using S-Plus, B. Everitt

History of R and
Its Capabilities

R, S and S-plus

S: an interactive environment for data analysis
developed at Bell Laboratories since 1976

1988 - S2: RA Becker, JM Chambers, A Wilks
1992 - S3: JM Chambers, TJ Hastie

1998 - S4: JM Chambers

Exclusively licensed by AT&T/Lucent to
Insightful Corporation, Seattle WA. Product
name: “S-plus”.

Implementation languages C, Fortran.

See:
http://cm.bell -
labs.com/cm/ms/departments/sia/S/history.html

R, S and S-plus

R: initially written by Ross Thaka and Robert
Gentleman at Dep. of Statistics of U of
Auckland, New Zealand during 1990s.

Since 1997: international "R-core” team of ca.
15 people with access to common CVS archive.

EGNU General Public License (GPL)
- can be used by anyone for any purpose
- contagious

Open Source

-quality control!

-efficient bug tracking and fixing system
supported by the user community

What R Does and Does not

Do

o data handling
and storage:
numeric, textual

o matrix algebra

o hash tables and
regular
expressions

o high-level data
analytic and
statistical
functions

o classes ("O0O")
o graphics

0 programming
language: loops,
branching,
subroutines

o is not a
database, but
connects to
DBMSs

o has no graphical
user interfaces,

but connects to
Java, Tcl/Tk

o language
interpreter can
be very slow, but

allows to call own
C/C++ code

o no spreadsheet
view of data, but

connects to
Excel/MsOffice

o no professional
/ commercial
support

R and Statistics

o Packaging: a crucial infrastructure to
efficiently produce, load and keep
consistent software libraries from
(many) different sources / authors

o Statistics: most packages deal with
statistics and data analysis

o State of the art: many statistical
researchers provide their methods as R
packages

Obtaining R

o 60 to http://www.r-project.org/

o Under Linux
o Install R as an rpm

o Under Windoz

o Self extracting binary
installation

R Syntax Basics

Making it Go

o Under Unix/LINUX Type

R (or the appropriate path on
your nachi ne)

o Under Windows

Doubl e click on the R icon

Making it Stop

o Type

> q()

0 g()is a function execution
o Everything in R is a function

o q merely returns a listing of the
function

R as a Calculator

> | 0g2(32)
[1] 5

> sqrt(2)
[1] 1.414214

> seq(0, 5,
| engt h=6)

[1] 012 3 45

> pl ot (si n(seq(O0,
2* pi ,
| engt h=100)))

TO0))

SI(seq(o, 2 < pr, length

-0.5
I

1.0
|

0.5
|

0.0
|

-1.0
1

Syntax

Everything that we type in R is an
expression

We may have multiple expressions
on each line separated by :

2+3; 4*5; 6-9

We use <- or = for making
assighments

b<-5+9 or b = 549

R commands are case sensitive

The result of any expression is an
object

Recalling Previous
Commands

o In WINDOWS/UNIX one may use
the arrow up key orthehistory
command under the menus

o Given the history window then one
can copy certain commands or else
past them into the console window

Getting Help

o In both environments we may use

hel p(command nane)
?command nane

> hel p("ls")
> ? |5

o We may also use

?met hods(command nane)

o html-based help

hel p.start ()

o For commands with multiple methods
based on different object types

Getting Function
Information

o To view information on just the arguments to a
function use the command args

> args(pl ot.default)
function (x, y = NULL, type = "p"
xI'itm= NULL, ylim= NULL,
log = "", main = NULL, sub =
NULL, xlab = NULL, ylab = NULL,

ann = par("ann"), axes = TRUE,
frame. pl ot = axes, panel.first =
NULL,

panel .l ast = NULL, col =
par("col"), bg = NA pch =
par (" pch"),
cex =1, Ity = par("lty"), lab =
par ("lab"), Iwd = par("lwd"),
asp = NA ...)
NULL

Assignments in R

o Some Examples

> cat <-45

> dog=66

> cat
[1] 45

> dog
[1] 66

> 77 -> rat
> rat
[1] 77

0 Note = is used for specifying values in
function calls

Vectors

o A vector example

> a<-c(1, 2, 3,4

> | engt h(a)
[1] 4

> a
[1] 1 2 3 4

o An example with character strings

> nane<-c("Jeff","Sol ka")

> nane
[1] "Jeff" " Sol ka

> nane[1]
[1] "Jeff"™

Matrices

o A matrix example

> pb<-matri x(nrow=2, ncol =2)

> b
[,1] [, 2]
[1,] NA NA
NA NA

> b[,1]<-¢c(1,3)
> b[,2]<-c(2,4)

> b

[, 1] [, 2]
[1,] 1 2
[2,] 3 4

Functions

o We will discuss function at length later
but for now I point out how to edit a
function

fix(ftn nane) for new functions

edit(ftn nane) for existing ones

o I have had problems with these under
windoz

o It is possible to use other editors
(notepad, jot, vi ...)

o Under windoz one can edit with notepad
and then save

o You should save with a .R extension

Editing Data Sets

o We may create and modify data
sets on the command line

> xx<-seq(from=l, t 0=5)

> XX
[1] 123 45

> XX[xx>3]
[1] 4 5

o We may edit our data set in our
editor once it is created

edi t (nydat a)

Graphics in R

o win.graph() or in UNIX we say x11()

o dev.list() -list currently opened graphics
devices

o dev.cur() -list identifier for the current
graphics device

o dev.close() -close the current graphics
window

o A simple plotting example

> x<-rnorm 100)

> y<-rnorn 100)

> plot(x,Yy)

R Search Path

> search()
[1] ". d obal Env" "package: ctest™
" Aut ol oads" "package: base"

o Organizing your projects under windoz

o Create a separate shortcut for each project:
see Q2.3. All the paths to files used by R are
relative to the starting directory, so setting the
“Start in' field automatically helps separate
projects.

o Alfernatively, start R by double-clicking on a
saved .RData file in the directory for the
project you want to use, or drag-and-drop a
file with extension .RData onto an R shortcut.
In either case, the working directory will be set
to that containing the file.

o Alternatively, start R and then use file >
change dir to change to your directory of intest

o Organizing your projects under UNIX
o A separate .Rdata file is used in each directory

Assessing Stored
Objects

obj ect s()

> obj ects(pattern="coal *")

[1] "coal.krige" "coal . mat"
"coal . np"
[4] "coal .nl 1" "coal . predict”

"coal . signal"
[7] "coal.varl" "coal sig. mat"

Removing Stored
Objects

rm(list=Is(pat = “*x+"))

o Removes those objects starting with x

o See
http://www.greenend.org.uk/rik/2002/06/regex
p.ntml for a summary of regular expression rules

o See
http://www.anybrowser.org/bbedit/grep.shtml
for a brief tutorial on grep

Data M odes

0 | ogi cal - Binary data mode, with values
represented as T or F.

O nuneri ¢ - Numeric data mode includes
intfeger, single precision, and double
precision representations of numeric

values.

0 conpl ex - Complex numeric values (real
and imaginary parts).

O char act er -Character values
represented as strings.

Data Types

vect or - A set of elements in a
specified order.

matri x - A matrix is a two-
dimensional array of elements of
the same mode.

fact or - A factor is a vector of
categorical data.

data frame - A data frame is a
two-dimensional array whose
columns may represent data of
different modes.

list -A list is a set of components
that can be any other object type.

Vector Creation Functions.

0 scan - Read vaues of any mode.
scan(), scan(“nydata”)

0 ¢ - Combine values of any mode.
c(1, 2, 3)

0 rep- Repeat values of any mode.
rep(1, 5)

0 :, Seq-6Generate numeric sequences.

> seq(from=l, by=2,t0=10)
[1] 1 357 9

> 1:4

[1] 1 2 3 4

o vector, logical, nuneric, conplex,
char act er - Initialize appropriate types.

vector(‘ nuneric’, 4),

| ogi cal (3), nuneric(b5)

Matrix Creation Functions.

0 matri x - Create matrix of values.

matri x(1: 6, ncol =3, byr ow=T)
L1 0,21 [3]

(1,] 1 2 3

[2,] 4 5 6

0 cbi nd -Bind together as columns.

c(1,2,3)
cbind(1:10,rep(c(1,2),c(5,5)))

0 rbi nd -Bind together as rows.

rbi nd(sanpl e(1: 10, rep=T), rnorn(10))

e data.matri x - Covert data frame to
matrix.

Data Frames

0 read.tabl e -Reads in data from an
external file.

o data.franme -Binds together R objects
of various kinds.

Lists

o The components of a list can be objects
of any mode and type including other
lists.

o Lists are useful for returning values from
functions.

> X =5

>z = list(original =x, square=x"2)
> z$ori gi nal

[1] 5

> z$square

[1] 25

> attributes(z)

$nanes

[1] "original" "square"

scan Function

o This is very useful for reading in vectors
or matrices.

mat <-
matri x(scan(“nydata”), ncol =4, byr ow
:T)

read. t abl e Function

Reads an ascii file and creates a data
frame.

Intended for data in tables of rows and
columns.

If first line in the file contains column
labels and the first columns contain row
labels then r ead. t abl e will convert to a
a data frame naturally.

o Use header =T

Field separator is white space.

o There is also r ead. csv and
read. csv2 which assumes , and ;
separations

Treats characters as factors.

www.omegahat.org

This site implements various R/S
interfaces

Database (Mysql)
Perl

Java

Python

Glade

dat a. dunp and
dat a. restore

o dunp

o Used for R Functions
o Mostly Readable by Wetware
o Sourced into another R session

o save and | oad

o Used for R Functions and Objects
Understandable to load only
X = 23
y = 44

save(x, vy, file = "xy. Rdata")
| oad(" xy. Rdat a")

I's()

[1] "Il ast.warning" "x"
vy

V V V V V O

Arithmetic Operators

o * - Multiply

o + - Add

0 - - Subtract

o / - Divide

o A - Exponentiation
0 %% - Modulus

0 % % - Integer Divide

0 %% - Matrix Multiply

N.B. - These are all vectorized.

Comparison Operators

| = - Not Equal To

< - Less Than

<= - Less Than or Equal to
== - Equal

> - Greater Than

>= - Greater Than or Equal to

&&

Logical Operators

- Not

- Or (For Calculating Vectors
and Arrays of Logicals)

- Sequential or (for Evaluating
Conditionals)

- And (For Calculating Vectors
and Arrays of Logicals)

- Sequential And (For
Evaluating Conditionals)

Mathematical Functions

abs - Absolute Value
acos, asin, atan-Inverse Trig.

acosh, asinh, atanh-Inverse Hyper.
Trig.

cei | i ng- Next Larger Integer
f1 oor - Next Smallest Int.

cos, sin, tan-Trig. Functions
exp - e"x

| og - Natural Logarithm

| 0g10- Log Base 10.

max - Maximum

m n- Minimum

sqgrt - Square Root

Statistical Summary
Functions

al | - Logical Product

any - Logical Sum

| engt h- Length of Object
max - Maximum Value
mean- Arithemetic Mean
medi an- Median

m n- Minimum Value
prod- Product of Values
quant i | e- Empirical Quantiles
sum- Sum

var - Variance

cor - Correlation Between
Matrices or Vectors

Sorting and Other Functions

r ev- Put Values of Vectors in Reverse Order

sort - Sort Values of Vector

or der - Permutation of Elements to Produce Sorted Order
rank- Ranks of Values in Vector

mat ch- Detect Occurences in a Vector

cunsum- Cummulative Sums of Values in Vector

cunpr od- Cumulative Products

Writing Free-format Files

wite
o Allows one to specify the number of
columns

o Don't forget to use t = transpose function
and specify number of columns consistent
with your original data (default is to write
column by column)

cat
o Less useful than write

wite.table

o Data exporting utilities under the windows
file structure

dunp
o Preferable method

Iteration and Flow of
Control

o Conditional Statements
| f (cond) {body}

o for and while loops allowed (**but to be
avoided if possible**)

for(name in vlaues) {body}

R Graphics

High-Level Graphics
Functions

o wn.graph(), x11()

0 All Examples of Callsto Launch Graphics
Window

o A simple example

> X = rnorm 100)
> W n. graph()
> hi st (X)

Plotting Functions That are
Useful for One-Dimensional
Data

o barpl ot - Creates a Bar Plot

0 boxpl ot - Creates Side-by-Side Boxplots
0 hi st - Creates a Histogram

0 dotchart - Creates a Dot Chart

0 pi e- Creates a Pie Chart

o Note - These commands along with the
commands on the next several slides are
all high-level graphics calls.

Plotting Functions That are
Useful for Two-Dimensional
Data

0 pl ot - Creates a scatter plot

o qqnor m Plot quantile-quantile plot for one
sample against standard normal

o qqpl ot - Plot quantile-quantile plot for two
samples

Three-Dimensional Plotting
Function

0 cont our - Creates a contour plot
0 persp- Creates a perspective or mesh plot

0 i mage- Creates an image plot

Apply and Outer

o To perform calculations on each row or
column of a matrix use apply

appl y(nmymatri x, 2, neans)
Conputes colum neans or nymatri X

o To perform the outer product of of two
vectors (or matrices)

o Useful for computing a function over a
grid of values

surf <- function(x,y) {cos(x) +
sin(y)}

x<-seq(-2*pi, 2*pi,|en=40)

y<- X

z<-outer(x,y,surf)

persp(x,y, z)

Multivariate Plotting
Function

o par coor d-Plots a parallel coordinates plot
of multi-dimensional data (requires
| i brary(MASS))

Petal L Petal W Sepal W Sepal L

e pairs- Creates a pairs or scatter plot
matrix

Anderson’s Iris Data -- 3 species

20 25 30 35 40 05 10 15 20 25
..........

Sepal.Length

45 55 65 75

20 25 30 35 40

el
Petal.Length ;-‘!!'l

123 456 7

s .—_75-] Petal Width

051015 20 25

e e T T T T
45 55 65 74 12 3 45 68 7

ultivariate Plotting
Function

0 stars- Starplots

Motor Trend Cars : stars(*, full = F)

e B A sy o s

Mazda R¥4 Way Hotnet 4 Drive Waliant
Mazda Rx4 Datsun 710 Homet Sportabout

oA A e A

Merc 2400 herc 280 Merc 4505E
Duster 380 here 230 Merc 280C
here 4505LC Lincoln Continental Fiat 128
Merc 45051 Cadillac Fleetwood Chrysler Imperial
NN s o
Toyota Corolla Dodge Challenger Camaro 728
Honda Civic Toyota Corona AMC Javelin
Fiat ¥1-3 Lotus Europa Ferrari Dino
Pontiac Firebird Porsche 914-2 Fard Pantera L
drat i digp
Ny wt cyl
Yalvo 142E gsec rpa

laserati Bora

o synbols - Plot symbols at each location.

.
N

Scatterplotting
Three-Dimensional
Data

| nst al | . packages("scatterpl ot 3d")
| 1 brary(scatterpl ot 3d)

> X = rnorn(100)

>y = rnorn100)

> z = rnorn100)

> scatterplot3d(x,y,z)

———————————

The par function

0 par

O Returns current setting on the
graphics parameters

0 Tosavethecurrent graphics settings
ol dsetti ngs<-par ()

o 4 categories of graphics parameters
o High-level graphics parameters
o Control appearance of the plot
region
o Only used as arguments to high-
level plotting functions

0

0

0

0

Graphics Parameter

Categories

High-level graphics parameters
o Control appearance of the plot region

o Only used as arguments to high-level
plotting functions

Layout graphics parameters
o Control the page layout
o Only set with the par function

General graphics parameters

o Set with either call to par or to plotting
function

o When set with par they are set for the
current graphics device

Information graphics parameters

o Can't bet set by user, but can be queried
by par

Multiple Plots Per Page

o par(nfrow=c(2,2))

o This specifies two rows and two
columns of plots

o par(nfrow=c(1,1))
o Back to the normal arrangement

o plot(x,y, pch="“+")

o Override the default plotting
symbol

Adding to Plots

o You can continue to add to plots until you

call another high-level plotting function or
frame()

o We may use love level plot functions to
add things to plots

o lines
0 points

0 Hereisauseful trick

plot(x,y,xlim=
c(m nx, maxx), yl i m=c(m nx, maxx), type
:H n”)

Printing Graphics

e File-Print Menu
o Starting Printing Graphics Device

0 Postscri pt - Postscript

0 Pdf

0 Pi ctex - Latex

o W ndows - Metafile

0 png - PNG bitmap device

0 Jpeg - JPEG bitmap device
0 Bnp - BMP bitmap device

o Xfi g - Device for XFIG
graphics file format

Capturing 6raphics to a
jpeg File

j peg(file=“junk.jpg”)
pl ot (Xx,y, pch="**")

dev. of f ()

Alternative Screen
Printing Approach

#plot in an x11 or wingraph window and
then write the output to a file

> dev. print(bnp,

file="nyplot.bnp",
w dt h=1024, hei ght =768)

Functions in R

The Syntax of an R
Function

0 R functionsaredefined using thereserved word
function. Following that must come the argument list
contained in round brackets, (). The argument list can
be empty. These arguments are called the formal
argumentsto the function.

o Then comesthe body. The body of the function can be
any R expression (and is generally a compound
expression).

0 When thefunction iscalled or evaluated the user
supplies actual valuesfor the formal argumentswhich
are used to evaluate the body of the function.

0 All R functionstake arguments (the number could be
zero, though) and return a value. The value can be
returned either by an explicit call to the function
return or it can bethevalue of the last statement in
the function.

A Simple R Function

function() 1
o Thisfunction hasno arguments
o Thisfunction just returnsthevalue 1

o Thisfunction isnot so useful because we
did not save it

A Simple R Function
Revisited

simplefun <- function() 1
o Thisdefinesour function

simplefun()
0 Thisof coursemerely returnsal

simplefun(l1)
0 Thisdoesnot work because we are offering
up an unused argument

simplefun
0 Thisof course merely returnsthe function
definition

Some Slightly More
Nontrivial Functions

sf2 <- function(x) x*2

sf2(3)
0 What do you think that thisreturns?

sf3 <- function(x) if(x<3) return(x"2) else 4
o What aretheformal argumentstothis
function?

> 5f3(2)
[1] 4

> 5f3(4)
[1] 4

> 5f3(-1)
[1] 1

Argument matching
in R

Argument matching isdonein afew different
ways.

o Oneispositional, the arguments are matched
by their positions.
0 Thefirst supplied argument ismatched
tothefirst formal argument and so on.

A second method is by name.

0 A named argument is matched to the formal
argument with the same name.

o Name matching takes precedence over
positional matching.

The specific rulesfor argument matching area
bit complicated but generally name matching
happensfirst, then positional matching isused
for any unmatched ar guments.

For name matching atype of partial matchingis
used { thismakesit easy to uselong namesfor
the formal arguments when writing a function
but does not forcethe user to typethem in}.

The .. Operator

0 Thereisa special argument named

0 Thisargument matchesall
unmatched argumentsand henceit is
basically alist.

0 It providesa means of writing
functionsthat take a variable
number of arguments.

mypower <- function(x, power) x"power
mypower (1, 2)
mypower (p=4, 5) #5"4 not 4"5

Default Arguments

o Theformal argumentscan have default
values specified for them.

mypower <- function(x, power=2) x"power
mypower (4)

0 Now, if only one argument is specified
then it isx and power hasthe

default value of 2.

Partial Argument
Matching

o Partial argument matching requiresthat
you specify enough of the nameto
uniquely identify the argument.

foo <- function(aa=1, ab=2) aat+ab
foo(a=1, 2)

Argument Passing in
R

0 R isamong a class of languages roughly
referred to as having pass by value
semantics.

0 That meansthat theargumentsto a
function are copied and the function
workson copiesrather than on the
original values. BecauseR isavery
flexible language this can (likejust
about everything else) be circumvented.

o Itisavery bad ideato do so.

An Interesting
Example

x<-1:10

foo <- function(x) x[x<5]<-1
foo(x)

X

0 Noticethat x isunchanged.

0 Noticealso that the expression foo(x) did not
seem toreturn avalue.

y <- foo(x)
Y

o Now, we seethat it did, it returned the value 1.

0 Thisisprobably not what we intended. What
doesafunction return?

0 What isthevalue of the statement
X[x<5]<-17?

Recursion in R

o Here are two functions that compute the
sum of a set of vectors

suml <- function(x) {
lenx <- length(x)
sumx <-0
for(i in 1:lenx)
sumx <- sumx + XJ[i]
sumx

}

sum2 <- function(x) {
If(length(x) == 1) return(x)
X[1] + sum2(x[-1])

Documenting Your
Functions

The basic object to work with is a package.

Packages are ssimply a collection of foldersthat
are organized accor ding to some conventions.

A package hasa DESCRIPTION filethat
explainswhat isin the package.

It will also havetwo folders.
0 Onenamed R that containsyour R code

0 Onenamed man that containsthe
documentation for the functions.

The R
Documentation
Language

0 R documentationiswritteninaLATEX
like syntax called Rd.

0 You don't need to know very much
about it since you can usethe R function
prompt to create the documentation and

then simply edit it.

Warnings and Error
Messages in R

0 TheR system hastwo main ways of reporting a
problem in executing a function.

0 Oneisawarning whilethe other isasimple
error.

0 Themain difference between the two isthat
war nings do not halt execution of the function.

0 Thepurposeof thewarningistotell the user
that something unusual happened during the
execution of thisfunction, but the function was
nevertheless able to execute to completion.”

0 Oneexample of getting a warning iswhen
you takethelog of a negative number:
>log(-1)

[1] NaN

War ning message:

NaNs produced in: log(x)

Error Messages in R

message <- function(x) {
If(x > 0)
print(Hello")
else
print("" Goodbye'")
}
> X <-log(-1)
War ning message:
NaNs produced in: log(x)
> message(X)

Error inif (x>0){: missing value wherelogical
needed

>X<-4
> message(X)
[1] " Hello"

Printing the Call

Stack With
traceback

o The call stack is the sequence of function
calls that leads to an error

> message(log(-1))

Error inif (x>0){: missing value wherelogical
needed

In addition: Warning message:

NaNs produced in: log(x)

> traceback()

1: message(log(-1))

0 Here, traceback showsin which function the
error occurred. However, since only one
function wasin fact called, thisinformation is
not very useful. It's clear that the error occurred
In the message function. Now, consider the
following function definitions:

A More Complex
Callback Sequence

f <- function(x) {
r <- x-g(x)
r

g <- function(y) {

r <-y* h(y)
r

h <- function(z) {
r <-log(2)
If (r <10)
"2
elser”3

> f(-1)

Errorinif (r < 10) r'2 elser"3: missing
value where logical needed

In addition: Warning message:

NaNs produced in: log(x)

What happened here? First, the function f
was halted somewhere because of a bug.
Furthermore, we got a warning from taking
the log of a negative number. However, it's
not immediately clear where the error
occurred during the execution. Did f fail at
thetop level or at some lower level
function? Upon receiving this error, we
could immediately run traceback to find out:
> traceback()

3:h(y)

2: g(x)

1: f(-1)

traceback prints the sequence of function
callsin reverse order from the top.

S0 here, the function on the bottom, f, was
called first, then g, then h.

From the traceback output, we

can see that the error occurred in h and not
inforg.

The R debug
Command

0 debugtakesasingleargument | the name of a
function.

0 When you passthe name of afunction to debug,
that function istagged for debugging.

0 Inorder tounflag afunction, thereisthe
corresponding undebug function. When a
function isflagged for debugging, it does not
execute on the usual way. Rather, each
statement in the function is executed one at a
time and the user can control when each
statement gets executed. After a statement is
executed, the function suspends and the user is
freetointeract with the environment. Thiskind
of functionality iswhat most programmersrefer
toas“using the debugger” in other languages.

Our Toy Problem

SS <- function(mu, x) {
d<-x-mu
d2<-d*2
ss <- sum(d2)

S5

}

The function SS in
Action

0 Thefunction SSsimply computesthe sum of
squares. It iswritten herein arather drawn out
fashion for demonstration purposes only.

o Now we generate a Normal random sample:

> set.seed(100) ## set the RNG seed so that the
resultsarereproducible

> X <- rnorm(100)

0 Here, x contains 100 Normal random deviates
with (population) mean O and variance 1. We
can run SSto compute the sum of squaresfor x
and a given value of mu. For example,

> S§(1, x)
[1] 208.1661

SS Under the
Microscope of debug

But suppose we wanted to interact with SS and see how it
operatesline by line. We need to tag SS for debugging:
> debug(SS)

Thefollowing R session showshow SSrunsin the
debugger:

> SY(1, X)

debugging in: S(1, x)

debug: {

d<-x-mu

d2<-d"2

ss<- sum(d2)

ss

}

Browse[1]> n

debug: d <- x - mu

Browse[1]> n

debug: d2 <- d*2

Browse[1]> n

debug: ss<- sum(d2)

Browse[1]> n

debug: ss

Browse[1]> n

exiting from: SS(1, x)

[1] 208.1661

What Happened?
Browsg[1]>

You arenow in what is called the \browser" . Here you

can enter one of four basic debug commands. Typing n
executesthe current line and printsthe next one. At the

very beginning of a function thereisnothing to execute so
typing njust printstherst line of code. Typing

c executestherest of the function without stopping and
causes the function to return. Thisisuseful if you are

done debugging in the middle of a function and don't

want to step through therest of thelines. Typing Q quits
debugging and completely halts execution of

the function. Finally, you can type whereto show where

you arein thefunction call stack. Thisis much like

running a traceback in the debugger (but not quitethe

same). Besides the four basic debugging commands

mentioned above, you can also type other

relevant commands. For example, typing Is() will show all
objectsin the local environment.

Y ou can also make assignments and create new objectswhilein
the debugger. Of course, any new objects created in thelocal
environment will disappear when the debugger finishes.

If you want to inspect the value of a particular object in thelocal
environment, you can print itsvalue, either by using print or by
simply typing the name of the object and hitting

return. If you have objectsin your environment with the names
n, ¢, or Q, then you must explicitly use the print function to print
their values (i.e. print(n) or print(c)).

Another SS debug
Session - 1

> SY(2, X)

debugging in: SS(2, x)

debug: {

d<-x-mu

d2 <-d"2

ss<- sum(d2)

ss

}

Browse[1]> n

debug: d <- x - mu

Browse[1]> d[1] ## Print the value of first element of d
[1] -0.4856523

Browse[1]> n

debug: d2 <- d*2

Browse[1]> hist(d2) ## M ake a histogram (not shown)
Browse[1]> n

debug: ss<- sum(d2)

Browse[1]> n

debug: ss

Another SS debug
Session - IT

Browse[1]> print(ss) ## Show value of ss; using
print() isoptional here

[1] 503.814

Browse[1]> |S()

[1] "d" "d2" "mu" "ss" " X"

Browse[1]> where

where 1. S§(2, x)

Browse[1]> y <- x"2 ## Create new obj ect

Browse[1]> |S()

[1] "d" "d2" "mu" "ss" "Xx" "y"

Browse[1]>y

[1] 2.293249e+00 1.043871e+00 5.158531e-01
3.677514e-01 1.658905e+00

[... omitted ...]

Browsg[1]> ¢ ## Execute rest of function without
stepping

exiting from: S$(2, x)

[1] 503.814

> undebug(SS) ## Remove debugging flag for SS

Invoking debug on
the' "Fly" - I

> debug(SS)

> SS(2, X)

debugging in: SS(2, x)
debug: {

d<-x-mu

d2 <-d"2

Ss <- sum(d2)

SS

}

Browsg[1]> n

debug: d <- x-mu
Browsg[1]> n

debug: d2 <- d*2
Browsg[1]> n

debug: ss<- sum(d2)
Browsg[1]> debug(sum) ## Flag sum for debugging
Browsg[1]> n
debugging in: sum(d2)

Invoking debug on
the' "Fly" - II

debug: .Internal(sum(..., na.rm = na.rm))

Browseg[1]> where ## Print the call stack;
thereare 2 levaels now

where 1. sum(d2)

where 2. SS(2, X)

Browseg[1]> n

exiting from: sum(d2)

debug: ss

Browseg[1]>n

exiting from: S§(2, x)

[1] 503.814

> undebug(SS); undebug(sum)

Explicit Calls to
browser

o0 Itispossibletodo akind of \manual debugging"”
If you don't feel like stepping through a function
line by line.

0 Thefunction browser can be used to suspend
execution of afunction so that the user can
browsethelocal environment.

0 Suppose we edited the SSfunction from above
tolook like:

SS <- function(mu, x) {
d<-x-mu

d2<-d*2

browser ()

ss <- sum(d2)

SS

}

Now, when thefunction r eaches the third statement
In the program, execution will suspend

and you will get a Browsg[1]> prompt, much likein
the debugger.

Our Function With a
browser Prompt

> S5(2, X)

Called from: SY(2, x)
Browsg[1]> IS()

[1] "d" "d2" "mu" " X"
Browse[1]> print(mu)
[1] 2

Browse[1]> mean(x)
[1] 0.02176075
Browseg[1]>n

debug: ss<- sum(d2)
Browseg[1]>c

[1] 503.814

Final Thoughts

o frace

o Useful for making modifications
to functions on the fly

O recover

o Allows us to jump up to a higher
level in the execution stack

