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This paper discusses a classification system for the detection of various chemical
warfare agents. The data were collected as part of the Shipboard Automatic Liquid
(Chemical) Agent Detection (SALAD) system. This system is designed to detect
chemical agents onboard naval vessels. We explore the intricacies associated with
the construction of various classification systems. Along the way we take time to ex-
plore some applications of recently developed statistical procedures in visualization
and density estimation to this discriminant analysis problem. We focus our discus-
sion on all phases of the discriminant analysis problem. In the exploratory data
analysis phase we provide results that detail the use of histograms, scatter plots and
parallel coordinate plots for the selection of feature subsets that are fortuitous to the
discriminant analysis problem and the discernment of high dimensional data struc-
ture. In the discriminant analysis phase we discuss several semiparametric density
estimation procedures along with classical kernel, classification and regression trees,
and k-nearest-neighbors based approaches. These discussions include some illustra-
tions of the use of a new parallel coordinates framework for the visualization of high
dimensional mixture models. We close our discussions with a comparison of the
performance of the various techniques through a study of the associated confusion
matrices.

4.1 Introduction

The Shipboard Automatic Liquid (Chemical) Agent Detector (SALAD) is a system
designed to detect chemical agents onboard naval vessels. The device takes the form
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of an instrument that is fed with tractor feed reagent paper. This paper reacts with
chemical droplets to produce a characteristic color change. The device is designed
to sit exposed on the ship waiting for chemical agents to rain down on the reactive
paper as it travels through the system. At certain periodic intervals a camera captures
images of the paper using 13 spectral filters. Intensity measurements at each of these
wavelengths are collected and passed to the classification section of the system for
additional processing. In this phase of the process the agents are to be classified
according to particular chemical type. It is the classification portion of the system
that our work has focused on.

Initially data was collected at the Dahlgren Division of the Naval Surface Warfare
Center on simulant chemicals, which are designed to produce paper signatures sim-
ilar to the actual chemical warfare agents. Although these data were provided to us
and we did perform some preliminary analysis on the data, this is not the focus of this
paper. In addition, data was collected at the GEOMET Center on several of the live
agents at various drop sizes. Creation of a classification system for the signatures of
the 1 ml drops was the goal of our analysis. Thirteen band signatures were collected
on the chemicals GA, GB, GD, GF, VX, HD, L, GDT, HDT, and the paper without
any chemical stimulant.

The collection data was presented to us initially as a set of images. Using the
Advanced Distributed Region of Interest Tool (ADROIT) [3] the images were diag-
nosed. The diagnosis procedure consisted of labeling those pixels from each of the
various chemical classes along with a subset of the pixels from the background. In
this manner a training set and a test set were created. The training set was used to
build the classifier and the test set was used to test it. More sophisticated testing
procedures, such as the jackknife, were considered but were deemed unnecessary.
The training data consisted of 14,236 observations and the test data consisted of
1,868,070 observations.

For the purposes of our analysis we grouped GA, GB, GD, GF, and GDT into
the class G; VX into the class V; and HD, L, and HDT into the class H. Each class
was then assigned a numerical class label according to the following scheme. G was
labeled as class 0, V was labeled as class 1, H was labeled as class 2, and the back-
ground was labeled as class 3. The training set consisted of 2,106 observations from
the G class, 569 from the V class, 1,088 from the H class, and 10,473 background ob-
servations. The test set was comprised of 13,889 observations from the G class, 2,318
from the V class, 6,662 from the H class, and 1,845,201 from the background class.

The design of the classification system was broken into the usual constituent steps
of exploratory data analysis, probability density estimation, classifier design, and
classifier testing. The purpose of the exploratory analysis phase is to ascertain any
underlying structures that exist in the training data. This is in part done in order
to choose particularly fortuitous features sets and also to discover any additional
structure that would be important in the density estimation portion of the procedure.
Standard statistical visualization procedures such as boxplots and histograms are
typically applied to univariate projections of the features. In addition one sometimes
examines pairs plots, which represent scatterplots of the various features chosen 2 at
a time.
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Ultimately one would like to be able to examine the distribution of the features
in the full higher-dimensional space. The parallel coordinates method (cf. Wegman
[11]) is one technique to do this. In this technique one places the coordinate axes
parallel to one another in order to plot the points in the higher-dimensional space.
This is necessary since one, in dimension higher than 3, ultimately does not have
the ability to place the coordinate axes orthogonal to one another. It turns out that
there is a natural correspondence between this coordinate system and projective ge-
ometry space. In this manner, we can understand how certain geometric structures
in Euclidean space are mapped into the parallel coordinates framework.

Once one has performed a preliminary analysis based on these techniques one
performs model-based exploratory analysis on the feature set. There are several
different techniques for performing model-based density estimation. These range
from the fully nonparametric procedures such as kernel density estimation [8], to
semiparamteric density estimation procedures such as the adaptive mixtures density
estimator (AMDE) [6] [5], and finally fully parametric models such as finite mixture
models [4].

In the kernel estimation approach, one models the underlying distribution as a
mixture of component densities. Each component density resides at one of the points
of the data set and often takes the simple form of a Gaussian. In equation 1 we present
the form of the univariate kernel estimator
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In the case of multivariate data it is simplest to use a the well-known product
kernel.

Mixture models are an alternative to the fully nonparametric kernel estimator. In
the simplest case one can model each of the class densities as a single term mixture
that has a mean based on each class mean and a common covariance structure. In
this case the common covariance matrix is given by
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This classifier is denoted as a linear classifier. One obtains a quadratic classifier
by allowing each of the classes to have a different covariance structure.

In the adaptive mixtures density estimation (AMDE) [5] [6] approach one loosens
several of the requirements of the above procedures. Namely one allows the number
of terms in the model to be driven by the complexity of the data, the location of the
terms to be anywhere, the covariances to be nonuniform, and the mixing coefficients
to not all be equal. In this case the form of the estimator is

f̂ (x) =
m

∑
i=1

πiN(x, θ̂). (4.4)
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In this equation it is the number of terms that is determined by the complexity of
the data, the π’s are the mixing coefficients, and N is the normal density determined
by parameter set. In this case, the estimator is built in a recursive manner. As each
data point is presented, the estimator either updates the existing parameters in the
model using a recursive form of the expectation-maximization (EM) algorithm or
else adds an additional term to the model as dictated by the complexity of the data.

The last mixture-based approach to be discussed is known as the Shifted Hats It-
erated Procedure (SHIP). This method is a hybrid method that employs both kernel
estimation techniques and mixture models. The technique switches attention be-
tween a mixture model of the data set and a kernel estimate (or more sophisticated
semiparametric estimator). The name shifted hats came about since an estimator is
typically denoted by the hat symbol and we are shifting our view on which function
the estimator represents. A full description of this technique is provided in [7].

The next approach that was used to classify the data is based on the k-nearest-
neighbors procedure. In this procedure one, assigns a class label for each of the
observations in the test set based on the k closest elements of the training set under
an appropriate distance metric such as the standard Euclidean metric. In our case
the large cardinality of the training set makes a straight-forward application of the
procedure problematic. We have chosen to use a reduced k-nearest-neighbors method
as described by Hand 1997 [1]. This approach selects a subset of the full exemplar
set for use in a nearest neighbor classifier. The reader is referred to Hand 1997 [1]
for a full treatment of the methodology.

The final approach that was used to classify the data was classification and regres-
sion trees (CART). In this approach the algorithm attempts to form a sequence of
decision planes perpendicular to the coordinate axes that partition the data into class
homogeneous regions. The classifier then takes the form of a sequence of simple if
tests. The reader is referred to Venables and Ripley 1994 [10] for a full treatment of
this approach.

4.2 Results

Initially we chose to evaluate the classification utility of the features individually.
In Figure 4.1 we present histogram plots for each of the 13 bands and each of the
classes. We notice a fair degree of separability exhibited in features 7 and 11. This
separability led us to utilize these features as one possible choice in subsequent anal-
ysis.

Next we turn our attention to an examination of the full thirteen-dimensional fea-
tures. We have chosen to visualize the full higher dimensional feature set through
the use of parallel coordinates, which provides us with a convenient venue for the
display of higher dimensional data. In Figure 4.2 we present a parallel coordinate
plot of the training data. The plot was produced using the ExplorN package that
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FIGURE 4.1
Histogram plots for each of the 13 bands for each of the 4 classes. The plots

are arranged by band from top to bottom. In each case class 0 appears in the
lower left corner, class 1 appears in the lower right corner, class 2 appears in
the upper left corner, and class 3 appears in the upper right corner.

utilizes saturation brushing, a technique to deal with the overplotting problem as-
sociated with large data sets [12] [2].In the plot the color saturation is computed as
a function of the number of lines that traverse a given area. In addition when col-
ored lines overlap one another the package mixes the colors together in the usual
additive manner. Class 0 is displayed as red, class 1 as green, class 2 as blue, and
class 3 (background) as white. The lowest axis in the figure designates the class
label.

There are a few things worthy of note in the plot. First we notice the characteristic
scalloped appearance of the class 3 data. This visual feature is associated with a mul-
tivariate elliptical density as might be found in a normal data set. It is not surprising
to find that the background intensities were normally distributed. We also notice that
a small subset of the class 3 observations are outliers as indicated by their far left ap-
pearance in band 13. This apparent anomaly is the subject of continued investigation.
We also note the amount of class separation in bands 7 and 11. This observation is in
keeping with our univariate analysis. Once again we notice that the class 3 observa-
tions are well separated from the other classes in most of the bands. We finally note
the trimodality of class 0 particularly in band 11. This multimodal type behavior is
not surprising since we originally collapsed multiple chemical classes into each of
the subsequent classes.

The collectors of the SALAD data also proposed an alternate trivariate feature
set. This feature set was chosen to mimic a three-band red, blue, green combination.
Adding bands 1 and 2 together formed the first feature, the second feature by adding
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FIGURE 4.2
Parallel coordinates plot of all the training data. Class 0 is rendered in red,

class 1 in green, class 2 in blue, and class 3 in white.

bands 6 and 7 and the third feature by adding bands 11 and 12. Besides reducing the
dimensionality of the problem to three-space this step also reduced the requirements
on the system so that instead of collecting 13 spectral bands they only need to collect
6 bands, or with a modification of the filter set, 3 bands. In Figure 4.3 we present
a scatterplot of these features for the 4 classes. The color scheme is identical to
the previous plots with the exception that the background observations have been
rendered in black. This plot provides additional evidence for the normality of the
class three observations. In addition we see clear separation between the background
observations and the other classes. Finally we notice that classes 0 through 2 are also
moderately well separated in this feature space.

We now turn our attention to some model-based exploratory data analysis. This
provides an alternate means to evaluate the utility of the various features. In Fig-
ure 4.4 we present plots of SHIP-based probability density estimates for the various
classes based on bands 7 and 11. These models help us evaluate the overlap between
the various classes. We point out the trimodality of class 0 in both of the features.
We note the separation between class 1 and class 2 in the band 11 feature and the
separation of class 0 from both class 1 and 2 in the band 7 feature. Finally we note
that the background is fairly well separated from the other classes in both bands.

Alternatively one may build bivariate densities for bands 7 and 11 together. In
Figure 4.5 we present bivariate kernel density estimates of the training data using a
spherical product kernel. In the right-most figure we color each pixel in the band 7



Data Mining Strategies for the Detection of Chemical Warfare Agents 85

FIGURE 4.3
Scatterplot of the pseudo-RGB features. Class 0 is red, class 1 is green, class 2

is blue, and class 3 is black. Feature 1 (x-axis) is band 1 plus band 2, Feature 2
(y-axis) is band 6 plus band 7, and Feature 3 (z-axis) is band 11 plus band 12.

FIGURE 4.4
Univariate SHIP probability density functions for bands 7 and 11.
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FIGURE 4.5
Multi-class discriminant regions based on a bivariate product kernel. Discrim-
inant regions are plotted on the right and a scatterplot is rendered on the left.

cross band 11 space according to which of the class conditional bivariate probability
density functions is higher. In the upper plot we present a scatterplot of the data.
As before class 0 is colored in red, class 1 in green, and class 2 in blue. The back-
ground class has been omitted in this particular illustration. Pixels where the class
conditional probabilities fell below a threshold have been colored white.

In the next set of images we consider the visualization of AMDE models based on
the thirteen-dimensional training data. Each model consists of a mixture of thirteen-
dimensional Gaussian terms. It is difficult in general to ascertain the match between
the training data and the model given the high-dimensional nature of the data. In
Figure 4.6 we plot the AMDE model for class 0. The data are rendered in yellow
in the plot. In addition we have plotted the means of the terms that constitute the
mixture model in red. The first axis has been used to plot a value equal to the scaled
mixing coefficients in the case of the mixture terms and a dummy variable in the case
of the data. The rendered grayscale images at the bottom of the plot represent the
covariance structure of the terms in the mixture with the mixing coefficients explic-
itly spelled out below the images. White represents a large value in the covariance
matrix.

There are a few relationships between the data and the model that are made clear
by this plot. We notice that the term with the largest mixing coefficient tracks right
through the center of the data set. The covariance image tracks the variability of the
data fairly well. The next term, descending by mixing proportion, has a much tighter
covariance structure as is indicated by the darkness of the rendering. This term tracks
the left-most mode of the data set. The last two terms have very small proportions .

Next we turn our attention to some general discussions on the CART models that
were built on the training data. In Figure 4.7 we present the plot of a classification
tree based on the training data. The reader will notice that the CART procedure did
not utilize all of the 13 bands but merely a subset of them. Specifically bands 1, 5, 7,
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FIGURE 4.6
Parallel coordinates plot of the data, rendered in yellow, and the means of the

mixture terms, rendered in red for class 0. The first axis represents a value
proportional to the mixing coefficient in the case of the mixture terms. The
gray-scale images represent the covariance structure of the given term. The
numerical values of the mixing coefficients appear below the images.

8, 10, 12, and 13 were used in the model. These exceed the number of bands “hand
picked” by the data collectors by 1, but interestingly enough the model has been built
using an appreciably different set of bands.

It is easier to understand the inner workings of the CART procedure if we exam-
ine a pedagogical example. Suppose that the spectral signature of an observation is
given by (70, 35, 110, 131, 111, 27, 105, 75, 215, 107, 115, 62, 117). The CART
processes this observations as follows:

b7 = 105 < 129.5, which implies go left,
b8 = 75 > 63.5, which implies go right,
b12 = 62 < 111.5, which implies go left,

b12 = 62 < 88.5, which implies go left, and
b1 = 70
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FIGURE 4.7
CART based on all 13 bands.

which implies go left which designates the observation as class 0.
Next we turn out attention to classification results obtained using the models dis-

cussed earlier. In each case we analyze the results via a confusion matrix. The first
entry of the confusion matrix represents the probability of calling an observation as
class 0 given that the observation came from class 0, denoted p(c 0|c0). The entry
in the first row and second column is the probability of calling an observation class
0 given that it was drawn from class 1 denoted p(c0|c1). Similarly the entry in the
second row and the first column represents p(c1|c0). So the diagonal entries repre-
sent the p(ci|ci) for i = 0,1,2, and 3. We have computed confusion matrix results
for the adaptive mixtures model based on the full 13 features, adaptive mixtures
model based on bands 7 and 11, adaptive mixtures models based on the pseudo RGB
features, the linear classifier based on all 13 features, the linear classifier based on
bands 7 and 11, the linear classifier based on the RGB features, the quadratic clas-
sifier based on all 13 features, the quadratic classifier based on bands 7 and 11, the
quadratic classifier based on the RGB features, the spatial CART classifier based on
all 13 features, the spatial CART classifier based on RGB features, the knn classifier
based on all 13 features, the reduced knn classifier based on 200 exemplars, and the
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r0 r1

r2 r3

FIGURE 4.8
Sorted score for the various classification systems where the pixel radius varies
between 0 and 3.

current classification system. We are however not free to provide the details of the
current classification system at this time. The reader is referred to [9] for a full listing
of the confusion tables.

The r = 0 entry in each Table treats the pixels as independent, ignoring the spatial
information inherent in the original image. Since processing time is at a premium
in this application, we considered the simplest method for utilizing the spatial re-
lationship of the pixels. Initially each pixel is assigned a class as above. Then to
determine the final class label for the pixel a vote is taken from all the pixels within
a (2r + 1)x(2r + 1) box centered at the pixel, with the final class label for the pixel
being the one, which wins the vote (ties are broken arbitrarily). We refer to r as the
radius. The radii used were 0-3, where a radius of 0 corresponds to the standard
classifier with no spatial information.
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In Figure 4.8 we present a dot chart of the results. The diagonal of the confusion
matrix is summed and plotted on the x-axis. The classifiers were sorted by their per-
formance under this metric in the case where the radius was 0 (single pixel, no spatial
information), and this ordering is retained for the rest of the charts. There are several
trends that are revealed in the dot chart. We first notice that those classifiers that use
the full dimensionality of the data either as all 13 features or as the RGB feature set
outperform the other classifiers that use the hand-selected two-dimensional projec-
tion. This occurs without fail except in the case of the simple linear classifier on all
13 features. Another thing to notice is that the semiparametric and the nonparametric
classifiers outperform the parametric classifiers in general. By this we mean that the
adaptive mixtures and knn-based classifiers in general perform better than the linear
and quadratic classifiers. We also point out that the CART-based classifiers seem to
be outperformed by the quadratic classifiers, but are better than the linear classifiers.
We finally note that there is an improvement in performance as we proceed from a
radius of 0 to 1 and finally 2. There is however, a leveling off of the improvement as
we reach r = 3.

There are a few things that remain to be noted about the current approach. The
current approach is bested by virtually all of the approaches at the r = 0 level. By
the time one proceeds to the r = 3 level the performance of the fielded approach has
improved sufficiently to allow it to outperform roughly three other classifiers. Even
given this improvement the performance of the fielded system can be described as
mediocre at best. This performance however may be sufficient depending on the
situation at hand. This lack-luster performance is a trade-off for a need to rapidly
field the system in order to be prepared for a very real threat.

4.3 Conclusions

We have attempted to evaluate the discriminant utility of these features. Our work has
consisted of a data-mining phase, a model-building phases, and a model-evaluation
phase. We have utilized standard statistical procedures such as histograms to provide
univariate views of the data. In addition we have employed the parallel coordinates
visualization framework in order to ascertain the structure of the feature set in the
full thirteen-dimensional space.

We have employed high-performance probability density estimation procedures
to model the distribution of the features sets in both the full space and other fortu-
itously reduced spaces. The density estimation/classification techniques used have
included standard classification and regression trees along with adaptive mixtures,
kernel estimators, k-nearest-neighbors and the recently developed shifted hats iter-
ated procedure.

We have employed a simple scheme to incorporate spatial information into our
classifier systems. We have measured the performance of the various classifiers using
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the standard confusion matrix measure. In order to compare the performance of the
classifiers we must turn to the confusion matrix results. As presented in the dotchart
of Figure 8 we were able to show that the adaptive mixtures model obtained using
all 13 features and a spatial radius of 3 proves to be the superior choice.

Assuming that one is very much limited with regard to both time and compu-
tational capabilities, then one needs to examine alternate solutions. Under these
circumstances we recommend that one employ the CART model based on the full
feature set with a spatial radius of 3. This system provides probability of detection
that exceeds .85 while obtaining a false alarm rate less than .12. This system pro-
vides this level of performance while at the same time offering considerable speed
improvements. In fact we would anticipate considerable time savings given the fact
that the classifier takes the form of a simple sequence of if tests.
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