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Abstract: The analysis of high-dimensional data offers a great challenge to the analyst
because the human intuition about geometry of high dimensions fails. We have found that
a combination of three basic techniques proves to be extraordinarily effective for
visualizing large, high-dimensional data sets. Two important methods for visualizing
high-dimensional data involve the parallel coordinate system and the grand tour. Another
technique which we have dubbed saturation brushing is the third method. The parallel
coordinate system involves methods in high-dimensional Euclidean geometry, projective
geometry, and graph theory while the the grand tour involves high-dimensional space
filling curves, differential geometry, and fractal geometry. This paper describes a
synthesis of these techniques into an approach that helps build the intuition of the analyst.
The emphasis in this paper is on the underlying mathematics.

1. Introduction

 Seeing objects in high-dimensional spaces is often a fantasy of and a wish for
many mathematicians. Often the revered mathematicians of the past were reputed to be
able to see in their minds high-dimensional objects, which gave them insight beyond
those of more ordinary mathematicians. Achieving such a feat has intrigued the present
authors since we were mathematical juveniles. The combination of two techniques known
respectively as  and the -  allows us toparallel coordinates dimensional grand tour�
actually visually gain insight into hyperspace much like those revered mathematical
geniuses of the past. A third method known as saturation brushing allows for
visualization of relatively massive datasets. We have used these techniques in conjunction
with each other for the analysis of data sets containing as many as 250,000 observations
in as high as 18-dimensional space.

 These techniques have been combined in an evolutionary series of softwares that
one of us (EJW) has helped to design over the past decade or so. Our first effort dating
from circa 1988 was a DOS program known as Mason Hypergraphics. This was followed
around 1992 by a UNIX program known as ExplorN, and most recently in 2000 by a
Windows 95/98/NT software known as Crystal Vision. We have written extensively
about aspects of these ideas. See for example Wegman and Bolorforoush (1988),
Wegman (1990), Miller and Wegman (1991), Wegman (1991), Wegman and Carr (1993),
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Wegman and Shen (1993), Wegman and Luo (1997), Solka, Wegman, Rogers, Poston
(1997), Wegman, Poston and Solka (1998), Solka, Wegman, Reid and Poston (1998), and
Wilhelm, Wegman and Symanzik (1999). Many of our ideas have appeared only in
proceedings papers and technical reports, or have never been published at all. This paper
is not intended as a general review paper of all high-dimensional data visualization
methods, but as a synthesis of our approaches to visualizing high-dimensional data.
Wegman, Carr and Luo (1993) provides a convienient introduction to many other high-
dimensional data visualization techniques.

 The present paper is intended to focus, not on the applications nor on the
methodology itself, but rather on the underlying mathematics. The intent is to consolidate
the mathematical developments that have been scattered over a wide variety of literature
into one convenient paper. As indicated above, this paper is not an attempt to review all
approaches to high dimensional visualization, but to synthesize specific techniques we
have found useful. A companion paper focusing on applications of these methodologies
to achieve a number of statistical tasks is being planned. However, the combination of
mathematical tools, mainly geometric tools, is itself interesting, and in our view it is
worthwhile to document these. It is especially of interest in a paper in honor of Professor
C. R. Rao, who has contributed so much to make geometric methods an integral part of
statistical analysis.

2. Parallel Coordinates

Parallel coordinate displays are a tool for visualizing multivariate data. They were
introduced into the mathematics literature by Inselberg (1985) and suggested as a tool for
high dimensional data analysis by Wegman (1990). Since then many additional
refinements have been suggested. However, the basic parallel coordinate plot remains an
intriguing mathematical object. Traditional Cartesian coordinates suffer from the fact that
we live in three spatial dimensions. Beyond three dimensions all manner of artifices have
been invented to represent higher-dimensional data, using time, color, glyphs, and so on.
Regrettably these do not treat all variables in the same way and, hence, make comparing
variables with different representations extremely difficult. The parallel coordinate plot
device is based on the observation that problems associated with Cartesian plotting arise
because of the orthogonality constraint. Because this is the case, in parallel coordinates,
we simply give up orthogonality and draw the axes as parallel. Any number of parallel
axes can be drawn in a plane . If the data is -dimensional, simply draw  parallel axes.1 � �
A data vector  is drawn by locating  on the -th coordinate axis and� � �� � � �� � � � � �� � � �

simply joining the  to  by a line segment for  There is in principle� � � � 	�� � � 
 	�� �b�

no upper bound on the dimension of the data that can be represented, although there are
practical limits related to the resolution available on a computer screen and to the human
eye. See Wegman (1990) for much more detail on interpretation and usage of these
displays.

1Suggestions have also been made to replace the plane with a cylinder. In an attempt to overcome the
pairwise adjacencies problem described in section 2.3, parallel axes are straight lines drawn on the
cyclinder. In an attempt to deal with circular data, the parallel axes are actually drawn as parallel circles on
the cylinder.
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The power of and motivation for using parallel coordinate displays derives from
the underlying connection with projective geometry. Axiomatic synthetic projective
geometry is motivated by the asymmetry in Euclidean geometry induced by the parallel
lines axiom. That is,  pairs of lines in a two-plane meet in a point, except if the linesmost
are parallel. However,  pairs of points determine a line. In synthetic projectiveall
geometry, the parallel lines axiom is replaced with the axiom: every pair of lines meets
in a point. Together with the other axioms of projective geometry, this axiom has the
effect that any statement that is true about lines and points is also true when the words
"line" and "point" are interchanged. This notion of duality between points and lines
induces all types of additional dualities in a projective plane. Nondegenerate mappings
between projective planes have the property of preserving certain geometric structures. In
the case of transformations from Cartesian coordinate geometry to parallel coordinate
geometry, this implies structure in Cartesian coordinates have a dual structure in parallel
coordinates. The implication is that not only does a parallel coordinate display have the
ability to uniquely map high-dimensional points into a planar diagram, but that the
parallel coordinate display can be interpreted geometrically.

It is worth making a couple of observations. First synthetic projective geometry is
an abstract mathematical construct. One model for synthetic projective geometry is the
ordinary Euclidean plane supplemented by so-called ideal points. The ideal points are in
one-to-one correspondence with the slopes of ordinary lines. The idea of this model is
that "parallel lines meet at infinity." Hence all parallel lines having the same slope will
meet at the same ideal point. The set of ideal points form the so-called ideal line. In this
model, the projective plane thus has "regular" points, i.e. those from the Euclidean plane,
and "ideal" points, which we have just described. Another model for the projective plane
is the "cross cap," which is a hemisphere with opposite points on the equator
topologically identified. Neither of these models for synthetic projective geometry is
entirely satisfactory, since they make distinction among certain types of points. However
the model, which regards the projective plane as an extended Euclidean plane, is
extremely useful for data visualization purposes. Just as synthetic Euclidean geometry can
be tied to the Cartesian coordinate system to form an analytic geometry, synthetic
projective geometry can be tied to a coordinate system known as natural homogeneous
coordinates to form an analytic projective geometry. We discuss these coordinates in
section 2.2. For more details on projective geometry, see Wegman (2000).

Thus the intriguing aspect of parallel coordinate plots is the mathematical duality
between Cartesian plots and parallel coordinate plots. For the purposes of the present
mathematical discussion, we focus on just two dimensions. In this context we have just
suggested that a point in an ordinary Cartesian plot is represented by a line in a parallel
coordinate plot. Indeed, if we conceive of both the Cartesian two-dimensional plot and
the parallel coordinate plot as representing two projective two-planes, we derive a number
of interesting dualities.

2.1 Parallel Coordinate Geometry. The parallel coordinate representation enjoys some
elegant duality properties with the usual Cartesian orthogonal coordinate representation.
Consider a line  in the Cartesian coordinate plane given by :  and consider� � � � 
� � �
two points lying on that line, say  and . For simplicity of���
� � �� ���
� � ��
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computation we consider the  Cartesian axes mapped into the  parallel axes as�� ��
described in Figure 2.1. We superimpose a Cartesian coordinate axes  on the �� ��
parallel axes so that the  parallel axis has the equation . The point  in� � � 	 ���
� � ��
the  Cartesian system maps into the line joining  to  in the �� ��� �� �
� � �� 	� ��
coordinate axes. Similarly,  maps into the line joining  to . It���
� � �� ��� �� �
� � �� 	�
is a straightforward computation to show that these two lines intersect at a point (in the ��
plane) given by : . Notice that this point in the parallel�



���	 

� � �	 

� �c� c�

coordinate plot depends only on  and  the parameters of the original line in the
 �
Cartesian plot. Thus  is the dual of  and we have the interesting duality result that� �




points in Cartesian coordinates map into lines in parallel coordinates while lines in
Cartesian coordinates map into points in parallel coordinates.

Figure 2.1 Illustrating the duality between points and lines in
Cartesian and parallel coordinate plots

For ,  is negative and the intersection occurs between the� � �	 

� � 	 
c�

parallel coordinate axes. For , the intersection is exactly midway. A ready
 � 
 	
statistical interpretation can be given. For highly negatively correlated pairs, the dual line
segments in parallel coordinates will tend to cross near a single point between the two
parallel coordinate axes. The scale of one of the variables may be transformed in such a
way that the intersection occurs midway between the two parallel coordinate axes in
which case the slope of the linear relationship is negative one.

In the case that  or ,  is positive and the�	 

� � � �	 

� � 	 
c� c�

intersection occurs external to the region between the two parallel axes. In the special
case , this formulation breaks down. However, it is clear that the point pairs are
 � 	
��� � � �� ��� � � �� and . The dual lines to these points are the lines in parallel coordinate
space with slope  and intercepts  and  respectively. Thus the duals of� 
 �� 
 ��c� c� c�

these lines in parallel coordinate space are parallel lines with slope . We thus append�c�
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the ideal points to the parallel coordinate plane to obtain a projective plane. These parallel
lines intersect at the ideal point in direction . In the statistical setting, we have the�c�

following interpretation. For highly positively correlated data, we will tend to have lines
not intersecting between the parallel coordinate axes. By suitable linear rescaling of one
of the variables, the lines may be made approximately parallel in direction with slope .�c�

In this case the slope of the linear relationship between the rescaled variables is one.

2.2. Natural Homogeneous Coordinates and Conics. The point-line, line-point duality
seen in the transformation from Cartesian to parallel coordinates extends to conic
sections. To see this consider both the  plane and the  plane to be augmented by�� ��
suitable ideal points so that we may regard both as projective planes. The representation
of points in parallel coordinates is thus a transformation from one projective plane to
another. Computation is simplified by an analytic representation. However, the usual
coordinate pair, , is not sufficient to represent ideal points. Thus, for purposes of��� ��
analytic projective geometry, we represent points in the projective plane by triples
��� �� ��. As motivation for this representation, consider two distinct parallel lines having
equations in the projective plane

  and . (2.1)�� � �� � �� � � �� � �� � � � � �Z

Simultaneous solution yields  so that  . Thus when , the triple�� 
 � �� � � � � � � � �Z

��� �� �� ��� �� ��, i.e. , describes ideal points. The representation of points in the projective
plane is by triples, , which are called natural homogeneous coordinates. If ,��� �� �� � � 	
the resulting equation is  and so  is the natural representation of�� � �� � � � � ��� �� 	�
a point  in Cartesian coordinates lying on . Notice that if ��� �� �� � �� � � � � � �� ��� �

�� ��� �� 	� �� � �� � � � � is any multiple of  on , we have

 . (2.2)� � � � � � � � ��� � �� � �� � � � � �� � � � �

Thus the triple  equally well represents the Cartesian point  lying on� �� �� � ��� ��� � �

�� � �� � � � � so that the representation of a point in natural homogeneous coordinates
is not unique. However, if  is not  or , we can simply re-scale the natural� 	 �
homogeneous triple to have a  for the -component and thus read off the Cartesian	 �
coordinates directly. If the -component is zero, we know immediately that we have an�
ideal point.

Notice that we could equally well consider the triples  as natural��� �� ��
homogeneous coordinates of a line. Thus, triples can either represent points or lines
reiterating the fundamental duality between points and lines in the projective plane.
Recall now that the line :  mapped into the point :� �� � 
� � �




���	 

� �	 

�c� c�, ) in parallel coordinates. In natural homogeneous coordinates, �
is represented by the triple  and the point  by the triple�
� 
 	� ��



�

���	 

� � �	 

� � 	� ��� 	� 	 
 
�c� c�  or equivalently by . The latter yields the
appropriate ideal point when  A straightforward computation shows for
 � 	�
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   (2.3)
0 0 1
0 1 1
1 0 0

� �




 

� �
� �

that  or   . Thus the transformation from lines in� � �� ��� 	� 	 
 
� � �
� 
 	� ���
orthogonal coordinates to points in parallel coordinates is a particularly simple projective
transformation with the rather nice computational property of having only adds and
subtracts.

Similarly, a point  expressed in natural homogeneous coordinates maps�� � � � 	�� �

into the line represented by ) in natural homogeneous coordinates.�	� � 
 � � 
 �� � �

Another straightforward computation shows that the linear transformation given by
� � �� �	� � 
 � � 
 � � � �� � � � 	�� or    where� � � � �

   (2.4)
0 1 1
0 1 0
1 0 0

� �





� �
� �

describes the projective transformation of points in Cartesian coordinates to lines in
parallel coordinates. Because these are nonsingular linear tranformations, hence
projective transformations, it follows from the elementary theory of projective geometry
that conics are mapped into conics. This is straightforward to see since an elementary
quadratic form in the original space, say  where  denotes  transpose,��� � � � �Z Z

represents the general conic. Clearly then since ,  nonsingular, we have� � �� �
� � �� �� ��� � � � �c� c� c� Z Z, so that  is a quadratic form in the image space. An
instructive computation involves computing the image of an ellipse �� � �� 
 �� � �� � �

with . The image in the parallel coordinate space is , a�� �� � � � ��� � �� 
 �� � ��� � �

general hyperbolic form.

Figure 2.2a: One scatterplot of five-dimensional data showing elliptical cross
section.
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It should be noted that the solution to this equation is not a locus of points, but the
natural homogeneous coordinates of a locus of lines, a line conic. The envelope of this
line conic is a point conic. In the case of this computation, the point conic in the original
Cartesian coordinate plane is an ellipse, the image in the parallel coordinate plane is as
we have just seen a line hyperbola with a point hyperbola as envelope.

Figure 2.2b: Parallel coordinate plot of the same five-dimensional data showing the
hyperbolic dual structure.

We mentioned the duality between points and lines and conics and conics. It is
worthwhile to point out two other nice dualities. Rotations in Cartesian coordinates
become translations in parallel coordinates and vice versa. Perhaps more interesting from
a statistical point of view is that points of inflection in Cartesian space become cusps in
parallel coordinate space and vice versa. Thus the relatively hard-to-detect inflection
point property of a function becomes the notably more easy to detect cusp in the parallel
coordinate representation. Inselberg (1985) discusses these properties in detail. It is well
worth noting that the natural homogeneous coordinate representation is a standard device
in computer graphics.

2.3 Permutation of the Axes for Pairwise Comparisons. One of the most common
objections to parallel coordinate displays is the preferential positioning of adjacent axes.
If the parallel coordinate axes are ordered from 1 through , then there is an easy pairwise�
comparison of 1 with 2, 2 with 3 and so on. However, the pairwise comparison of 1 with
3, 2 with 5 and so on was not easily done because these axes were not adjacent. One
simple mathematical question then is what is the minimal number of permutations of the
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axes in order to guarantee all possible pairwise adjacencies. Although there are ��
permutations, many of these duplicate adjacencies. Actually far fewer permutations are
required.

Figure 2.3 Illustrating the graph labeling for determining
parallel coordinate permutations

A construction for determining the permutations is represented in Figure 2.3. A
graph is drawn with vertices representing coordinate axes, labeled clockwise  to .	 �
Edges represent adjacencies, so that vertex one connected to vertex two by an edge means
axis one is placed adjacent to axis two. To construct a minimal set of permutations that
completes the graph is equivalent to finding a minimal set of orderings of the axes so that
every possible adjacency is present. Figure 2.3b illustrates the basic zig-zag pattern used
in the construction. This creates an ordering which in the example of Figure 2.3b is 1 2 7
3 6 4 5. For  even this general sequence can be written as � 	� �� ��  � � 
 	� !�
� 
 ��� � �� � ��"� � 	� �� ��  � � 
 	� !� � 
 ��� � �� �  �"� and for  odd as .

An even simpler formulation is

   1 (2.5)� � �� � � 
 � #�
$� �� # � 	� ��� � � 
 	� � �
� �

+
+

with . Here it is understood that . This zig-zag pattern can� � 	 �
$� � � �
$� � � ��

be recursively applied to complete the graph. That is to say if we let , we may� � ��

²�³
�

define

    (2.6)� � �� � 	� 
$� �� % � 	� ��� � & '� �

²� �³ ²�³ �c�
�

+
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where  is the greatest integer function. For  even, it follows that this construction& � ' �
generates each edge in one and only one permutation. Thus  is the minimal number of�"�
permutations needed to assure that every edge appears in the graph or equivalently that
every adjacency occurs in the parallel coordinate representation. For  odd, the result is�
not exactly the same. We will not have any duplication of adjacencies for .% � & '�c�

�

However,  will not provide a complete graph. The case  in equation% � & ' % � & '�c �c�
� �

1

(2.6) will complete the graph, but also create some redundancies. Nevertheless, it is clear
that  permutations are the minimal number needed to complete the graph and thus& '�b�

�

provide every adjacency in the parallel coordinate representation. Thus we have that the
minimal number of permutations of the  parallel coordinate axes needed to insure�
adjacency of every pair of axes is . These permutations may be constructed using& '�b�

�

formulas (2.5) and (2.6). It is worthwhile to point out that all possible pairs may be found
in only  distinct parallel coordinate plots, but for a scatterplot matrix, & ' ��b� � c�

� � �
�� � �

plots are required. One practical consequence is that for a fixed computer screen size,
elements in the scatterplot matrix become difficult to see much more rapidly than the
parallel coordinate plots. In general such permutation arguments are rendered unnecessary
with the introduction of the grand tour.

3. The Grand Tour in -dimensions�

 The grand tour is, in a sense, the generalization of rotations in high-dimensional
space and is an invaluable tool for animating high-dimensional visualization. When used
in conjunction with scatterplot matrix displays or with parallel coordinate displays, the
grand tour allows the data analyst a variety of views for exploring the structure of data.
The basic idea, introduced by Asimov (1985) and Buja and Asimov (1985), is to capture
the popular sense of a grand tour. That is, to fully understand a subject item, one must
examine it from all possible angles. This translates in a mathematical perspective to
examining the data cloud from all possible angles. In the formulation introduced by
Asimov and Buja, this meant to project into a set of two-planes dense in the -�
dimensional space of the data. The idea is to move from one two-plane to the next so as
to see the data from all possible angles. Not only should the set of two-planes be dense in
the data space, but it is also required to move continuously (smoothly) from one two-
plane to the next so that the human visual system can smoothly interpolate the data and
track individual points and structures in the data. Hence the mathematics of the Asimov-
Buja grand tour requires a continuous, space-filling path through the set of two planes in
the -dimensional data space. The idea then is to project the data onto the two-planes and�
view them in a time-sequenced set of two-dimensional images. The practical
implementation is to step through the set of two-planes with a small step size in time
rather than to move through the set of two-planes in some continuous sense. This type of
grand tour was also studied by Buja, Hurley, and McDonald (1986), Cook, Buja and
Cabrera (1991),  Cook et al. (1993),  Cook et al. (1995), Cook and Buja (1997), Furnas
and Buja (1994), and Hurley and Buja (1990), .
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 Wegman (1991) formally suggested replacing the manifold of two-planes with a
manifold of -planes where ,  being the dimension of the data space, and# # ( � �
discussed adapting the methods of Asimov-Buja for constructing a space-filling curve
through the manifold of -planes. The data is then projected into the -plane and# #
visualized using either a parallel coordinate display or a scatterplot matrix display. This
method was actually implemented in the Mason Hypergraphics software (Wegman and
Bolorforoush, 1988) much earlier. The approach formulated by Asimov is known as the
torus method for reasons that shall become clear during our development of the grand
tour mathematics. The geometric form of the standard two-torus imbedded in three space
is of course the traditional doughnut shape. The generalization of the two-torus to higher
dimensional space is harder to visualize. For this reason, it is somewhat easier to conceive
of the basic structure of interest as a multidimensional hypercube. The the torus, then, is a
hypercube with opposite faces identified. Because we want to deal with angles, we can
tthink of the length of each side of the cube a  We shall first formulate the Asimov-� ��
Buja winding algorithm, then a random curve algorithm, and finally a fractal algorithm.
We also present a two-dimensional pseudo grand tour.

3.1 The Asimov-Buja Winding Algorithm in -space. � �Let � � ��� ��� � �� 	� ��� � ��
be the canonical basis vector of length . The  is in the -th position. The  are the unit� 	 % ��
vectors for each of the coordinate axes in the initial position. We want to do a general
rigid rotation of these axes into a new position with basis vectors
�� � � �

� � ���� � �� ���� � ����� � � ���� �, where  is the time index. The strategy then is to take
the inner product of each data point, say   with the basis vectors, � �� �, � � 	�� � � ����
This operation projects the data into the rotated coordinate system. By convention,  will�
refer to the dimension of the data and  will refer to the sample size of the data set. Of�
course, the  subscript on  means that  is the image under the generalized% ��� ���� �� �

rotation of the canonical basis vector . Thus the data vector  is  so� �� � � �
� � �

��� � � �� � � �
that the representation of  in the  coordinate system is� �� �

 (3.1)�� � �
� � �

���� � �� ���� � ����� � � ����� � � 	� ��� � �

with

  and . (3.2)� ��� � � � ���� % � 	�� � � � � 	�� � �� �
� � �

�~�

�

�
�

The vector  is a linear combination of the basis vectors representing the -th data����� �
point in the rotated coordinate system at time . It is also worth pointing out that is� �����
also a linear combination of the data. If one component of the vector is held out from the
grand tour (i.e. a partial grand tour), then the partial grand tour lends itself to an
interpretation in terms of multiple linear regression.

 The general goal then is to find a generalized rotation  such that  .� � � �� � �� �

We can conceive of  as either a function on the space of basis vectors or as a � � ) �
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matrix  where  We implement this by choosing  as an element of the� � � � �� �) � �
special orthogonal group denoted by  of orthogonal  matrices having*+��� � ) �
determinant . Thus we must find a continuous space filling curve through . We� 	 *+���
shall do this by a composite mapping from the real line, , to the -dimensional� ,
hypercube , i.e. , where . The components of& �� � ' - . & �� � ' , � ��� 
 	�"�� � � �� �

� � ���� & �� � ' *+���are taken to be angles. The mapping  from  onto is given by�

 (3.3)� � � � � � �� � �� � � � / � � ) / � � )0)/ � ���Á� �Á� �c�Á� �� �� �� �� �c�Á� �c�Á�

The fact that this is an onto mapping guarantees that the curve is space filling. See
Asimov (1985). There are factors in the expression (3.3). These, � �� 
 ���

�
�

correspond to the distinct two-flats formed by the canonical basis� ��
� �

� �� �� 
 ��

vectors. In a general -dimensional space, there are  axes orthogonal to each two-� � 
 �
flat. Thus rather than rotating around an axis as we conventionally do in three-
dimensional geometry, we must rotate in a two-plane in -dimensional space. We let�
/ � � *+����� � �� � be the element of which rotates the  plane through an angle of . Thus� �

 , (3.4)/ � � �

	 0 � 0 � 0 �
1 2 1 2 1 2 1
� 0 �$3� � 0 
 3��� � 0 �
1 2 1 2 1 2 1
� 0 3��� � 0 �$3� � 0 �
1 2 1 2 1 2 1
� 0 � 0 � 0 	

�� �

� �

� �

� �� 	� 	� 	� 	� 	� 	� 	� 	
� �

where the cosines and sines are respectively in the -th and -th columns and rows. The� %
restrictions on  are  The angles  are called the Euler� � � ��� �� ��� ( ( � � 	 ( � � % ( ��
angles. Finally, we construct as the mapping from  to � � � � � ���� � � �� ��� � �� &�� � '� � �

�

where, of course,  is taken modulo .  are taken to be linearly independent� � � �� � �� � �� �
real numbers over the rational numbers. Thus we define �! � � ������ �

 The fact that the  are linearly independent over the rationals guarantees that no�

� �� � can be written in terms of the remaining . This guarantees that they are mutually
irrational and that slopes through the hypercube cannot be multiples of one another. As
mentioned earlier, opposite faces of a -hypercube are topologically identified to,
construct a -dimensional torus. Hence the terminology for the . It is easy to, torus method
see in two dimensions that opposite sides of a rectangle may be identified to form an
ordinary torus. If we take  and  to be any irrational number, then the curve on� �� �� 	
the two-torus described by simply winds around the torus in a space filling curve.����
This is the origin of the idea of the winding algorithm.

 The mapping from the -torus to  is onto, which guarantees that the image, *+���
of the above curves are space filling. But there is a potential problem. We don't in general
know how close to uniformly distributed the mapped curve is on . The curve on*+���
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the -torus is equi-distributed, but in general the image may not be on . In the two-, *+���
plane formulation, this had been empirically a problem because some implementations of
the torus method have given grand tours that behaved very non-unformly. In particular,
the tour appears to dwell for a long time near certain axes while others appear rarely. Our
experience with using this algorithm in the higher-dimensional formulation suggests
empirically that this is less of a problem. While selected pairs of axes may appear
relatively static, others are actually moving quite significantly. Thus the overall dynamic
when visualizing high-dimensional plots is more satisfactory than when viewing 2-
dimensional versions. Nonetheless, an adequate theoretical understanding of the overall
dynamics of the torus algorithm is still an open question.

 It is also worth pointing out that for a -dimensional grand tour, one only needs#
the first  columns of a matrix in . Thus from a computational point of view, there# *+���
is no need to formulate the rotations in 2-planes that are to stay fixed. This simplifies the
computational complexity somewhat, although it makes the overall algorithm more
complicated with different algorithms for the computation of matrices in  for each*+���
sub-dimension . An interesting research question, posed by one of the referees, is#
whether overparametrizing improves the uniformity properties of the resulting grand tour.
This also is an open question.

3.2 The Random Curve Algorithm. The key to the winding algorithm is the
construction of the function  which creates a space filling curve through the -���� ,
dimensional hypercube (or -torus). The composition of  with  creates a space-filling, � �

curve through  Alternate constructions which create a space filling curve through*+����
the -dimensional hypercube can also be used to effect a space-filling curve through,
*+���. A simple way of doing this is to choose points at random in the hypercube. One
initiates this algorithm by choosing two points at random in the hypercube, say  and ,� �� �

and creating a linear interpolant between them going from  to . Upon arriving at ,� � �� � �

we choose a third point, , and form the linear interpolant from  to  In general we� � �� � ��
have a sequence of points,  chosen randomly with linear interpolants between them.���
For any  and any given, , eventually with probability one, for some ,� �4 &�� � '� 	�

�

5 5 � ��� �� 	 Thus eventually the random curve will pass arbitrarily close to any point
in the -hypercube.,

 Two caveats must be mentioned. Since opposite faces are identified, the shortest
path between two points may not be through the hypercube but across a face of the cube.
Since we are really interested in geodesics on the -torus, one must not think in terms of,
staying strictly within the hypercube. This involves a slightly more complicated
algorithm. In practice, a strict interpolation path within the hypercube also seems to be a
quite satisfactory approach and will still pass within  of any point with probability one.	

The second point to make is that, as with the winding algorithm, the random curve
algorithm can, in principle, continue forever. Our original code in Mason Hypergraphics
circa 1988 contained the winding algorithm. Our more recent codes in ExplorN and
CrystalVision are based on the random curve algorithm. In practice, although
theoretically these algorithms can go on forever, our experience has been that most
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structure in high-dimensional data shows up very rapidly, say within five or ten minutes
of viewing the grand tour, and that it is unnecessary to continue the grand tour beyond
that time.

3.3 The Fractal Curve Algorithm. In 1887, George Cantor demonstrated that any two
finite-dimensional, smooth manifolds have the same cardinality regardless of their
dimensions. In principle therefore  can be mapped bijectively onto Many& �� 	' & �� 	' ��

attempts to do this have been created most notable among these methods are the Peano
curves and the Hilbert curves. The advantage of these curves are that they are fractal in
character and hence, for a fixed fractal level, have a finite length and a fixed accuracy. By
following a fractal curve through the hypercube, one can preselect an accuracy level and
guarantee that the grand tour will terminate with a known time. To illustrate the
computation, we will describe a two-dimensional Peano curve, a three-dimensional
Hilbert curve, and our generalization to the -dimensional Hilbert curve.�

Figure 3.1 Third level Peano curve through 	 
� �
 ��

 We shall be concerned with ternary and octal expansions of fractional numbers
between 0 and 1. We adopt the following notation for a ternary expansion:

 or (3.5)� �� � � 0 � � � �0� � � �� 	 ��� � � � �
! ! !
� � �
� � �

� �

Similarly, for an octal expansion,
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 (3.6)� �6 6 6 0 � � � �0� 6 � �� 	� ��� � 7�� � � � �
$ $ $
� � �
� � �

� �

The two-dimensional Peano curve of level  is given by the two vector


 ( . (3.7) � � �� � 0� � � � �� �# � ��# � �0 � ��# � ��# � �0� � � � � � � 	 � � �
! ! b! ! ! b!
 �� � � � � �

Here  and is the -th iterate of . Of course the computation is#��� � � 
 �� � � �� 	� � # � #!

carried out until  is satisfied. To make this computation concrete, let us consider a level

3 example. Implicitly the fourth position in the decimal expansion is 0. For illustration

 (� � ���	� � � � �� ���# 	� � ��# ���# �� � ��	� � ����� � �
� � �

� �
� �

 



 � 
 � � �
The resulting sequence of points when joined determines a curve through in this case the
square.  Because there is considerable overlapping of points, a useful strategy is to join
the midpoints of the line segments which results in the derived Peano curve in Figure 3.2.

Figure 3.2 Derived Peano curve of level three.

The three-dimensional formulation of the Hilbert curve is somewhat more tedious. We
define the following matrices:

     8 � 8 � 8 �
	 � � � � 	 	 � �
� � 	 � 	 � � 	 �
� 	 � 	 � � � � 	

� � �

� � � � � �
� � � � � �
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   8 � 8 � 8 �
� � 	 � � 
 	 	 � �

 	 � � 
 	 � � � 	 �
� 
 	 � � 	 � � � 	

� � 	

� � � � � �
� � � � � �

  8 � 8 � �
� � 
 	 	 � �
� 	 � � � 
 	

 	 � � � 
 	 �


 �

� � � �
� � � �

We also construct the following column vectors:

     9 � 9 � 9 � 9 � 9 �
� � 	 	 �
� 	 	 	 	
� � � 	 	

� � � � �

� � � � � � � � � �
� � � � � � � � � �

   9 � 9 � 9 � �
	 	 �
	 	 	
	 � �

	 
 �

� � � � � �
� � � � � �

Then the three-dimensional Hilbert curve of level  is given by


 (3.8)��� �6 6 06 � � 8 8 8 08 9� � � � $ $ $ $ $
�~�

�
�
�

�
� � � � �c� �

where  is the identity matrix. A three-dimensional level 2 Hilbert curve is given in8$�

Figure 3.3.
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Figure 3.3 A 3-dimensional, level 2 Hilbert curve.

Both the Hilbert curve and the Peano curve can be extended to higher dimensions. See for
example Solka et al. (1998). We give briefly the algorithm here. First let if #��� �� � � �
is even and  if  is odd. Let -th ternary digit of . Let  be the#��� �� � � 
 � � � � � � ��

dimension and let  be the level we desire. Let


  (3.9)�� ��c²�c�³
~�Á £���� �

��c²�c�³

��� � # � � � �� �
� �

�  �

Then

 (3.10)���� � �0
 �� � �
�~� �~� �~�

� � �
²�³ ²�³ ²�³

� � �

� � �� � �
� � �

As before this describes a series of points in These can be joined by line segments& �� 	' ��

to form the general -dimensional Peano curve and the midpoints of the line segments�
joined to form the -dimensional derived Peano curve. By increasing the level  of the� 

Peano curve we can come as close as desired to every point in the -dimensional�
hypercube . Further reading on Peano curves and related fractal curves can be& �� 	'�

found in Peano (1890), Steinhaus (1936) and Sagan (1994).
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3.4 Andrews Plots, Parallel Coordinate Plots, and Tours. The Andrews plot
(Andrews, 1972) was an early attempt to give a two-dimensional plot of
multidimensional data. As such the Andrews plots have an interesting interpretation in
connection with both parallel coordinates and the grand tour. To describe the Andrews
plot, let  be the data vectors, then the Andrews plot is given by�� � �

� � �
�� �� � � �� � � �

 (3.11)� ��� � � � 3����� � � �$3��� � � 3�������� �$3���� �0��
%

� � � 	
� � � �

�
�
�

�°�

Traditionally, the Andrews plot was constructed by plotting  versus  for� ��� ��

� � 	�� � �� In brief the Andrews plot is a finite, hence, periodic Fourier expansion with
the weights given by the components of the data vector. By plotting versus  for� ��� ��

every  in a static plot, one could group points that had similar curves. Because of the�
applicability of the Parseval relation, Andrews plots also have the property of preserving
:� distances.

Andrews plots can be recognized in another sense. If one considers a one-
dimensional plot of the  animated as a function of  (and this is a view recognized in� ��� ��

Andrews, 1972), then the Andrews plot can be regarded as a one-dimensional tour. As a
tour, the Andrews plot is a series of interpolations between various one-dimensional
views of the data. In a similar way, the parallel coordinate plot can be viewed as a series
of linear interpolations between one-dimensional projections of the data. Although these
two plot devices have some similarity of interpretation in this sense, this interpretation
misses the powerful geometric structure which motivated the parallel coordinate plot and
lies at its intellectual roots.

Of course, the tour view of the Andrews plot also has a connection with the grand
tour notion we have been examining. The Asimov-Buja grand tour was originally
formulated as a series of projections into two-dimensional planes, not one-dimensional
lines. The availability of multi-dimensional representations such as scatterplot matrices
and parallel coordinates suggested the possibility full-dimensional grand tours. However,
the two major criteria for grand tours are continuity space-filling and . The Andrews plot
is a continuous tour, but as we shall see in the next section, it is not space filling.

3.5 A Pseudo-Grand Tour

As recently as 1990, the Andrews plot was characterized as a one-dimensional grand tour.
See for example  However, because of the familiarCrawford and Fall (1990).
trigonometric identities,

 ; (3.12)3���� � � � � 3���� � �$3�� � � �$3�� � 3���� �� � � � � �

 (3.13)�$3�� � � � � �$3�� � �$3�� � 
 3���� �3���� �� � � � � �

and
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 (3.14)�$3 ��� � 3�� ��� � 	�� �

Wegman and Shen (1993) showed that the Andrews plot was not a one-dimensional
grand tour because it was not anywhere nearly space filling even in only one dimension.
However, motivated by the Andrews plot, Wegman and Shen suggested a very fast
algorithm for computing an approximate two-dimensional grand tour. Consider the -�
dimensional data vector . If  is not even augment the vector by one�� � �

� � �
�� �� � � �� � � � �

additional 0. We assume without loss of generality that  is even. Let�

 (3.15)�� � �
�
�

��� � �3��� ��� �$3� ���� � 3��� ��� �$3� ���� � � � �� �
� �

and

 (3.16)�� � �
�
�

��� � ��$3� ��� 
 3��� ��� � �$3� ��� 
 3��� ����� � � � �� �
� �

Here  are as before linearly independent over the rationals. Note that��

 5 ���5 � �3�� � �� � �$3 � ��� � 	��� � �
� � �
�

�
�

�~�

�
�
�

� �

 5 ���5 � ��$3 � �� � � 
 3��� � ��� � 	��� � �
� � �
�

�
�

�~�

�
�
�

� �

and

 , � ��� ��� � � �3��� �� �$3� �� 
 �$3� �� 3��� ��� � ��� �� � � � �
�
�
�~�

2 �
�
�

� � � �

Thus  and  form an orthonormal basis for two-planes. They are not quite space� �� ���� ���
filling because of the dependence between  and  implied by (3.14).�$3� �� 3��� ��� �� �

However, the algorithm based on (3.15) and (3.16) is much more computationally
convenient than the torus-based winding algorithms. Of course, it does not generalize to a
full -dimensional grand tour. A two-dimensional projection of the data onto the -� � �� �

plane can be accomplished by taking the inner product as in equation (3.2) with .% � 	� �

4. Saturation Brushing

We have earlier mentioned saturation brushing as a technique for dealing with
large data sets. A basic exposition of the saturation brushing idea can be found in
Wegman and Luo (1997). While there is little in the way of mathematical underpinnings
for the idea, it is appropriate for sake of completeness to briefly describe the idea here.
When dealing with large data sets, overplotting becomes a serious problem. It is difficult
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to tell whether a pixel represents a single observation or perhaps hundreds or thousands of
observations. The idea of saturation brushing is to desaturate a brushing color until it
contains only a very small component of color and hence is very nearly black. Most
modern computers have a so-called -channel which allows for compositing of overplots.�

The -channel is used computer graphics as a device for incorporating transparency.�

However, by using such a device to build up color intensity, we can obtain a visual
indication of how much overplotting there is at a pixel. In effect, the brighter, more
saturated a pixel is, the more overplotting.

5. Conclusions
 
 We have used this combination of methods, i.e. parallel coordinate plots,
scatterplot matrices, and full -dimensional grand tours as well as partial grand tours, to�
analyze data sets ranging in dimension from 4 to 68 and ranging in data set size from as
few as 22 points to as large as 280,000 points. An amazing amount of visual insight can
be gained when these methods are applied in practical settings. Applications have
included discovery of reasons for bank failures, discovery of hidden pricing mechanisms
for commercial products such as cereals, discovery of physical structure of pi meson-
proton collisions, creation of detection schemes for chemical and biological warfare
agents, creation of the ability to detect buried landmines, demonstration of the
impossibility of finding linear predictors of cost in a certain class of software
development tools, and a host of other practical and interesting applications. We believe
these combinations of techniques are both incredibly powerful from an applications point
of view as well as having very interesting mathematical underpinnings.
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Software References

Mason Hypergraphics, copyright (c) 1988, 1989 by Edward J. Wegman and Masood
Bolorforoush, a MS-DOS package for high-dimensional data analysis. Originally programmed in
Turbo-Pascal, the sofware contained parallel coordinate plots, scatterplot matrices, grand-tour
linked to parallel coordinates, anaglyph stereo 3-D scatterplots, and parallel coordinate density
plots. It is still available at ftp://www.galaxy.gmu.edu/pub/software/hypergra.zip.

ExplorN, copyright (c) 1992, by Daniel B. Carr, Qiang Luo, Edward J. Wegman, and Ji Shen, a
UNIX package for Silicon Graphics workstations incorporating scatterplot matrices, stereo ray
glyph plots, parallel coordinates, and the -dimensional grand tour. Recent versions also include�

saturation brushing. The code was done using Silicon Graphics proprietary GL graphics
subroutines and, hence, only runs on Silicon Graphics workstations. The package is available at
ftp://www.galaxy.gmu.edu/pub/software/ExplorN_v1.tar.

CrystalVision, copyright (c) 2000 by Crystal Data Technologies, is a Windows 95/98/NT
package for Wintel computers. The software incorporates scatterplot matrices, stereoscopic 3-D
scatterplots using Crystal Eyes technology, parallel coordinate plots, -dimensional grand tours�

and partial grand tours, saturation brushing, and density plots. The code was constructed using
openGL and will run on any modern Wintel computer. A demonstration version of CrystalVision
is available at ftp://www.galaxy.gmu.edu/pub/software/CrystalVisionDemo.exe


