To appear
Computational Statistics €4 Data Analysis
(Special Issue of CSDA on Data Visualization)

Class cover catch digraphs for latent class discovery
in gene expression monitoring by DNA microarrays*

Carey E. Priebe'*, Jeffrey L. Solka2, David J. Marchette?, B. Ted Clark?
!Department of Mathematical Sciences, Johns Hopkins University, Baltimore, MD 21218-2682, USA
2Naval Surface Warfare Center, Code B10, Dahlgren, VA 22448-5000, USA

February 27, 2002

Abstract

The purpose of this article is to introduce a data visualization technique for class cover catch digraphs
which allows for the discovery of latent subclasses. We illustrate the technique via a pedagogical example
and an application to data sets from artificial nose chemical sensing and gene expression monitoring by DNA
microarrays. Of particular interest is the discovery of latent subclasses representing chemical concentration
in the artificial nose data and two subtypes of acute lymphoblastic leukemia in the gene expression data and
the associated conjectures pertaining to the geometry of these subclasses in their respective high-dimensional
observation spaces.

Keywords: Random graphs; Statistical genetics; Exploratory data analysis

*The work of CEP was partially supported by Office of Naval Research Grant N00014-01-1-0011 and DARPA
Grant F49620-01-1-0395. The work of JLS, DJM and BTC was partially supported by the Office of Naval
Research through the NSWCDD In-house Laboratory Independent Research Program. This work was per-
formed while CEP was ASEE/ONR Sabbatical Leave Fellow 2000-2001 (N00014-97-C-0171 and N00014-97-
1-1055) at NSWCDD. The authors thank Prof. Michael Trosset of William and Mary College for Figure 8.
*Corresponding author. Tel.: +1-410-516-7198; fax: +1-410-516-7459.

E-mail address: cep@jhu.edu (C.E. Priebe).



1 Introduction

Techniques for the analysis of high dimensional and/or massive data sets are of critical importance in many
areas of science in general, and the analysis of genetic data in particular. We term these techniques statistical
data mining in the sense of Edward J. Wegman (1999, 2000); to paraphrase: “Data Mining is an extension
of exploratory data analysis and has basically the same goals: the discovery of unknown and unanticipated
structure in the data. The chief distinction between the two topics resides in the size and dimensionality
of the data sets involved. Data mining in general deals with much more massive data sets for which highly
interactive analysis is not fully feasible.” Thus, the main scientific goal of statistical data mining is the
discovery of unknown and unanticipated structure in data, leading to new working hypotheses which can
subsequently be tested. In this paper, we describe a set of techniques for the analysis and visualization of
high dimensional data for the purposes of discovering patterns in the data. These techniques are applied
to a gene expression data set (see Golub et al. 1999), resulting in an interesting and potentially important
working hypothesis about the relationships between different types of leukemia.

2 Gene Expression I

The Golub et al. (1999) data set, produced by Affymetrix DNA microarrays, involves two general classes
of leukemia, ALL (acute lymphoblastic leukemia) and AML (acute myeloid leukemia). Each observation
is a patient, with narr = 47, napyr = 25; n = narr + namr = 72. Each observation is a point in
7129-dimensional Euclidean space; there are 6817 unique human genes monitored, augmented with some
redundant probes and control elements. (See also Getz, Levine and Domany (2000).)

Note that this is not a “simple” data set. For example, a principal component analysis scree plot (Cattell
1978) suggests that as many as ten or more dimensions are necessary to adequately account for the variability
in the data set.

The ALL class has two (latent) subclasses, T-cell and B-cell, with n =9, ng = 38; narr, = nr +np =
47. Note, however, that this subclass information is not used in building the model presented below. In
fact, we were unaware at the time of the analysis that these subclasses possess the geometry in the high-
dimensional “gene expression space” required for discovery. When we investigated the subclasses produced
by our methodology, the T-cell/B-cell dichotomy emerged. The result of our procedure is the discovery of
T-cell/B-cell as potential latent subclasses, and a potentially scientifically valuable conjecture pertaining to
the geometry of these subclasses in gene expression space. This result is described in detail below.

3 Methodology

Our methodology for latent class discovery, which involves building a (random) graph model for a (supervised)
two-class classification problem and the subsequent (unsupervised) investigation of this model for latent
subclasses, is described in this section. At nearly every stage there are generalizations which can (and often
should) be employed; we present here a simplified version. Additional details can be found in Marchette and
Priebe, 2002; Priebe et al., 2002.

We are given two disjoint sets of d-dimensional observations, X = {z1,--- ,2,} CR?andY = {y1,--- ,¥m}
C R¢. We begin by choosing X as the “target class”; our procedure is asymmetric in target class. (Develop-
ment of a methodology for classification, as opposed to the latent class discovery described herein, requires
symmetrization by considering each class as the target class in turn; see Priebe et al., 2001.)

Following Priebe, DeVinney and Marchette (2001) and DeVinney and Priebe (2001), the class cover
catch digraph (cced) D = (V, A) for X against ) is defined as follows. Let V = X (the set of target class
observations). For each v € V, let B, := B(v,mingey p(v,y)) := {z € R : p(v,z) < minyecy p(v,y)} for
some distance or pseudo-distance function p : ¢ x R? — R, := [0,00); we will use the L, (Euclidean)
distance. That is, for each target class observation v, B, is the (open) ball around v of maximal radius such
that the ball contains no non-target class observations. Then the arc (directed edge) vw € A <= w € B,.

A dominating set S for D is a set S C V such that, for all w € V, either w € S or vw € A for
some v € S. The invariant v(D) is defined as the cardinality of the smallest dominating set(s) of D;
1 < y(D) < cardinality(V) = n. A minimum dominating set for D is defined as a dominating set with



cardinality (D). Finding a minimum dominating set in a general digraph is NP-Hard; an (approximate)
minimum dominating set S can be obtained in polynomial time using a well-known greedy algorithm (see
Priebe, DeVinney and Marchette (2001) and references therein). Our estimate for the domination number
of the digraph D is 5 = cardinality(S5).

For each v € V there is an associated radius; r, := minyecy p(v,y). We employ agglomerative clustering
on the radii {r, : v € S }, yielding a dendogram, or cluster tree (Everitt 1980; Hartigan 1975). The leaves of
this dendogram correspond to the 7 elements of S.

The dendogram provides a sequence of “cluster maps” my, : R% — Ri for each k =1,--- ,%. The cluster
map with a given range-space dimensionality % is based on a disjoint partition of S and can be conceptualized
by visually “cutting” the dendogram horizontally at a level which yields k branches, or clusters, Si,-- -, S.
The kt" cluster map is then defined as my(z) = [p(z, Sl) -, plx, Sk)] , where the distance p(a:, S) from a
point x to a set S is defined as the minimum over s € S of the distances p(z, s).

For each k =1,--- ;4 an empirical risk (resubstitution error rate estimate) Ek is calculated as

Ly == (1/(n+m) (Zl{x, ¢ Uj1, ved; B(v, min ry, }+Zl{yl € Uj=1, .k Upeg, B(v, min rw)}) i

weS; i—1 weS;

The empirical risk f@ = 0 by construction, whereas Ek may be nonzero for k < 5. The goal is to use
the empirical risk as a function of k¥ to determine a reasonable cluster map dimensionality; this “model
complexity selection” is a notoriously difficult task, but is necessary nonetheless.

We proceed by defining the “scale dimension” d* to be the cluster map dimension that minimizes a
dimensionality-penalized empirical risk; d* = min{arg miny Lk + -k} for some penalty coefficient § € [0, 1].
(Some will prefer a logarithmic penalty 5 log(k) or Bayesian model selectlon alterations such as these can
of course be accommodated.) Again, by construction we have d* = min{k : Lk =0} for 6 = 0 and d
for § = 1. The choice of § determines the sharpness required to deﬁne the “elbow” in the curve of emplrlcal
risk versus cluster map dimension. Thus, the scale dimension is, loosely, the z-coordinate of the elbow in
the curve. (Note that dj is an estimate of dj, the cluster map dimension which minimizes the penalized
probability of misclassification.)

The result of this methodology is M., the cluster map of interest for exploratory data analysis. It is
this map that is investigated in the examples below. For instance, we may consider the assignment of each
observation z; in the target class to that cluster (or those clusters) for which z; € U, g B(v,min g ru).
Our “latent class discovery” will derive from information revealed via this assignment; there may ultimately
be a (known or unknown) latent variable or geometric structure that is responsible for the particular set
of target observations that reside in a particular cluster. Another way to think about this is that we are
investigating the structure of the target observations based on their distance to the non-target observations.
Figure 1 presents an example that illustrates the process; the target regions labeled C are closer to the
non-target region (Class 0) than is the Cs target region. In this case we would expect to discover latent
classes. (Note, however, that the leftmost C; subclass may not be discovered, as the observations therein
may fall in a ball centered at a Cy observation — a large radius ball.)

4 2-Dimensional Simulation

Let us consider, for the purpose of illustration, a simple 2-dimensional simulation example. For this case the
domain space class-conditional scatter plot and the algorithmically produced dominating set S (with ; =6)

and the associated radii (one large and a collection of five smaller) for the target class observations are
presented in Figure 2 (a), the dendogram for the complete linkage clustering of these six radii is presented in
Figure 2 (b), and the 2-dimensional range space class-conditional scatter plot (the result of the application
of the cluster map m; to the observations of Figure 2 (a)) is presented in Figure 2 (¢). Figure 3 shows that
the scale dimension d* = 2. (Precisely, d* = 2 for § € [0.03,0.92).)

Note that the type of hierarchical clustering employed (e.g., complete linkage versus single linkage) will
affect the process. Since different dendograms (and different clusters) can be produced by using different
linkage criteria, the cluster maps and hence the choice of c/l:’;‘ are dependent on the criterion employed.



Figure 1: Our “latent class discovery” is similar to a clustering of target class observations based on their

distance to non-target class (Class 0). C; and C, are latent subclasses of the target class.

In this pedagogical example, there are clearly two latent subclasses, and these subclasses are associated
with the two clusters of radii. (We would not expect to encounter such simplicity in the analysis of real
world data sets.)
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Figure 2: Depiction of the simulation example. (a) The domain space class-conditional scatter plot,
with dominating set S (¥ = 6) for the target class observations (represented by “0”s). The two axes
represent two canonical dimensions. (b) The dendogram for the six radii. (c¢) The class-conditional
scatter plot resulting from cluster map msy (with the convex hull of the projected non-target class
observations). The two axes represent ma(-) = [p(-, S1), p(-, S2)]'.

5 Artificial Nose Example

Before returning to the gene expression data we present results for an artificial nose chemical sensing data
set. The results obtained for these data are qualitatively similar to those obtained below for the gene
expression data. Furthermore, the structure of these artificial nose data, and the subsequently discovered
latent subclasses, are perhaps better understood.

The data are taken from a fiber optical sensor constructed at Tufts University; see Priebe (2001) for
details. Each observation is a multivariate time series — 19 fiber responses at each of two wavelengths,
sampled at 60 equally spaced time steps, for a total “dimensionality” of d = 2280. The data set is designed



‘Scale dimension’ for simulation data: d*=2
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Figure 3: For the simulation example the scale dimension d=2.

‘Scale dimension’ for artificial nose data: d*=7
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Figure 4: The empirical risk (y-axis) against the cluster map dimension for the artificial nose data set. This
plot suggests d* = 7.

for the investigation of the detection of trichloroethylene (TCE), a carcinogenic industrial solvent. For this
example we consider a subset of the Tufts data set consisting of those observations containing chloroform as a
confounder. This yields n = 80 target class observations (observations with TCE in a mixture of chloroform
and air) and m = 40 non-target class observations (observations with just chloroform and air, and no TCE).

The methodology described above yields 7 = 24. Figure 4 depicts the plot of empirical risk versus cluster
map dimension; d* = 7 for this case.

The exploratory analysis of the data was performed using the Interactive Hyperdimensional Exploratory
Data Analysis Tool (IHEDAT) (see Solka et al., 2001). IHEDAT is a java-based system developed to study
the interaction between the cced classification methodology and various high dimensional data sets. Figure
5 depicts the results of an exploratory analysis of this data set using d* = 7. The lower left panel depicts
the agglomerative clustering dendogram for the radii associated with the approximate minimal dominating
set S for the class cover catch digraph D of the target class observations with respect to the non-target class
observations. The upper right panel is a parallel coordinates plot (Wegman, 1990) depiction of the associated
cluster map from the original 2280-dimensional space to the associated 7-dimensional “scale dimension
space.” The upper left panel depicts the clustering (into d* = 7 clusters) associated with the seven clusters
of dominating set elements. It is in this panel that the latent class discovery emerges. In the “data image” (see
Minnotte and West, 1998) depicted here, the target class observations are in order of decreasing concentration
of TCE in the observation. (The data set contains TCE at different concentrations.) Each observation is



represented by a column in the data image. Above the data image we color-code for the cluster(s) into which
a particular observation falls. We see, thanks to this ordering, that the seven clusters are highly correlated
with concentration. In general, these clusters can be thought of as a regression on concentration; the latent
classes discovered in this manner are associated with the various concentrations. In particular, the magenta
and blue clusters contain, almost exclusively, the 50 lowest concentration observations. Further investigation
indicates that these lowest concentration clusters (magenta and blue) are associated with dominating set
elements with small radii, and the five clusters which contain (again, almost exclusively) the 30 highest
concentration observations are associated with dominating set elements with larger radii. We conclude this
example with the claim that the latent class discovery depicted for this nose data set is in keeping with
our (limited) understanding of the (high-dimensional) geometry of the problem: the radii are determined
by the distance of the dominating set elements to the non-target class, and low concentration target class
observations should be closer to the non-target class, and should thus be associated with the smallest radii.
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Figure 5: This graphic displays the results of using class cover catch digraphs for latent class discovery on a
data set of artificial olfactory observations (the Tufts artificial nose data set). The upper left panel depicts
the clustering (into =7 clusters) associated with the seven clusters of dominating set elements. It is in
this panel that the latent class discovery emerges. See text for details.



6 Gene Expression II: Exploratory Data Analysis

We return now to the gene expression data. Recall that our procedure is asymmetric in target class; for this
example we choose ALL to be the target class.

Figure 6 shows that d* = 5 for the gene expression data set; Figure 7 depicts the results of our exploratory
data analysis at d* = 5. For this display the data image and cluster coverage, depicted in the upper left
panel, is ordered so that the nine T-cell observations are the rightmost in the display. Investigation uncovers
that the clusters with the smallest radii (the third, fourth, and fifth rows, referenced from the top, of the five
rows in the cluster coverage display) are made up entirely of B-cell observations (although it is not the case
that all B-cell observations fall into these clusters). Furthermore, the topmost (orange) cluster contains eight
of the nine T-cell observations (as well as some B-cell observations) and is associated with the largest radii.
This yields the (possibly scientifically valuable?) conjecture, analogous to that obtained in the artificial
nose investigation, that the B-cell subclass of the ALL leukemia is “closer” to the AML leukemia in “gene
expression space” than is the T-cell subclass; see also Figure 8. This conjecture is obtained via exploratory
data analysis with no prior indication that the B-cell/T-cell subclasses even existed.

(Historical note: the ordering used for illustration in Figure 7 was employed post-discovery. In practice,
we observed that the (arbitrarily ordered) cluster coverage display indicated (nearly) disjoint clusters and
delved into the descriptors associated with the data in an effort to find a descriptor that correlated with the
clusters. The T-cell/B-cell subclass was discovered thusly.)

It is hoped that results such as this one — novel working hypotheses — can be used to drive future scientific
investigations.

‘Scale dimension’ for Golub gene expression data: d*=5
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Figure 6: The empirical risk (y-axis) against the cluster map dimension for the gene expression data set.
For this data set, d* ~ 5.

7 Gene Expression III: Inferential Statistical Analysis

Given our working hypothesis, a logical next step is to attempt to build support for (or evidence against)
this hypothesis via inferential statistical analysis. We present here a simple but useful step in this direction.

Let np (respectively, nr) represent the median (location) of the distribution of distances from B-cell ALL
leukemia (respectively, T-cell ALL leukemia) to AML leukemia. The Wilcoxon rank sum test (equivalent to
the Mann-Whitney test; see, e.g., Conover 1980 or Lehmann 1975) for the null hypothesis Ho: ng —nr =0
versus the general alternative H4: ng — nr # 0 yields the (two-sided) p-value = 0.0051.

Thus an inferential statistical analysis, undertaken in response to the latent subclass discovery conjecture
formed based on exploratory statistical analysis, yields strongly significant evidence that B-cell ALL is closer
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Figure 7: This graphic displays the intriguing results of using class cover catch digraphs for latent class
discovery on the gene expression data set. The upper left panel depicts the clustering (into d* = 5 clusters)
associated with the five clusters of dominating set elements. It is in this panel that the latent class discovery
emerges. See text for details.

to AML than is T-cell ALL. (This could be dominated by just a few genes, or just a few AML observations;
the investigation of these issues is the subject of ongoing effort.)

Alas, this inference is biased, as we chose the (potential) subclasses after (exploratory) data analysis;
valid inferential statistics requires an independent test set. “Nevertheless,” as noted by Bickel and Doksum
in their discussion of data-based model selection (2001, p. 8), “we can draw guidelines from our numbers
and cautiously proceed.”



Weighted MDS using 7129-dim data
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Figure 8: Multidimensional scaling map of the gene expression data. Observe that, in general, T-cell ALL
observations (cross-hatched diamonds) are further from AML observations (filled diamonds) than are B-cell
ALL observations (open diamonds).

8 Conclusions

We have presented a new methodology for latent class discovery based on the visualization of class cover
catch digraphs, and we have applied the methodology to data sets from artificial nose chemical sensing and
gene expression monitoring. In both cases, interesting latent class structure emerged. The discovery of latent
subclasses leads to associated conjectures pertaining to the geometry of these subclasses in their respective
high-dimensional observation spaces. In particular, the latent classes discovered in the investigation of the
artificial nose data set are in keeping with our belief, based on our understanding of the high-dimensional
geometry of the problem, that the low concentration target class observations should be associated with the
smallest radii. For the gene expression data set, the conjecture is that B-cell ALL is “closer” to AML than
is T-cell ALL in “gene expression space”. The ultimate utility of our methodology in the discovery of new
class distinctions for any given application will require subsequent scientific investigation of the subclass
conjectures.
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