HP Fortran Programmer’s Reference

Fourth Edition
HP Fortran Compiler for HP-UX

2]

Manufacturing Part Number: B3908-90006
Document Number: B3908-90006
September 2003

Print History

Fourth
Document Number: B3908-90006
Released September 2003.

Third
Document Number: B3908-90004
Released June 2003.

Second
Document Number: B3908-90003
Released June 2001.

First
Document Number: B3908-90002

Released October 1998. Initial release.

Notice

© Copyright 1979-2003 Hewlett-Packard Development Company, L.P. All Rights Reserved.
Reproduction, adaptation, or translation without prior written permission is prohibited,
except as allowed under the copyright laws.

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

Itanium is a trademark of the Intel Corporation.

Parts of the Itanium-based compiler were generated by the iburg code-generator generator,
described at http://www.cs.princeton.edu/software/iburg.

Contents

1. Introduction to HP Fortran

HP Fortran features. e e e e e e 3
Source format 3
Data Ly PeS . . . 3
POINTerS . . .o 3
AT Y S . . 4
Control CoNStrUCES. o o 4
OPBr A0S, . 4
ProCedUrES. . . .o e 5
ModUules 5
/O features 5
INEFiNSICS 6

2. Language elements

Character set 9
Lexical tOKENS. o 10
NaAMES . . . e e 11
Program struCture 12
Statement labels e 13
StatEMIENES . . .o e e e 14
Source format of program file 16

Free source form e 16

Fixed source form e 18
INCLUDE lNe e e e 21

3. Data types and data objects

INtrinsic data typest 25
Type declaration for intrinsic types. 27
IMpPliCIt BYPINg. . .. oo e 31
CONSEANTS 32
Character SUDSEIINGS o 38
Character strings as automatic dataobjects. 39

DeriVEd By PES .« o oo ot 41
Defining a derived type 41
Sequence derived TYPe 43

Contents

Structure COMPONENT e e 43
Declaring a derived type-object e 44
STructure CONSTIUCKON e e e 44
Alignment of derived-type objects 45
A derived-type example 46
POINEErS. . o o 49
Pointer association status 50
4. Arrays
Array fundamentals. 55
Array declarations 57
Explicit-shape arrays 57
Assumed-shape arrays 59
Deferred-shape arrays 61
ASSUMEA-SIZE AITAYS. . . o ottt e e e e e 63
Array SECLIONS. . . . o 66
Subscript triplet 67
VeCtor SUDSCIIPES. . ..o 68
Array-valued structure component references. o 70
Array CONSTIUCTONS e e e e e e e e 73
ATaY EXPIESSIONS. . . o oottt e 75
Array-valued fUNCLIONS 77
INtrinsic fFUNCLIONS. 77
User-defined functions 77
Array iNQUIrY iNTriNSICS.o 79

5. Expressions and assignment

EXPrESSIONS. .« o o 83
OPEFANAS . . . oot 83
OPBr A0S, . e 84
Special forms of eXpression 90

ASSIGNMENT . . . o 95
Assignment statement 95
Pointer assignment. 97
Masked array assignment 99

Vi

Contents

6. Execution control

Control constructs and statementblocks L. 105
CASE CONSEIUCT.o e e e e e e e e e e 105
DO CONSEIUCTo e e e 107
IF CONSErUCT. e 111

Flow control statements i 113
CONTINUE statement. e e e e e e 113
CYCLE statement. e e e e 114
EXIT statement. 115
Assigned GO TO statement e 115
Computed GO TO statement e e e e 116
Unconditional GO TO statement. 117
Arithmetic IF statement. e 117
Logical IF statement. 118
PAUSE statement. e 119
STOP statement e 119

7. Program units and procedures

Terminology and CoONCEPLSot 123
Program UNItSo 123
PrOCEAUIES. . . 124
S0P o ot 124
ASSOCIALION 124

MaIN PrOgramMo e 126

External procedures. 129
Procedure definition 129
Procedure reference 130
Returning from a procedure reference. 132
Alternate entry points 134

Internal ProCcedures 135

Statement fuNCLIONS. o 137

AFQUMENTS . .. 139
Argument association. 139
Keyword option 143
Optional arguments 144
Duplicated association 145

Vii

Contents

INTENT attribute. e 146
%VAL and %REF built-in functions 146
Procedure interface 149
Interface bloCKS 150
GENENIC ProCEAUIES ottt e e e e e e 151
Defined Operators 153
Defined assignment 155
MOdUIES. . . 158
Module program Unit 158
USE statement 160
Program example 161
Block data program Unit 166

8. I/0 and file handling

RECOIAS . . o oo 171
Formatted records. it e 171
Unformatted records. 171
End-of-file record 171

RIS, . o 172
External files. 172
Internal files 172

Connectingafiletoaunit. 174
Connecting toanexternal file 174
Performing /O oninternal files. 175
Preconnected unit numbers 175
Automatically opened unit numbers 176

File accessmethods 177
Sequential @CCESSt 177
DIFECE ACCESS . . o o vt it e 183

Nonadvancing /O 184

/O statements 185

Syntax of I/O statements. 187
/O speCifiers 187
O data list. 189

ASA carriage control 193

Example programs.o 194

Viii

Contents

Internal file 194
Nonadvancing /O 195
File @CCESS . . .ottt e 197

9. I/0 formatting

FORMAT statement. e e e e 203
Format specification. 204
Edit desCriptorso 205
Character string (... or "...”) edit descriptor i 207
Newline ($) edit desCriptor. 208
Slash (/) edit descriptor.o 209
Colon (1) edit desCriptoro 209
A and R (character) edit descriptors i 210
B (binary) edit descriptor 212
BN and BZ (blank) edit descriptors. 214
D, E,EN, ES, F, G, and Q (real) editdescriptors. 215
H (Hollerith) edit descriptor. e 220
I (Integer) edit descriptor. e 220
L (Logical) edit descriptor 222
M and N edit descriptorst 223
O (Octal) edit desCriptor.t 224
P (scale factor) edit descriptor e 225
Q (bytes remaining) edit descriptor. 226
S, SP, and SS (plus sign) edit descriptors 227
T, TL, TR, and X (tab) edit descriptors 227
Z (hexadecimal) edit descriptor 227
Embedded format specification. 230
Nested format specifications 231
Format specificationand I/O datalist 232

10. HP Fortran statements

ATrIDULES . . . o 235
Statements and attributes. 237
ACCEPT (EXTENSION) . . .ottt e e e 238
ALLOCATABLE (statementand attribute) 240
ALLO CATE . . 242

Contents

ASSIGN . 245
AUTOMATIC (EXTENSION)ottt e e e e e 246
BACKSPACE . . . 248
BLO CK DA T A 250
BUFFER IN (EXEENSION) . . .o e 251
BUFFER OUT (EXTENSION).ottt e e e e e e e 253
BYTE (EXLENSION) . . . oo 255
CA L . o 257
CASE . . 259
CHARACTER . . .o e e 262
CLOSE . .o 265
COMMON . . 267
COMPLLEX . o 271
CONT AINS. . 274
CONTINUE . .. e e e 276
CY CLE . .o 277
DA T A 279
DEALLO CATE. . . i 283
DECODE (EXTENSION) . . . o ottt et e e e e e e e e 285
DIMENSION (statement and attribute). 288
DO . 292
DOUBLE COMPLEX (EXtENSION)ottt e e e e e e e 296
DOUBLE PRECISION e e 298
ELSE. . oo 300
ELSE IF . 301
ELSEWHERE 303
ENCODE (EXtENSION) . . . oo oot e e 304
EN D . 307
END (CONSEIUCE) . . . o oottt e e e 309
END (structure definition, extension) i 310
END INTERFACE e e 311
END TYPE . . 312
ENDFILE . . o 313
ENT RY 315
EQUIVALENCE. e 319
EX T 323

Contents

EXTERNAL (statement and attribute). i 324
FORM A T . 327
FUNCTION . e e 329
GO TO (@SSIgNEA) . . . ottt 331
GO TO (CoMpPULE) . . . oo 332
GO TO (unconditional). 333
IF (arithmetic) o 334
IFE (DIOCK). . . oo 335
IF (logical). . ..o 336
IM P LT L o 337
INCLUDE. . . . e 339
INQUIRE . .o e 341
INTEGER . .« 351
INTENT (statement and attribute) 354
INTERFACE. . . . e 357
INTRINSIC (statement and attribute). 359
LOG I C AL . .t 361
MAP (EXEENSION) . . . oot e e 364
MODULE . . . 365
MODULE PROCEDURE. e 367
NAME ST . .o 369
NULLIRY L 371
ON (EXEENSION) . o o oot e e e 373
OPEN 376
OPTIONAL (statement and attribute) 382
OPTIONS (EXTENSION) . o oottt e e e e e e e e e e 385
PARAMETER (statement and attribute), 386
PAUSE . . 389
POINTER (Cray-style eXtension)t 391
POINTER (statement and attribute), 394
PRINT . 397
PRIVATE (statement and attribute). 399
PROGRAM . . 402
PUBLIC (statement and attribute). 403
READ . . 406
RE AL . 411

Xi

Contents

RECORD (EXEENSION)t et e e e e e 414
RETURN. . . 418
REWINDD . . o 420
SAVE (statement and attribute) 422
SELECT CASE. . . . 425
SEQUENCEottt e 426
STATIC (statement, attribute, extension) 428
ST O . 430
STRUCTURE (EXTENSION) . . . oottt et e e e e e e e e 431
SUBROUTINE e e 440
TARGET (statement and attribute) 442
TASK COMMON (EXEENSION) . . oottt e e e e e 445
TYPE (declaration). 447
TYPE (definition) 450
TYPE (I/O) (EXTENSION). . . o ot e e e 452
UNION (EXEENSION) . . .ttt e e e e e e 453
USE . . o 454
VIRTUAL (EXTENSION) . ..ottt e e e e e e 456
VOLATILE (EXTENSION) . . o oot e 457
WHERE (statement and construct) 458
WIRITE . o 462

11. Intrinsic procedures

Basic terms and CoONCEPLS.ottt 469
Availability of INtrinsics 469
Subroutine and function iNtrinsics 469
Generic and specific function names 469
Classes of INtrinSiCS i 470
Optimized intrinsic functions. 471

Nonstandard intrinsic procedurest 472

Data representation models 473
Data representation model intrinsics i 473
The Bit Model 474
The Integer Number System Model. i 474
The Real Number System Model 475

Functional categories of intrinsic procedures. i 476

Xii

Contents

Intrinsic procedure specifications 479
ABORT() .« oottt et 479
ABS(A) . . et 479
ACHAR(D o e 480
AC O S (X ottt 481
ACOSD(X) - o o vttt e e 481
ACOSH (X)L oo 482
ADJUSTL(STRING) . . . ottt et e e e e 483
ADJUSTR(STRING) . . . ottt et e e e e 483
AIMAG(Z) .« o oo et e 484
AINT(A, KIND) . . ettt e e e 484
ALL(MASK, DIM). . .ottt e e e 485
ALLOCATED(ARRAY) . . o 486
AND(L) . oo e e 487
ANINT(A, KIND) .ottt e e e e 488
ANY(MASK, DIM) ottt et e e e e 488
ASINGX) © oot 489
ASIND(X) oottt e e 490
ASINH(X) © ot e e e 491
ASSOCIATED(POINTER, TARGET)ot e e 491
ATANK) © oo e e e 492
ATANZ(Y, X) o ettt 493
ATANZD(Y, X) . o ettt e e e e e 494
ATAND(X) o oottt e e 494
ATANH(X) oot 495
BADDRESS(X) « . . vt ettt et e e 496
=TI] 74 =1 () 496
BTEST(I, POS) . vttt et e e e e e e e 497
CEILING(A) . .ot o it e e e e 497
CHAR(L KIND). . .ottt 498
CMPLX(X, Y, KIND) .« .ottt e e e e e e e e 499
CONUIG(Z) o v e e e e e 500
COS (X) vttt 500
COSD (X .« ottt e 501
COSH X) oottt 501
COUNT(MASK, DIM) ..o e e e e 502

Xiii

Contents

CSHIFT(ARRAY, SHIFT, DIM) . ..o\ttt 503
DATE(DATESTR) . . o oot e e e e e e e 504
DATE_AND_TIME(DATE, TIME, ZONE, VALUES)ooviiuenann... 505
DBLE(A) © . ottt e e 506
DCMPLX(XK,Y) . o oot et e e e e 507
DFLOAT(A) . . oottt e e e 508
DIGITS(X) . o e v e ettt e e e e e 508
DIMK, Y) ettt 509
DNUMUI « oot 509
DOT_PRODUCT(VECTOR_A, VECTOR B). ..o\ tie i 510
DPROD(X, Y). e oottt e e e e e 511
DREAL(A) . . o o oot e e 511
EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM)o 512
EPSILON(X) - v o oot et e e e e e e 514
EXIT(STATUS) .« o oottt e e e e 514
EXP(X) oot 515
EXPONENT(X) .« o oot e e e e e 515
FLOOR(A) . . o oo et et e 516
FLUSHLUNIT) ot eeeeeeeeeeeeeee 516
ENUMUNIT) oo 517
FRACTION(X). © o e ettt e e e e e 517
FREE(P) © oottt et e e e e e e e 517
FSET(UNIT, NEWFD, OLDFD). . . .ottt 518
FSTREAM(UNIT) . . o oottt e 518
GETARG(N, STRING)o e ettt e 518
GETENV(VAR, VALUE). . . .ottt 519
GRAN(- oottt e e 519
HEDX(A) . o e e e e e e e e 519
HUGEX) . e vt et e e e e e e 520
IACHAR(C) . . o e et 520
TADDR(X) © . v oot e e e e e 521
TAND(L J) o e e e e e 522
TARGC() . .« v e e e e e e e 523
IBCLR(I, POS) . .\ttt e e 523
IBITS(I, POS, LEN) © .o vot ettt e e e 524
IBSET(, POS). . oottt e e e e 524

Xiv

Contents

ICHAR(C) .« . oot e 525
IDATE(MONTH, DAY, YEAR)ot eee et 526
IDIM(X, Y) e o e e e e e e e e e 526
IEOR(, J) o e e e e e 527
IGETARG(N, STR, STRLEN). . . . oo\ttt et 528
LIINT(A) oo 528
IMAG(A) . . o e e e e 529
INDEX(STRING, SUBSTRING, BACK)\t ieee e 529
INT(A, KIND) .« . oo e e e 530
INTL(A) e 531
INT2(A) .« oo e 532
INTAGA) .« e e 532
INTB(A) . oo e e e 532
INUMU) . e e e 533
IOMSG(N, MSG) . . . oot e 533
TOR(I,) oo e e e e 534
LQINT(A) . o et 535
IRANDQ. .« oo e et 535
IRANP(X) @ oot e e e e 536
ISHET(L SHIET) © oot 536
ISHETC(, SHIFT, SIZE) . .o oot 537
ISIGN(A, B). . o e vttt e e e e 538
ISNANCX) © oot 539
IXOR(, J) oo e e e e e e 539
IZEXT(A) . . o oo e e e e e 540
INUMUD) o 541
JZEXT(A). o oo e e 541
KIND(X) © oot e e e 542
KZEXT(A) - e oo e e e e e e e 542
LBOUND(ARRAY, DIM). . . oottt 543
LEN(STRING). © . oottt e e e e 544
LEN_TRIM(STRING) . . . oottt e e e 545
LGE(STRING_A, STRING_ B) . . .ot oe ettt 545
LGT(STRING_A, STRING B) . . .ot ee ettt e 546
LLE(STRING_A, STRING_ B) . . .ottt ettt 547
LLT(STRING_A, STRING_ B) . ..ottt 547

XV

Contents

LOCX). e vt e e e e e e e 548
LOG(X) v et ettt e e e e e e 548
LOGLOX) - .ttt e e 549
LOGICAL(L, KIND) . . . oot e et e e e e 550
LSHET(L SHIFT) . oottt e e e 550
LSHIFT(L SHIET) © oot e e e e e 551
MALLOC(SIZE) . ..ottt e e e e 551
MATMUL(MATRIX_A, MATRIX_B) .ottt 551
MAX(AL A2, A3,) o oot e e 553
MAXEXPONENT(X). . . o e oottt e e e e 553
MAXLOC(ARRAY, MASK) . . . o o oottt e 554
MAXVAL(ARRAY, DIM, MASK)o o et 555
MCLOCK() . v vee et e e e e e e 556
MERGE(TSOURCE, FSOURCE, MASK)t te oo 557
MINAL A2, A3, 00) oot e e e 557
MINEXPONENT(X) . . . o veeee e e e e e e e 558
MINLOC(ARRAY, MASK)ottt et 559
MINVAL(ARRAY, DIM, MASK)ottt e 560
MOD(A, P) . .o oottt 561
MODULO(A, P) . . oottt e e e 562
MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)ot oveee e 563
NEAREST(X, S) .« v oee et e e e e e e e 564
NINT(A, KIND). . ottt e 564
NOT() . oo e e e e e e e 565
ORI, J) o et 566
PACK(ARRAY, MASK, VECTOR)ottt 567
PRECISION(X) . . . ettt e e e e e 568
PRESENT(A). . .\ oottt e e e 569
PRODUCT(ARRAY, DIM, MASK)ottt 569
QEXT(A) © oo oo et 571
QFLOAT(A) . . o o oot 571
ONUM(D e e e e e 572
QPROD(X, Y). o et 572
RADIX(X) v oot et e e e 572
RAN(ISEED) . . .« ettt e e e e e 573
RAND(© .o et e e e 574

XVi

Contents

RANDOM_NUMBER(HARVEST)ottt et 574
RANDOM_SEED(SIZE, PUT, GET) . ..ottt ete et oo 575
RANGE(X) ..ottt e e e e 575
REAL(A, KIND) . ..ottt e e e 576
REPEAT(STRING, NCOPIES)\ttt 578
RESHAPE(SOURCE, SHAPE, PAD, ORDER)o oot 578
RNUM() © e e e e 579
RRSPACING(X) . .o vttt e e e e e 580
RSHET(L, SHIET) . oottt e e e e 580
RSHIET(L SHIFT) © oot 581
SCALEQK, 1) oo oo e e e e 581
SCAN(STRING, SET, BACK) . . . oot eee et 581
SECNDS(X) . .« e eeeeeeeeeeee 582
SELECTED_INT_KIND(R) . . .« ottt e 583
SELECTED REAL_KIND(P, R) ..ottt e 584
SET_EXPONENT(X, 1). . oottt e e e e 585
SHAPE(SOURCE)ttt 585
SIGN(A, B) oot 586
SINCX) « o oot e e e 587
SIND(X) . oo e e e 587
SINH(X) . o oot e 588
SIZE(ARRAY, DIM). . . oottt 589
SIZEOF(A). . oo oo e e 590
SPACING(X) « o eeeeeeeeeeeeee 590
SPREAD(SOURCE, DIM, NCOPIES) ...\ttt 591
SQRT(X) v e et e e e e e 592
SRAND(ISEED)ottt e e e e 592
SUM(ARRAY, DIM, MASK) . . . o o oottt e 593
SYSTEM(STR) .« .o ettt 594
SYSTEM_CLOCK(COUNT, COUNT RATE, COUNT_MAX)ooovnn... 594
TANCK) oo 595
TANDX) .o oo e e 596
TANH(X) .« o oot e 596
TIME(TIMESTR) .« . oottt 597
TINY(X) « oot e e e e 597
TRANSFER(SOURCE, MOLD, SIZE). . . .ottt 598

XVii

Contents

TRANSPOSE(MATRIX) . . . oottt e e 599
TRIM(STRING). . . ettt e e e 600
UBOUND(ARRAY, DIM) . ..ottt 600
UNPACK(VECTOR, MASK, FIELD).ottt 601
VERIFY(STRING, SET, BACK) . . . o\ ettt e 602
XOR(L,)« oo e e e 603
ZEXT(A). . o oot 604

12. BLAS and libU77 libraries

Calling libU77 and BLAS routinest e 607
Compile-line options. 607
Year-2000 compatibility 608
Declaring library functions 608
Declaring library routinesas EXTERNAL 609
Man Pages 610

HOUT77 routines.o 611

BLAS rOULINES . .. oo 620

A. I/O runtime error messages

RUNEIME 1/O BITOrS. . o o o e e e e e e e 625
GlOSSaNY . . 635
INdeX .. e 645

XViii

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 4-1.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 7-1.
Table 7-2.
Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-5.
Table 9-4.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9.

Tables

Fortran 90 character Set. 9
Statementorder inaprogramunit e 14
Statements allowed in scopingunits. 15
Keywords allowing optional spacing 17
Intrinsic data types. 25
Attributes in type declaration statement 29
Escape characters. 37
Example of structure storage.t 45
Array inquiry intrinsic functions. 79
Logical operators. e 87
Operator PreCedENCE v i e e e 88
Examples of operator precedence. 89
Initialization and specification expressions 94
Conversion of variable=expression, 95
Specification statements. L 127
Executable statements. 127
Input values for list-directed 1/O 178
Format of list-directed inputdata 179
Format of list-directed outputdata 180
Data transfer statements. i 185
File positioning statements 186
Auxiliary statements 186
I/O statements and specifiers. 188
ASA carriage-control characters 193
Editdescriptors. 205
Character string edit descriptor outputexamples 208
Contents of character data fieldsoninput 210
A and R edit descriptors: inputexamples 211
Contents of character data fieldsonoutput 211
A and R Edit descriptors: outputexamples. L. 212
B Edit descriptor: inputexamples............ 213
B Edit descriptor: outputexamples. 213
BN and BZ edit descriptors: inputexamples. 214

XiX

Tables

Table 9-10. D, E, F, and G edit descriptors: inputexamples 216
Table 9-11. D and E edit descriptors: outputexamples 217
Table 9-12. EN and ES edit descriptors: output examples 217
Table 9-13. F edit descriptor: outputexamples 218
Table 9-14. G edit descriptor: output examples 219
Table 9-15. H edit descriptor: outputexamples 220
Table 9-16. | edit descriptor: inputexamples. 221
Table 9-17. | edit descriptor: outputexamples. 222
Table 9-18. L edit descriptor: inputexamples 223
Table 9-19. L edit descriptor: output examples, 223
Table 9-20. O edit descriptor: inputexamples, 224
Table 9-21. O edit descriptor: outputexamples 225
Table 9-22. P edit descriptor: input and outputexamples. 226
Table 9-23. Z edit descriptor: input examples. 228
Table 9-24. Z edit descriptor: outputexamples. 229
Table 9-25. Format control and nested format specifications 232
Table 10-1. Attribute compatibility. 235
Table 10-32. Exceptions handled by the ON statement. 374
Table 11-2. Intrinsic functions and data representation models. 473
Table 11-3. Intrinsic procedures by category 476
Table 11-4. Truth table for AND Intrinsic 487
Table 11-5. Default values for the BOUNDARY argument. 513
Table 11-6. Truth table for IAND intrinsic. 522
Table 11-7. Truth table for IEOR intrinsic. 527
Table 11-8. Truth table for IOR Iintrinsic i, 534
Table 11-9. Truth table for IXOR Intrinsic. 540
Table 11-10. Truth table for NOT intrinsic. 565
Table 11-11. Truth table for OR Intrinsic. 566
Table 12-1. libU77 naming conflicts e 609
Table 12-2. Categories of libU77 routines. i 611
Table 12-3. lIbU77 routings e 611
Table 12-4. BLAS rOULINES.o e 620
Table A-1. Runtime 1/O errorS.o e e e 625

XX

Preface

The HP Fortran Programmer’s Reference is a language reference for programmers using HP
Fortran V2.0 and higher. It describes the features and requirements of the HP Fortran
programming language for both PA-RISC and Itanium®-based architectures.

XXi

The HP Fortran Programmer’s Reference is intended for use by experienced Fortran
programmers who are interested in writing or porting HP Fortran applications. This manual
includes information on the parallel concepts and directives, as well as optimization of
programs that use them.

You need not be familiar with the HP parallel architecture, programming models, or
optimization concepts to understand the concepts introduced in this book.

XXii

Scope
This guide covers programming methods for the HP Fortran compiler on machines running:

e HP-UX 11.0 and higher (PA-RISC)
e HP-UX 11i Version 1.5 (Itanium®-based systems)

HP Fortran supports an extensive shared-memory programming model. HP-UX 11.0 and
higher includes the required assembler, linker, and libraries.

HP Fortran fully supports the international Fortran standards informally called Fortran 90
and Fortran 95 as defined by these two standards: ISO/IEC 1539:1991(E) and ISO/IEC
1539:1997(E).

XXiii

Notational conventions

This section discusses notational conventions used in this book.
Table 1

bol d nmonospace In command examples, bol d nonospace
identifies input that must be typed exactly as
shown.

nonospace In paragraph text, nonospace identifies

command names, system calls, and data
structures and types.

In command examples, nonospace identifies
command output, including error messages.

italic In paragraph text, i t al i c identifies titles of
documents.

In command syntax diagrams, italic
identifies variables that you must provide.

The following command example uses
brackets to indicate that the variable
output fil e isoptional:

command i nput _file[output file]

Brackets ([]) In command examples, square brackets
designate optional entries.

XXiV

Table 1

Curly brackets ({}),
Pipe (1)

Horizontal ellipses

(..)

Vertical ellipses

Keycap

(Continued)

In command syntax diagrams, text
surrounded by curly brackets indicates a
choice. The choices available are shown inside
the curly brackets and separated by the pipe

sign ().

The following command example indicates
that you can enter either a or b:

command {a | b}

In command examples, horizontal ellipses
show repetition of the preceding items.

Vertical ellipses show that lines of code have
been left out of an example.

Keycap indicates the keyboard keys you must
press to execute the command example.

References to man pages appear in the form mnpgname(1), where “mnpgname” is the name of
the man page and is followed by its section number enclosed in parentheses. To view this man

page, type:
% man 1 mmpgnane

NOTE A Note highlights important supplemental information.

Command syntax

Consider this example:

COWANDi nput _file[...] {a | b} [output_file]

COVMAND must be typed as it appears.

i nput _fil e indicates a file name that must be supplied by the user.

The horizontal ellipsis in brackets indicates that additional, optional input file names

may be supplied.

XXV

Either a or b must be supplied.

[out put _file] indicates an optional file name.

XXVi

Associated documents

The following documents are listed as additional resources to help you use the compilers and
associated tools:

HP aC++ Online Programmer’s Guide—Presents reference and tutorial information on
aC++. This manual is only available in html format.

HP C/HP-UX Programmer’s Guide—Contains detailed discussions of selected C topics.

HP C/HP-UX Reference Manual—Presents reference information on the C programming
language, as implemented by HP.

HP-UX Floating Point Guide—Describes how floating-point arithmetic is implemented on
HP 9000 Series 700/800 systems. It discusses how floating-point behavior affects the
programmer. Additional useful includes that which assists the programmer in writing or
porting floating-point intensive programs.

HP Fortran Programmer’s Guide—Provides extensive usage information, including how
to compile and link, migration tips and tools, and how to call C and HP-UX routines for
HP Fortran.

HP MPI User’s Guide—Discusses message-passing programming using HP’s
Message-Passing Interface library.

HP MLIB User’s Guide VECLIB and LAPACK—Provides usage information about
mathematical software and computational kernels for engineering and scientific
applications.

HP-UX Linker and Libraries User's Guide—Describes how to develop software on HP-UX
using the HP compilers, assemblers, linker, libraries, and object files.

Parallel Programming Guide for HP-UX Systems—Describes efficient methods for
shared-memory programming using the HP-UX suite of compilers: HP Fortran, HP aC++
(ANSI C++), and HP C. This guide is intended for use by experienced Fortran, C, and C++
programmers and is intended for use on HP-UX 11.0 and higher.

Programming with Threads on HP-UX—Discusses programming with POSIX threads.

Threadtime by Scott J. Norton and Mark D. DiPasquale—Provides detailed guidelines on
the basics of thread management, including POSIX thread structure; thread management
functions; and the creation, termination and synchronization of threads.

HP MLIB User’s Guide VECLIB and LAPACK—Provides usage information about
mathematical software and computational kernels for engineering and scientific
applications.

XXVii

NOTE Many of these documents are accessible through the HP document World Wide
Web site at http://docs.hp.com. To locate a particular document at this location,
use this site’s search link to search for the document name or subject matter.

XXViii

1 Introduction to HP Fortran

This chapter summarizes standard features of HP Fortran that are not found in FORTRAN
77. This includes the following topics:

e Source format

Chapter 1

Introduction to HP Fortran

= Data types

« Pointers

= Arrays

= Control constructs
= Operators

= Procedures

< Modules

= /O features

e Intrinsics

Chapter 1

Introduction to HP Fortran
HP Fortran features

HP Fortran features

The following summarizes features of HP Fortran that are not in standard FORTRAN 77 and
indicates where they are described in this manual.

Source format

The fixed source form of FORTRAN 77 is extended by the addition of the semicolon (;)
statement separator and the exclamation point (!) trailing comment.

HP Fortran also supports free format source code. The format used in a source program file is
normally indicated by the file suffix, but the default format can be overridden by the +sour ce
compile-line option.

For information about source format, see “Source format of program file” on page 16.

Data types

1 Data declarations can include a kind type parameter—an integer value that determines
the range and precision of values for the declared data object. The kind type parameter
value is the number of bytes representing an entity of that type, except for COWPLEX
entities, where the number of bytes required is double the kind type value.

In principle, multibyte character data for languages with large character sets can be
implemented in Fortran by means of a kind type parameter for the CHARACTER data type.
HP Fortran, however, uses the Extended Unix Code (EUC) characters in file names,
comments, and string literals.

O Fortran supports derived types, which are composed of entities of the intrinsic types
(I NTEGER, REAL, COWPLEX, LOG CAL, and CHARACTER) or entities of previously defined
derived types. You declare derived-type objects in the same way that you declare
intrinsic-type objects.

For information about intrinsic and derived types, see “Intrinsic data types” on page 25 and
“Derived types” on page 41.

Pointers

Pointers are variables that contain addresses of other variables of the same type. Pointers are
declared in Fortran 90 with the PO NTER attribute. A pointer is an alias, and the variable (or
allocated space) for which it is an alias is its target. The pointer enables data to be accessed
and handled dynamically. For more information, see “Pointers” on page 49.

Chapter 1 3

Introduction to HP Fortran
HP Fortran features

Arrays
The Fortran 90 standard has defined these new array features:

O Array sections that permit operations for processing whole arrays or a subset of array
elements; expressions, functions, and assignments can be array-valued. The WHERE
construct and statement are used for masked-array assignment.

 Array constructors—unnamed, rank-one arrays whose elements can be constants or
variables. You can use the RESHAPE intrinsic function to transform the array constructor
to an array value of higher rank.

1 New types of array:

— Assumed-shape arrays are dummy arguments that take on the size and shape of the
corresponding actual arguments.

— Deferred-shape arrays become defined when they are associated with target array
objects.

— Automatic arrays have at least one bound that is not a constant.

Arrays are discussed in Chapter 4, “Arrays,” on page 53.

Control constructs
Control constructs

 The CASE construct selects and executes one or more associated statements on the basis of
a case selector value, which can be of type | NTEGER, CHARACTER or LOd CAL.

 Additional forms of the DOstatement allow branching to the end of a DOloop and
branching out of a DOloop.

These constructs are described in “Control constructs and statement blocks” on page 105.

Operators

You can write your own procedures to define new operations for intrinsic operators, including
assignment, for use with operands of intrinsic data types or derived data types; see “Defined
operators” on page 153 and “Defined assignment” on page 155.

4 Chapter 1

Introduction to HP Fortran
HP Fortran features

Procedures

0 Fortran 90 includes a feature called the procedure interface block, which provides an
explicit interface for external procedures. The names and properties of the dummy
arguments are then available to the calling procedure, allowing the compiler to check that
the dummy and actual arguments match. For information about interface blocks, see
“Procedure interface” on page 149.

 Actual arguments can be omitted from the argument list or can be arranged in a different
order from the dummy arguments.

0 You can implement user-defined operators or extend intrinsic operators, including the
assignment operator; see “Defined operators” on page 153 and “Defined assignment” on
page 155.

O Dummy arguments to procedures can be given an | NTENT attribute (I N, OUT or | NQUT); see
“INTENT attribute” on page 146.

0 Subprograms can appear within a module subprogram, an external subprogram, or a
main program unit; see “Internal procedures” on page 135.

O Recursive procedures (an extension in HP FORTRAN 77) are a standard feature of
Fortran 90. For more information, see “Recursive reference” on page 132.

Modules

A module is a program unit that can be used to specify data objects, named constants, derived
types, procedures, operators, and namelist groups. Partial or complete access to these module
entities is provided by the USE statement. An entity may be declared PR VATE to limit
visibility to the module itself.

One use of the module is to provide controlled access to global data, making it a safer
alternative to the COMMON block. The module also provides a convenient way to encapsulate
the specification of derived types with their associated operations.

For information about modules, see “Modules” on page 158.

1/0O features

d Nonadvancing I/0

After a record-based 1/0 operation in FORTRAN 77, the file pointer moves to the start of
the next record. In Fortran 90, you can use the ADVANCE=NOspecifier to position the file
pointer after the characters just read or written rather than at the start of the next
record. Nonadvancing 1/O thus allows you to determine the length of a variable-length
record. See “Nonadvancing 1/0” on page 184 for more information.

Chapter 1 5

Introduction to HP Fortran
HP Fortran features

1 Namelist-directed 1/O

Namelist-directed 1/O—previously available as an extension to FORTRAN 77—is a
standard feature of Fortran 90. This feature enables you to perform repeated 1/0
operations on a named group of variables. See “Namelist-directed 1/0” on page 181 for
more information.

Intrinsics

Fortran 90 provides a large number of new intrinsic procedures for manipulating arrays.
Many of them are elemental, taking either scalar or array arguments. In the latter case, the
result is as if the procedure were applied separately to each element of the array.

Other additions include transformational functions that operate on arrays as a whole, and
inquiry functions that return information about the properties of the arguments rather than
values computed from them.

Table 4-1 on page 79 lists the array-inquiry intrinsic functions. For descriptions of all
intrinsic procedures, see Chapter 11, “Intrinsic procedures,” on page 467.

6 Chapter 1

2 Language elements

This chapter describes the basic elements of an HP Fortran program. This includes the
following topics:

e Character set

Chapter 2

Language elements

= Lexical tokens

= Program structure

= Statement labels

= Statements

= Source format of program file
< INCLUDE line

Chapter 2

Language elements
Character set

Character set

The Fortran 90 standard character set, shown in Table 2-1, consists of letters, digits, the
underscore character, and special characters. The HP Fortran character set consists of the
Fortran 90 character set, plus:

= Control characters (Tab, Newline , and Carriage return). Carriage return and Tab are
usually treated as “white space” in a source program. You can use them freely to make the
source easier to read.

= The pound sign (#) character in column 1 to initiate a comment. This is an HP extension
that allows C preprocessor directives embedded in source files to be treated as comments.

= Any other characters in the HP character set listed in Appendix B. These characters may
be used in character constants, character string edit descriptors, comments, and 1/0

records.
Table 2-1 Fortran 90 character set
Category Characters
Letters AtoZ atoz
Digits 0Oto9
Underscore

Special characters blank (space)
I “ %&; <>?79%
=+-*/ (), .

Lowercase alphabetic characters are equivalent to uppercase characters except when they
appear in character strings or Hollerith constants.

HP Fortran supports only the default character type, CHARACTER(KI ND=1), as described in
“Type declaration for intrinsic types” on page 27. Support is provided, however, for Extended
Unix Code (EUC) and Shift-JIS encoding.

Chapter 2 9

Language elements
Lexical tokens

Lexical tokens

Lexical tokens consist of sequences of characters and are the building blocks of a program.
They denote names, operators, literal constants, labels, keywords, delimiters, and may also
include the following characters and character combinations:

= = = 1 . %

10 Chapter 2

Language elements
Names

Names

In Fortran 90, names denote entities such as variables, procedures, derived types, named
constants, and COMMON blocks. A name must start with a letter but can consist of any
combination of letters, digits, and underscore (_) characters. As an extension in HP Fortran,
the dollar sign may also be used in a name, but not as the first character.

The Fortran 90 Standard allows a maximum length of 31 characters in a name. In HP Fortran
this limit is extended to 255 characters, and all are significant—that is, two names that differ
only in their 255th character are treated as distinct. Names and keywords are case
insensitive: for example, Ti t| e$23_Name and Tl TLE$23_NAME are the same name.

The CASE, | F, and DOconstructs can optionally be given names. The construct name appears
before the first statement of the construct, followed by a colon (:). The same name must
appear at the end of the final statement of the construct. For more information about these
constructs, refer to “Control constructs and statement blocks” on page 105.

Chapter 2 11

Language elements
Program structure

Program structure

A complete executable Fortran program contains one and only one main program unit and
may also contain one or more of the following other types of program units:

< External function subprogram unit

< External subroutine subprogram unit
=« Block data program unit

< Module program unit

Each program unit can be compiled separately. Execution of the program starts in the main
program. Control may be passed to other program units.

The Fortran 90 program units, and the transfer of control between them, are described in
Chapter 7, “Program units and procedures,” on page 121.

12 Chapter 2

Language elements
Statement labels

Statement labels

A Fortran 90 statement may have a preceding label, composed of one to five digits. All
statement labels in the same scoping unit must be unique; leading zeroes are not significant.
Although most statements can be labeled, not all statements can be branched to.

The FORVAT statement must have a label. The | NCLUDE line, which is not a statement but a
compiler directive, must not have a label.

Chapter 2 13

Language elements
Statements

Statements

All HP Fortran statements are fully described in alphabetical order in Chapter 10, “HP
Fortran Statements.”

The required order for statements in a standard Fortran 90 program unit is illustrated in
Table 2-2. Vertical lines separate statements that can be interspersed, and horizontal lines
separate statements that cannot be interspersed. For example, the DATA statement can
appear among executable statements but may not be interspersed with CONTAI N statements.
Also, the USE statement, if present, must immediately follow the program unit heading.

Table 2-2

Statement order in a program unit

PROGRAM FUNCTI QN, SUBRCQUTI NE, MCDULE, or BLOCK DATA statement

USE statement
| MPLI A T NONE statement
PARAMETER statement | MPLI O T statement
FORVAT Derived-type definitions,
and PARAMETER and Interface blocks,
ENTRY DATA statements Type declarations,
statements Statement functions, and
Specification statements
DATA statements Executable constructs

CONTAI NS statement

Internal subprograms or module subprograms

END statement

Table 2-2 does not show where comments, the | NCLUDE line, and directives may appear.
Comments may appear anywhere in a source file, including after the END statement. The

I NCLUDE line may appear anywhere before the END PROGRAMstatement.

14

Chapter 2

Language elements
Statements

Table 2-3 identifies which statements may appear within a scoping unit; a check mark
indicates that a statement is allowed in the specified scoping unit. For the purpose of this
table, type declarations include the PARAMETER statement, the | MPLI O T statement, type
declaration statements, derived-type definitions, and specification statements.

Table 2-3 Statements allowed in scoping units
Scoping units
£ =
©)) [0)]
5|85 2 |e5[w58 55
o | £Eol 3 |55 E5| &3 °€
Statements S | g0 © |9l 59 £8| xg
c |5l = |22 cLc oD
'S o1 g T gl - m 2
S o
CONTAI NS v v v
DATA v v v v v v
ENTRY v v
Executable v v v v
FORNVAT v v v v
Interface block v v v v v v
Statement function v v v v
Type declaration v v v v v v v
USE v v v v v v v

Chapter 2 15

Language elements
Source format of program file

Source format of program file

The HP Fortran compiler accepts source files in fixed form (the standard source form for
FORTRAN 77 programs) or free form. The following sections describe both forms.

The compiler assumes that source files whose names end in the . f 90 extension are in free
source form and that files whose names end in the . f or . F extension are in fixed form. You
can override these assumptions by compiling with the +sour ce=f r ee or +sour ce=fr ee
option. See the HP Fortran Programmer’s Guide for more information.

Although the two forms are quite different, you can format a Fortran 90 source file so that the
compiler would accept it as either fixed or free form. This would be necessary, for example,
when preparing a source file containing code that will be inserted through the | NCLUDE line
into a file for which the form is not known. To format a source file to be acceptable as either
free or fixed source form, use the following rules:

« Put labels in columns1-5.
= Put statement bodies in columns 7-72.
= Begin comments with an exclamation mark in anycolumn except column 6.

< Indicate all continuations with an ampersand character (&) in column 73 of the line to be
continued and an ampersand character in column 6 of the continuing line.

e Do not insert blanks in tokens.

= Separate adjacent names and keywords with a space.

Free source form

In free source form, the source line is not divided into fields of predefined width, as in the fixed
form. This makes entering text at an interactive terminal more convenient.

Source lines

Freeform lines can contain from 0 to 132 characters. The +ext end_sour ce option extends the
line to column 254. This is described in the HP Fortran Programmer’s Guide. Several
statements can appear on a single source line, separated by semicolons. A single Fortran 90
statement can extend over more than one source line, as described below in “Statement
continuation” on page 18.

Multiple statements may appear on the same line, separated by a semicolon (;).

16 Chapter 2

Language elements
Source format of program file

Statement labels

Statement labels are not required to be in columns 1-5, but must be separated from the
statement by at least one space.

Spaces

Spaces are significant:

= They may not appear within a lexical token, such as a name or an operator.

< Ingeneral, one or more spaces are required to separate adjacent statement keywords,
names, constants, or labels. Within the keyword pairs listed in Table 2-4, however, the
space is optional. The keyword following ENDcan be: BLOCK DATA, DO, FI LE, FUNCTI ON, | F,
| NTERFACE, VAP, MODULE, PROGRAM SELECT, SUBRCUTI NE, STRUCTURE, TYPE, UNI ON or
WHERE.

Table 2-4 Keywords allowing optional spacing
BLOCK DATA & TO
DOUBLE PREC Sl ON IN QUT
ELSE | F SELECT CASE
END keywor d

= Spaces are not required between a name and an operator because the latter begins and
ends with special symbols that cannot be part of a name. Multiple spaces, unless in a
character context, are equivalent to a single space.

Consider the spaces (designated by b) in the following statement:
| Fbb(TEXT. EQ. ' bbbYES') ... ! Valid

The two spaces after | F are valid and are equivalent to one space. No spaces are required
before or after . EQ , because there is no ambiguity. However, the three spaces in the character
constant are significant.

In the next example
| F(MbARY. bGE. M KE) ... ! Faulty in free source form

the spaces are invalid in free source form but valid in fixed source form.

Chapter 2 17

Language elements
Source format of program file

Comments

An exclamation mark (!) indicates the beginning of a comment in free source form, except
where it appears in a character context. The compiler considers the rest of the line following
the exclamation mark as part of the comment. Embedding a comment inside program text
within a single source line is not allowed, but it can follow program text on a source line. A
statement on a line with a trailing comment can be continued on subsequent lines.

Statement continuation

A statement can be split over two or more source lines by appending an ampersand character
(&) to each source line except the last. The ampersand must not be within a character
constant.

A statement can occupy up to 40 source lines. As an extension, HP Fortran increases this limit
to 100 source lines. The END statement cannot be split by means of a continuation line.
Comments are not statements and cannot be continued.

The text of the source statement in a continuation line is assumed to resume from column 1.
However, if the first nonblank symbol in the line is an ampersand, the text resumes from the
first column after the ampersand.

Consider the following two statements:

INTEGER marks, total, difference, & I work vari abl es
nean, average

INTEGER marks, total, difference, mean_& ! work variabl es
&val ue, average

The second statement declares the integer variable, nean_val ue. Any spaces appearing in
the variable name as a result of the continuation would be invalid. This is the reason for the
ampersand character in the continuation line. (Alternatively, val ue could have been
positioned at column 1.) Using the ampersand character to split lexical tokens and character
constants across source lines is permitted, but not recommended.

Fixed source form

Statements or parts of statements must be written between character columns 7 and 72. Any
text following column 72 is ignored. The +[no] ext end_sour ce option extends the statement
to column 254. Columns 1-6 are reserved for special use.

NOTE Programs that depend on the compiler’s ignoring any characters after column
72 will not compile correctly with the +ext end_sour ce option.

Multiple statements may appear on the same line, separated by a semicolon (;).

18 Chapter 2

Language elements
Source format of program file

Spaces

Spaces are not significant except within a character context. For example, the two statements

RETURN
RETURN

are equivalent, but

c = "abc"
c="abc"
are not.

Source lines

There are three types of lines in fixed source form:
< Initial line

= Continuation line

e Comment line

The following sections describe each type of source lines.

Initial line An initial line has the following form:
e Columns 1 to 5 may contain a statement label.
= Column 6 contains a space or the digit zero.

e Columns 7 to 72 (optionally, to 254) contain the statement.

Continuation line A continuation line has the following form:

e Columns 1 to 5 are blank.

= Column 6 contains any character other than zero or a space. One practice is to number
continuation lines consecutively from 1.

e Columns 7 to 72 (optionally, to 254) contain the continuation of a statement.

The Standard specifies that a statement must not have more than 19 continuation lines. As
an extension to the Standard, HP Fortran allows as many as 99 continuation lines.

Comment line Comment lines may be included in a program. Comment lines do not affect
compilation in any way, but usually include explanatory notes. The letter C, or ¢, or an
asterisk (*) in column 1 of a line, designates that line as a comment line; the comment text is

Chapter 2 19

Language elements
Source format of program file

written in columns 1 to 72. The compiler treats a line containing only blank characters in
columns 1 to 72 as a comment line. In addition, a line is considered to be a comment when
there is an exclamation mark (!) in column 1 or in any column except column 6.

The following are HP extensions to the comment:

e Aline with Dor d in column 1 is by default treated as a comment. The +dl i nes option
causes the compiler to treat such lines as statements to be compiled. This extension to the
comment—called debugging lines—is useful for including PR NT statements that are to be
compiled during the debugging stage to display the program state.

= Aline with a pound sign (#) character in column 1 is treated as a comment. This extension
allows compilation of source files that have been preprocessed with the C preprocessor
(cpp).

< HP Fortran allows tab formatting. That is, a tab character may be entered in the first
column of a line to skip past the statement label columns. If the character following the
tab character is a digit, this digit is assumed to be in column 6, the continuation indicator
column. Any other character following the tab character is assumed to be in column 7, the
start of a new statement. A tab character in any other column of a line is treated as a
space.

20 Chapter 2

Language elements
INCLUDE line

INCLUDE line

The | NCLUDE line is a directive to the compiler, not a Fortran 90 statement. It causes the
compiler to insert text into a program before compilation. The inserted text is substituted for
the | NCLUDE line and becomes part of the compilable source text. The format of an | NCLUDE
line is:

| NCLUDE char-literal-const

where char-literal -const is the name of a file containing the text to be included. The
character literal constant must not have a kind parameter that is a named constant.

Ifchar-literal -const isonly a filename (in other words, no pathname is specified), the
compiler searches a user-specified path. You can use the - 1 di r option to tell the compiler
where to search for files to be included.

The | NCLUDE line must appear on one line with no other text except possibly a trailing
comment. There must be no statement label. This means, for example, that it is not possible to
branch to it, and it cannot be the action statement that is part of an | F statement. Putting a
second | NCLUDE or another Fortran 90 statement on the same line using a semicolon as a
separator is not permitted. Continuing an | NCLUDE line using an ampersand is also not
permitted.

The text of the included file must consist of complete Fortran 90 statements.

I NCLUDE lines may also be nested. That is, a second | NCLUDE line may appear within the text
to be included, and the text that it includes may also have an | NCLUDE line, and so on. HP
Fortran has a maximum | NCLUDE line nesting level of 10. However, the text inclusion must
not be recursive at any level; for example, included text A must not include text B if B
includes text A.

The following are example | NCLUDE lines:

I NCLUDE " MY_COVMON_BLOCKS”
I NCLUDE "/ usr/i ncl ude/ nachi ne_par aneters. h”

In the next example, the | NCLUDE line occurs in the executable part of a program and supplies
the code that uses the input value from the preceding READ statement:

READ *, theta
I NCLUDE " FUNCTI ON_CALCULATI ON’

Chapter 2 21

Language elements
INCLUDE line

22 Chapter 2

3 Data types and data objects

This chapter describes how data is represented and stored in HP Fortran programs, and
includes the following topics:

< Intrinsic data types

Chapter 3

23

Data types and data objects

= Derived types
« Pointers

Arrays are described in Chapter 4, “Arrays,” on page 53. The RECORD and STRUCTURE
statements—HP Fortran extensions—are fully described in Chapter 10, “HP Fortran
Statements.” Intrinsics procedures are described in Chapter 11, “Intrinsic procedures,” on
page 467.

24 Chapter 3

Data types and data objects
Intrinsic data types

Intrinsic data types

The intrinsic data types are the data types predefined by the HP Fortran language, in
contrast with derived types, which are user-defined (see “Derived types” on page 41). The
intrinsic data types include numeric types:

= Integer
* Real
= Complex

and nonnumeric types:

e Character
e Logical

Each type allows the specification of a kind parameter to select a data representation for that
type (see “Type declaration for intrinsic types” on page 27 for the format of the kind
parameter). If the kind parameter is not specified, each type has a default data
representation. Table 3-1 identifies the data representation for each type, including the
default case where a kind parameter is not specified. The types are listed by keyword and
applicable kind parameter. The table also includes the data representation for the HP
extensions, BYTE and DOUBLE COVPLEX

As shown in Table 3-1, HP Fortran aligns data on natural boundaries. Entities of the intrinsic
data types are aligned in memory on byte boundaries of 1, 2, 4, or 8, depending on their size.
Array variables are aligned on an address that is a multiple of the alignment required for the
scalar variable with the same type and kind parameters.

NOTE The ASCII character set uses only the values 0 to 127 (7 bits), but the
HP Fortran implementation allows use of all 8 bits of a character entity. The
processing of character sets requiring multibyte representation for each
character makes use of all 8 bits.

For additional information about data representation models, see “Data representation
models” on page 473.

Table 3-1 Intrinsic data types

Precision (in

Type Range of values decimal digits)

Bytes | Alignment

Chapter 3 25

Data types and data objects

Intrinsic data types

Table 3-1 Intrinsic data types (Continued)
| NTEGER(1) -128 to 127 Not applicable 1
| NTEGER(2) 215 40 2151 Not applicable 2
I(o,I\eHI;ESIEt?(4) 2% to 2311 Not applicable 4
| NTEGER(8) 263 ¢0 2631 Not applicable 8
REAL(4) -3.402823x10%8 to 4
(default)
-1.175495x10°%8
0.0 approximately 6
+1.175495x10738 to
+3.402823x10%8
REAL(8) -1.797693x10%3% to 8
-2.225073x1073%8
0.0 approximately 15
+2.225073x10398 1o
+1.797693x10+308
REAL(16) -1.189731x10™%%2 to 16
-3.362103x1074932
0.0 approximately 33
+3.362103x104932 to
+1.189731x10+4932
DOUBLE Same as for REAL(8) approximately 15 8
PREC SI ON
COVPLEX(4) Same as for REAL(4) Same as for 8
REAL(4)
26 Chapter 3

Data types and data objects

Intrinsic data types

Table 3-1 Intrinsic data types (Continued)
COVPLEX(8) Same as for REAL(8) Same as for 16 8

REAL(8)
DOUBLE Same as for REAL(8) Same as for 16 8

COVPLEX REAL(8)
m%ﬂ 1) ASCII character set Not applicable 1 1
LOG CAL(1) . TRUE. and . FALSE Not applicable 1 1
LOGE CAL(2) . TRUE. and . FALSE Not applicable 2 2
%ﬁaﬁs(4) . TRUE. and . FALSE. Not applicable 4 4
LOG CAL(8) . TRUE. and . FALSE Not applicable 8 8

Type declaration for intrinsic types

The following is the general form of a type declaration statement for the intrinsic data types:

type-spec[[,attribute-spec]

t ype- spec

is one of :

| NTEGER [Ki nd- sel ect or]
REAL [ki nd- sel ect or]

] entity-Ilist

DOUBLE PRECI SI ON[Ki nd-sel ector]
CHARACTER [char - sel ect or]

LOGd CAL [ki nd- sel ector]
COWPLEX [kind-selector]

DAUBLE OOWPLEX

BYTE

BYTE and DOUBLE COMPLEX are HP extensions. BYTE is equivalent to
| NTEGER(KI ND=1) . DOUBLE PRECI SI QN is equivalent to REAL(KI ND=8) , and
DOUBLE COWPLEX is equivalent to COVPLEX(KI ND=8) , except when +aut odbl

Chapter 3

27

Data types and data objects
Intrinsic data types

or +aut odbl 4 is used. Refer to the HP Fortran Programmer’'s Guide for
information about using these options to increase sizes. Refer to Chapter 10,
“HP Fortran Statements” for information about each t ype- spec.

If t ype- spec is present, it overrides the implicit-typing rules; see “Implicit
typing” on page 31.

As an HP extension to the Standard, t ype- spec can also take the form:
type*l ength

where t ype is an intrinsic type excluding BYTE, CHARACTER, DOUBLE
COWLEX, and DQUBLE PREQ SI O\, and | engt h is the number of bytes of
storage required, as shown in Table 3-1. Alternatively, *I engt h may appear
after the entity name. If the entity is an array with an array specification
following it, *| engt h may appear after the array specification. If *| engt h
appears with the entity name, it overrides the length specified by

ki nd-sel ector .

ki nd- sel ect or

is

([KIND=]scal ar-int-init-expr)
scalar-int-init-expr

is a scalar integer initialization expression that must evaluate to one of the
kind parameters available (see Table 3-1). For information about
initialization expressions, see “Initialization expressions” on page 91.

char-sel ect or

specifies the length and kind of the character variable, when t ype- spec is
CHARACTER

attribut e-spec

is one or more of the attributes listed in Table 3-2. Some attributes are
incompatible with others; for information about which attributes are
compatible as well as full descriptions of all the attributes, see Chapter 10,
“HP Fortran Statements.”

entity-list
is a comma-separated list of entity names of the form:

e var-nane[(array-spec)] [*char-len] [=
i nit-expr]

e function-nane[(array-spec)] [*char-Ien]

28 Chapter 3

Data types and data objects
Intrinsic data types

wherear r ay- spec is described in “Array declarations” on page 57; char -1 en
is described with the CHARACTER statement in Chapter 10;and i ni t - expr is
described in “Initialization expressions” on page 91. If you include

i nit-expr inentity, you must also include the double colon (: :) separator.

As an extension to the Standard, HP Fortran permits the use of slashes to
delimiti ni t - expr. The double colon separator, array constructors, and
structure constructors are not allowed in this form of initialization. Arrays
may be initialized by defining a list of values that are sequence associated
with the elements of the array.

Table 3-2 Attributes in type declaration statement
Attribute Description
AUTQVATI C Makes procedure variables automatic (extension).
ALLCOCATABLE Declares an array that can be allocated during execution.

D MENSI O\(ar r ay-spe | Declares an array; see “Array declarations” on page 57. If
c) entity-list also includes an arr ay- spec, it overrides the
DI MENSI ON attribute.

EXTERNAL Specifies a subprogram or block data located in another program
unit.

| NTENT Defines the mode of use of a dummy argument.

I NTRINSI C Allows a specific intrinsic name as an actual argument.

CPTI ONAL Declares the presence of an actual argument as optional.

PARAMETER Defines named constants.

PA NTER Declares the entity to be a pointer.

PR VATE Inhibits visibility outside a module.

PUBLI C Provides visibility outside a module.

SAVE Ensures the entity retains its value between calls of a procedure.

STATIC Ensures the entity retains its value between calls of a procedure

(extension).

TARGET Enables the entity to be the target of a pointer.

Chapter 3 29

Data types and data objects
Intrinsic data types

Table 3-2 Attributes in type declaration statement (Continued)
Attribute Description
VQOLATI LE Provides for data sharing between asynchronous processes
(extension).

The following are examples of type declaration statements:

| Default, KIND=4, integers i j k.
INTEGER i, j, k

! Using optional separator.
INTEGER :: i,j,k

! An 8-byte initialized integer.
I NTEGER(KI ND=8) :: i=2**40

! 10 el enent array of 8-byte integers.
| NTEGER(8), DI MENSI ON(10) :: i

! Using an array constructor for initialization.
REAL, DI MENSION(2,2):: a = RESHAPE((/1.,2.,3.,4.1),(/2,2/))

! Initialized conpl ex.
COWLEX :: z=(1.0,2.0)

I SYNTAX ERROR - no :: present.
COWPLEX z=(1.0, 2.0) I | LLEGAL

I Initialization using the HP sl ash extension
INTEGER i/1/,j/2/
REAL a(2,2)/1.1,2.1,1.2,2.2/ ! a(i,j)=i.]

I One character (default length).
CHARACTER(KIND=1) :: ¢

! A 10-byte character string.
CHARACTER(LEN=10) :: ¢

! Length can be * for a named constant; title is a 13-byte
! character string
CHARACTER(*) , PARAMETER :: title="Ftn 90 MANUAL’

! next four declarations are all equivalent, but only the |ast
! i s standard-conformnng

REAL*8 r8(10)

REAL r8*8(10)

REAL r8(10)*8

REAL(8), DI MENSION(10) :: r8

! If the statenent is in a subprogram n nust be known at entry;
! otherwi se, it nmust be a constant.
CHARACTER(LEN=n) :: ¢

30 Chapter 3

Data types and data objects
Intrinsic data types

SUBROUTI NE x(c)

CHARACTER* (*) :: ¢

! ¢ assunes the length of the actual argument.
END

! Asingle entity, of derived type node.
TYPE(node):: |ist_el enment

! Declaration and initialization of a user-defined variable
TYPE(coord) :: origin = coord(0.0,0.0)

Implicit typing

In Fortran 90, an entity may be used without having been declared in a type declaration
statement. The compiler determines the type of the entity by applying implicit typing rules.
The default implicit typing rules are:

< Names with initial letter Ato Hor Oto Z are of type real.
= Names with initial letter | to Nare of type integer.

Because Fortran 90 is a case-insensitive language, the same rules apply to both uppercase
and lowercase letters.

The following statements
DI MENSI ON a(5), i(10)
k=1

b =k

implicitly declare a and b as default reals and i and k as default integers.

As described in Chapter 10, the | MPLI O T statement enables you to change or cancel the
default implicit typing rules. The | MPLI A T statement takes effect for the scoping unit in
which it appears, except where overridden by explicit type statements.

You can override the implicit typing rules and enforce explicit typing—that is, declare entities
in type declaration statements—with the | MPLI CI T NONE statement. If this statement is
included in a scoping unit, all names in that unit must have their types explicitly declared.
You can also enforce explicit typing for all names within a source file by compiling with the
+i npl i ci t _none option. This option has the effect of including an | MPLI CI T NONE statement
in every program unit within a source file.

For a full description of the | MPLI G T and | MPLI CI T NONE statements, see Chapter 10, “HP
Fortran Statements.” The +i npl i ci t _none option is described in the HP Fortran
Programmer’s Guide.

Chapter 3 31

Data types and data objects
Intrinsic data types

Constants

Constants can be either literal or named. A literal constant is a sequence of characters that
represents a value. A named constant is a variable that has been initialized and has the
PARAMETER attribute. This section describes the formats of literal constants for each of the
intrinsic data types. For more information about named constants and the PARAMETER
statement and attribute, see Chapter 10.

Integer constants
The format of a signed integer literal constant is:

[sign] digit-string [_Kkind-paraneter]

sign

is either +or -.
digit-string

takes the form:

digit[digit]..
ki nd- par anet er

is one of:

e digit-string
=« the name of a scalar integer constant

The following are examples of integer constants:

-123
123 1
123_I LEN

In the last example, | LENis a named integer constant used as a kind parameter. It must have
avalueof 1, 2, 4, or 8.
BOZ constants

Fortran 90 allows DATA statements to include constants that are formatted in binary, octal, or
hexadecimal base. Such constants are called BOZ constants.

A binary constant is:

leading-letter{ digit-string'|"digit-string"}

32 Chapter 3

Data types and data objects
Intrinsic data types

where | eadi ng-1 et t er is the single character B, Q or Z, indicating binary, octal, or
hexadecimal base, respectively. di git-string must consist of digits that can represent the
base, namely:

= Binary: 0and 1.
= Octal: 0 through 7.
= Hexadecimal: 0 through 9, and A through F. The letters can be uppercase or lowercase.

In the following, the three DATA statements use BOZ constants to initializei , j, and k to the
decimal value 74:

INTEGER i, j, Kk
DATA i/ B' 01001010 /
DATA j/ O 112'/

DATA k/ Z' 4A |

As an extension, HP Fortran allows octal constants with a trailing O and hexadecimal
constants with a trailing X The following DATA statements initialize j and k to the decimal
value 74:

DATA j/'112' O

DATA k/' 4A X/

HP Fortran also allows the use of BOZ constants in contexts other than the DATA statement;
see “Typeless constants” on page 34.

Hollerith constants
Hollerith constants have the form:
 enHstring

where | en is the number of characters in the constant and st ri ng contains exactly | en
characters. The value of the constant is the value of the pattern of bytes generated by the
ASCII values of the characters.

As an extension, HP Fortran allows Hollerith constants to appear in the same contexts as
BOZ constants (see “Typeless constants” on page 34), as well as wherever a character string is
valid. If | en is greater than the number of characters in st ri ng, the constant is padded on the
right with space characters. If | en is less than the number of characters in stri ng, the
constant is truncated on the right.

If a Hollerith constant appears as an argument to the conversion functions | NT and LOd CAL,
the kind parameter is KI ND=1 if the length of the constant is 1 byte, KI ND=2 if the length is 2
bytes, KI ND=4 if 3 Or 4 bytes, and KI ND=8 if greater than 4.

Following are examples of Hollerith constants:
3HABC

Chapter 3 33

Data types and data objects
Intrinsic data types

5HABCbb !bb = two space characters, making the length equal to 5

Typeless constants

HP Fortran extends the uses of binary, octal, and hexadecimal constants (BOZ) beyond those
prescribed in the Fortran 90 Standard; see “BOZ constants” on page 32. HP Fortran allows
BOZ constants to be used as typeless constants wherever an intrinsic literal constant of any
numeric or logical type is permitted.

If possible, the type attached to a typeless constant is derived from the magnitude of the
constant and the context in which it appears. When used as one operand of a binary operator,
it assumes the type of the other operand. If it is used as the right-hand side of an assignment,
the type of the object on the left-hand side is assumed. When used to define the value within a
structure constructor, it assumes the type of the corresponding component. If appearing in an
array constructor, it assumes the type of the first element of the constructor.

The following rules and restrictions also apply:

= If the context does not determine the type, a warning is issued and the type attached to
the constant is:

[| NTEGER(4) if the constant occupies 1-4 bytes.
0 | NTEGER(8) if the constant occupies more than 4 bytes.
Leading zeros are considered significant in determining the size.

For example, Z' 00000001' assumes | NTEGER(4) , and Z' 000000001' assumes
| NTEGER(8) .

= The compiler truncates and issues a warning if more than 8 bytes are required to
represent a constant—for example, Z' 12345678123456781234" . The resulting truncated
value differs from that specified in the source code.

= When the size of the type determined by context does not match the size of the actual
constant, the constant is either extended with zeroes on the left or truncated from the left
as necessary.

=« Ifasingle constant is assigned to a complex entity, it is assumed to represent the real part
only and will assume the real type with the same length as the complex entity.

= When the compiler attempts to resolve a generic procedure, a BOZ constant in the
argument list is considered to match a logical or numeric dummy argument. An
ambiguous reference is likely to occur. See “Generic procedures” on page 151 for
information about generic procedures.

= Except for the intrinsic conversion procedures, a BOZ constant used as an actual
argument for an intrinsic procedure assumes the integer type.

34 Chapter 3

Data types and data objects
Intrinsic data types

= Theintrinsic functions | NT, LOd CAL, REAL, DBLE, DREAL, OQWPLX, and DOVPLX are available
to force a BOZ constant to a specific type. If a BOZ constant is specified as an argument to
these functions, its assumed type is determined as follows:

0 For functions | NT and LOd CAL the assumed type will be (respectively)
| NTEGER(KI ND=4) and LOd CAL(KI ND=4) , if the constant occupies 1 to 4 bytes;
otherwise, the type is assumed to be | NTEGER(KI ND=8) and LOGd CAL(KI ND=8) .

 For the functions REAL, DBLE, DREAL, QWPLX, and DOMPLX an argument of type
REAL(KI ND=4) is assumed if the constant occupies 1 to 4 bytes, REAL(KI ND=8) if it
occupies 5 to 8 bytes, and REAL(KI ND=16) otherwise.

The following examples illustrate the extended use of BOZ constants:

I The value is 20 (constant treated as | NTEGER(2) and
! truncated on the left).
10_2 + Z' 1000A

LOG CAL(2) :: Igl2
| Constant treated as LOGd CAL(2), the type of the variable.
lgl2 = B 1

! Constant treated as | NTEGER(4); | ABS is used.
ABS(Z' 41')

! Constant treated as REAL(8) as it is nmore than 4 bytes.
REAL(Z' 3FFO000000000000")

Real constants
A signed real literal constant is one of:
[sign]digit-string[[.[digit-string]]][exponent][_Kkind-paraneter]
exponent

takes the form:

exponent-letter [sign]digit-string
exponent - | etter

is the character E, D, or Q Qis an HP Fortran extension.
signanddigit-string
are explained in “Integer constants” on page 32.

If no kind parameter is present, or if the exponent | etter Eis present, the default kind
representation is used; see Table 3-1. If the exponent | etter is D, the kind parameter is 8,
and if the exponent | etter is Q the kind parameter is 16. If both an exponent and a kind
parameter are specified, the exponent | etter must be E

Chapter 3 35

Data types and data objects
Intrinsic data types

Following are examples of real constants:

3.4E-4 1 0. 00034
42. B2 14200
1.234_8 11.234 with approximately 15 digits precision

-2.53Q 300 !-2.53 x 10 to the -300th, with approximtely 34
! digits precision
Complex constants
A complex literal constant has the form:
(real -part, inaginary-part)
real - part and i magi nary- part
are each one of:
< signed-integer-literal-constant
e signed-real -1iteral-constant

The kind parameter of the complex value corresponds to the kind parameter of the part with
the larger storage requirement.

Following are examples of complex constants:
(1.0E2, 2.3E-2) !default conplex val ue
(3.0_8,4.2_4) I conpl ex val ue with KI ND=8

Character constants

A character literal constant is one of:

[ki nd- parareter _]' character-string'
[ki nd- parameter _]"character-string"

The delimiting characters are not part of the constant. If you need to place a single quote in a
string delimited by single quotes, use two single quotes; the same rule applies for double
guotes.

Following are examples of character constants:
1_'A N O her’
"Bach''s Preludes' ! actual constant is: Bach's Preludes

" ! a zero |l ength constant

36 Chapter 3

Data types and data objects
Intrinsic data types

For compatibility with C-language syntax, HP Fortran allows the backslash character (\) as
an escape character in character strings. You must use the +escape option to enable this
feature. When this option is enabled, the compiler ignores the backslash character and either
substitutes an alternative value for the character following, or interprets the character as a
quoted value. For example:

ISN T
is a valid string when compiled with the +escape option.

The backslash is not counted in the length of the string. Also, if \ &appears at the end of a line
when the +escape option is enabled, the ampersand is not treated as a continuation indicator.

Table 3-3 lists recognized escape sequences.

Table 3-3 Escape characters
Escape character | Effect
\n Newline
\'t Horizontal tab
\v Vertical tab
\b Backspace
\ f Form feed
\0 Null
\! Apostrophe (does not terminate a string)
\"” Double quote (does not terminate a string)
\\ \
\ X X, where x is any character other than 1

Logical constants

The format of a logical literal constant is:
{.TRUE. | . FALSE. }[_ki nd- par anet er]

The following are examples of logical constants:

. TRUE.
.FALSE. 2

Chapter 3 37

Data types and data objects
Intrinsic data types

In standard-conforming programs, a logical value of . TRUE. is represented by 1, and . FALSE.
is represented by 0. In nonstandard-conforming programs involving arithmetic operators with
logical operands, a logical variable may be assigned a value other than 0 or 1. In this case, any
nonzero value is . TRUE. , and only the value zero is . FALSE.

Character substrings

A character substring is a contiguous subset of a character string. The substring is defined by
the character positions of its start and end within the string, formatted as follows:

string ([starting-position] : [ending-position])
starting-position

is a scalar expression. If st art i ng- posi ti on is omitted, a value of 1 is
assumed. The st art i ng- posi ti on must be greater than or equal to 1,
unless the substring has zero length.

endi ng- posi ti on

is a scalar integer expression. If endi ng- posi ti on is omitted, the value of
the length of the character string is assumed.

The length of the substring is:
MAX (endi ng-position - starting-position + 1, 0)

The following example, substring.fo0, illustrates the basic operation on a substring.

Example 3-1 substring.fo0

PROGRAM mai n
CHARACTER(LEN=15) :: city_nane

city_name = ' CopXXXagen

PRINT *, “The city's nane is: “, city_nanme
city_name(4:6) = 'enh' | assign to a substring of city_name
PRINT *, “The city's nane is: “, city_name

END PROGRAM nai n

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 substring.f90

$ a.out
The city’'s name is: CopXXXagen
The city’'s name is: Copenhagen

38 Chapter 3

Data types and data objects
Intrinsic data types

For information about substring operations on an array of strings, see “Array sections” on
page 66.

Character strings as automatic data objects

An automatic data object can be either an automatic array (see “Explicit-shape arrays” on
page 57) or a character string that is local to a subprogram and whose size is nonconstant.
The size of a character string is determined when the subprogram is called and can vary from
call to call.

An automatic character string must not be:

e A dummy argument

= Declared with the SAVE attribute

= Initialized in a type declaration statement or DATA statement

The following example, swap_names.f90, illustrates the use of automatic character strings:

Example 3-2 swap_names.f90

PROGRAM nai n
I actual argunents to pass to swap_nanes
CHARACTER(6) :: nl "CGeorge", n2 = "Martha"

CHARACTER(4) :: n3 “pork", n4 = "salt"
PRINT *, "Before: nl =*“, nl, " n2 =*“, n2
CALL swap_nanes(nil, n2)

PRI NT *, "After: nl = “’ nly " n2 = u’ n2
PRINT *, "Before: n3 =*“, n3, " nd4 =*“, n4
CALL swap_nanes(n3, n4)

PRINT*, "After: n3 :“’ n3’ " na :u’ na

END PROGRAM nai n

| swap the argunents - two character strings of the same |ength
SUBROUTI NE swap_nanes (nanel, nane2)
CHARACTER(*) :: nanel, nane2 ! the argunents
! declare another character string, tenp, to be used in the
! exchange. tenp is an automatic data object, its length
! can vary fromcall to call
CHARACTER(LEN(nanel)) :: tenp

! the exchange
temp = nanel
nanel = nanme2
nane2 = tenp
END SUBROUTI NE swap_nanes

Chapter 3 39

Data types and data objects
Intrinsic data types

Here are the command lines to compile and execute the program, along with the output from

a sample run:

$ f90 swap_nanes. f 90

$ a.out

Before: nl = George n2 = Martha

After: nl = Martha n2 = George

Before: n3 = pork n4 = salt

After: n3 = salt n4 = pork

40 Chapter 3

Data types and data objects
Derived types

Derived types

Derived types are user-defined types that are constructed from entities of intrinsic data types
(see “Intrinsic data types” on page 25) or entities of previously defined derived types. For
example, the following is a definition of a derived type for manipulating coordinates
consisting of two real numbers:

TYPE coord
REAL :: X,y
END TYPE coord

x and y are the components of the derived type coor d.

The next statement declares two variables (a and b) of the derived type coor d:
TYPE(coord) :: a, b

The next statement copies the values of a to b, as in any assignment statement:
a=m>b

The components of a and b are referenced as a¥%, a%, b%, and b%. By using the defined
operation facility of Fortran 90, it is possible to extend the standard operators to work with
derived types. For example, if the + and = operators were re-defined to operate on derived type
operands, the following statement

a=-a+t+hb

would be equivalent to

a% = a% + bW%; a% = a% + b%W

The following sections describe:

= The syntax of defining a derived type
= Sequence types

= Structure constructors

= Referencing a structure component

= Alignment of derived type objects

The last section provides an example program that illustrates different features of derived
types.

Defining a derived type

The format for defining a derived type is:

Chapter 3 41

Data types and data objects

Derived types

TYPE [[, access-spec] ::] type-nane

[private-sequence- st at ement]

conp- defi ni ti on- st at ement

[conp-definition-statenment]
END TYPE [type- nane]

access-spec

t ype- name

is one of:
e PR VATE
e PUBLIC

access- spec is allowed only if the definition appears within a module. For
more information about modules, see “Modules” on page 158. The PR VATE
and PUBLI Cattributes are described in Chapter 10.

is the name of the type being defined. t ype- namre must not conflict with the
intrinsic type names.

pri vat e- sequence- st at enent

is a PR VATE or SEQUENCE statement. The PRI VATE statement is allowed only
if the definition appears within a module. For more information about the
SEQUENCE statement, see “Sequence derived type” on page 43. Both
statements are fully described in Chapter 10.

conp-defi ni tion- st at enent

conp-attr-1list

takes the form:
type-spec [[conp-attr-list]::]conp-decl

Notice that the syntax does not allow for initialization.

can only contain the DI MENSI ONand PO NTER attributes. A component array
without the PO NTER attribute must have an explicit-shape specification
with constant bounds. If a component is of the same derived type as the type
being defined then the component must have the PO NTER attribute. Both
attributes are fully described in Chapter 10.

conp-decl arati on

takes the form:

42

Chapter 3

Data types and data objects
Derived types

conp-nane [(array-spec)][*char-1 en]

where arr ay- spec is an array specification, as described in “Array
declarations” on page 57; and char - | en is used when conp- nane is of type
character to specify its length.

Sequence derived type

As shown in “Defining a derived type” on page 41, the SEQUENCE statement may appear in the
definition of a derived type. When storage for a variable of derived type is allocated, the
presence of the SEQUENCE statement in the definition of the derived type causes the compiler
to arrange all components in a storage sequence that is the same as the order in which they
are defined. Such a derived type is called a sequence derived type.

A sequence derived type may appear in a common block or in an equivalence set. The
Standard makes requirements about the type—numeric or character—of the components in a
sequence type. As an extension, HP Fortran makes no restrictions on the types of the
components other than that the definition of the derived type must include the SEQJENCE
statement.

Structure component

A component of a derived-type object may be referenced and used like any other variable—in
an expression, on the lefthand side of an assignment statement, or as procedure argument. It
may be a scalar, an array, or itself a derived-type object. The component name has the same
scope as the derived-type object in which it is declared.

To reference a structure component, use the form:
par ent - narme[%eonp- nane] . . . Yconp- nane

par ent - narre is a derived type. This part of a structure component reference is the parent
and is joined to conp- nane by the component selector operator (%. The
conp- nanme component to which the parent is joined on its immediate right
must be a component of par ent - nane. If par ent - nanme has the | NTENT,
TARGET, or PARAMETER attribute, then the structure component being
referenced—the rightmost conp- name—also has that attribute.

conp- nane is the name of a component. If more than one conp- name appears in a
structure component reference, the reference is to the rightmost conp- nane.
If more than one conp- narre appears in the reference, each one (except the
rightmost) must be a derived-type object, and the conp- nane to its
immediate right must be one of its declared components.

Chapter 3 43

Data types and data objects
Derived types

If par ent - narre and conp- nane are arrays, each can be followed by a
section-subscript-1ist enclosed in parentheses. See “Array sections” on page 66 for
information about the syntax of secti on- subscri pt-1i st. The Standard imposes certain
restrictions on structure component references that are array-valued, as described in
“Array-valued structure component references” on page 70.

If the definition of a derived type contains a component that is of the same derived type, the
component must have the PO NTER attribute. The following example defines the derived type
node, which includes a component (next) of the same derived type:

TYPE node ! for use in a singly linked |ist

I NTEGER :: val ue

TYPE(node), PO NTER :: next ! nust have the PO NTER attribute
END TYPE node

Declaring a derived type-object

To declare an object of derived type, use the TYPE statement, as follows:
TYPE (type-nane) [[, attrib-list] ::] entity-list

where t ype-nane, attrib-1ist,andentity-1ist all have the same meaning as in a type
declaration statement that is used to declare an object of an intrinsic type; see “Type
declaration for intrinsic types” on page 27.

Structure constructor

A structure constructor constructs a scalar value of derived type. The value is constructed of a
sequence of values for each component of the type. The syntax of a structure constructor is:

t ype- nanme (expression-1ist)

type- nane
is the name of the derived type. The name must have been previously
defined.

expression-1i st

is a comma-separated list of expressions that must agree in number, order,
and rank with the components in t ype- nane. For information about
expressions, see “Expressions” on page 83 and “Special forms of expression”
on page 90.

The following restrictions apply to the use of the structure constructor:

< If a component is of derived type, an embedded structure constructor must be used to
specify a value for the derived-type component.

44 Chapter 3

Data types and data objects
Derived types

< Ifacomponent is an array, an array constructor must appear in expr essi on- 1 i st that
satisfies the array. For more information about array constructors, see “Array
constructors” on page 73.

< If acomponent is a pointer, the corresponding expression in expr essi on-1i st must
evaluate to an allowable target.

Alignment of derived-type objects

Derived type objects have the same alignment as the component that has the most restrictive
alignment requirement. (This rule also applies to records.) To ensure natural alignment, the
compiler may add padding to each element in an array of derived type.

The following illustrates the alignment of an array of derived type. The definition of the
derived type includes the SEQUENCE statement to ensure the order in which components are
laid out in memory is the same as in the definition. The SEQUENCE statement has no effect on
alignment:

| definition of a derived type

TYPE t
SEQUENCE
CHARACTER(LEN=7) :: ¢
INTEGER(2) :: i2

REAL(8) :: r8
REAL(4) :: r4
END TYPE t

! declaration of an array variable of derived type
TYPE (t), DIMENSION(5) :: ta

Each element of t is allocated storage as shown in Table 3-4. The first component of t starts
at an address that is a multiple of 8. The four trailing padding bytes are necessary to preserve
the alignment of r 8 in each element of the array.

Table 3-4 Example of structure storage
Component Byte offset Length
c 0 7
i2 8 2
r8 16 8
r4 24 4
padding 28 4

Chapter 3 45

Data types and data objects
Derived types

A derived-type example

The example below, traffic.f90, illustrates how to define a derived type, declare a variable of
the type, specify a value for the variable using the structure constructor, pass the variable as
an argument to another procedure, and reference a structure component. The derived type is
defined in a module so that it can be made accessible by use association.

For more information about modules and the USE statement, see “Modules” on page 158. The
MCDULE and USE statements are also described in Chapter 10.

Example 3-3 traffic.fo0

PROGRAM traffic
I Illustrates derived types: defines a derived type, declares an
! to array variable of derived type, uses a structure constructor
| assign to its components, and passes a conponent which is

| itself another derived type to a subprogram

! Make the definition of the derived type called hours accessible
! to this program unit

USE hour s_def

LOG CAL :: busy
I NTEGER :: choice

| Define another derived type that uses hours as a conponent

TYPE hi way
INTEGER :: rte_num
TYPE(hours) :: busy_hours

END TYPE hi way

! Declare an array of derived-type structures
TYPE(hi way), DI MENSION(3) :: route

! Use the structure constructor to specify values for each
I elenent of route

route(1l) = hiway(128, hours(.TRUE., .FALSE.))

route(2) hi way (93, hours(.FALSE., .TRUE.))

rout e(3) hi way (97, hours(.FALSE., .FALSE.))

PRINT *, 'What road do you want to travel ?

PRINT *, '"1. Rte. 128
PRINT *, '2. Rte. 93
PRINT *, '3. Rte 97
READ *, choice

I Pass the busy_hours conponent of the selected route to
! the function busy.
I F (busy(route(choice)%usy_hours)) THEN

46 Chapter 3

Data types and data objects
Derived types

PRI NT *,’ Heavy comrute on rte.’, route(choice)%te_num
ELSE

PRI NT *,' Easy conmmute on rte.’, route(choice)%te_num
END | F

END PROGRAM traffic

LOG CAL FUNCTI ON busy(when)

This function accepts a derived-type argunment whose definition
is defined in the nodul e hours_def, nmade accessi bl e here by
use association. It returns .TRUE. or .FALSE., depending on
on the value of the user-selected conponent of the argunent.

Make the definition of hours accessible to this function.

USE hour s_def

TYPE(hours) :: when

I NTEGER :: choice

PRI NT *, 'Wen do you want to commute:'’
PRINT *, "1. Morning'

PRINT *, '2. Evening'

READ *, choice

Find out if the route is busy at that tine of day.

IF (choice .EQ 1) THEN

busy = when%am

ELSE

busy = when%pm

END | F

END FUNCTI ON busy

MODULE hour s_def

! Define a derived type, which will be passed as an argunent.
TYPE hours

LOG CAL :: am

LOG CAL :: pm
END TYPE hours

END MODULE hour s_def

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 traffic.f90
$ a.out

What road do you want to travel ?
1. Rte. 128

2. Rte. 93

3. Rte 97

Chapter 3 47

Data types and data objects
Derived types

1

Wien do you want to commute:
1. Morning

2. Evening

1

Heavy comute on rte. 128

48 Chapter 3

Data types and data objects
Pointers

Pointers

Pointers in Fortran 90 are more strongly typed than in other languages. While it is true that
the Fortran 90 pointer holds the address of another variable (the target), it also holds
additional information about the target. For this reason, declaring a pointer requires not only
the PA NTER attribute but also the type, kind parameter, and (if its target is an array) rank of
the target it can point to.

If a pointer is declared as an array with the PO NTER attribute, it is an array pointer. As
explained in “Deferred-shape arrays” on page 61, the declaration for an array pointer specifies
its specifies rank but not the bounds. Following is the declaration of the array pointer ptr:

REAL(KI ND=16), PO NTER, DIMENSION(:,:) :: ptr

To become assignable to an array pointer, a target must be declared with the TARGET attribute
and must have the same type, kind parameter, and rank as the array pointer. Given the
previous declaration of pt r, the following are legal statements:

| declare a target with the same type, kind paranmeter, and
! rank as ptr
REAL(KI ND=16), TARGET, DI MENSION(4,3) :: x

ptr => x ! assign x to ptr in a pointer assignnent statenent

Once the assignment statement executes, you can use either ptr or x to access the same
storage, effectively making pt r an alias of x.

You can also allocate storage to a pointer by means of the ALLOCATE statement. To deallocate
that storage after you are finished with it, use the DEALLOCATE statement. Although allocating
storage to a pointer does not involve a target object, the declaration of the pointer must still
specify its type, kind parameter, and (if you want to allocate an array) rank. The ALLOCATE
statement specifies the bounds for the dimensions. Here is an example of the ALLOCATE
statement used to allocate storage for ptr:

INTEGER :: j = 10, k = 20

! allocate storage for ptr
ALLOCATE (ptr(j,k))

ptr can now be referenced as though it were an array, using Fortran 90 array notation.

As an extension, HP Fortran provides the Cray-style pointer variables; for more information,
see Chapter 10. For information about aspects of pointers, refer to:

= “Array pointers” on page 61 for information about allocating array pointers.

Chapter 3 49

Data types and data objects

Pointers

= “Pointer assignment” on page 97 for information about associating a pointer with a target
by means of pointer assignment.

= Chapter 10, “HP Fortran Statements” for a full description of the ALLOCATE and
DEALLQOCATE statements as well as the PO NTERand TARGET attributes.

The following section discusses pointer status and includes an example program.

Pointer association status

Certain pointer operations can only be performed depending on the status of the pointer. A
pointer’s status is called its association status, and it can take three forms:

Undefined

Associated

Disassociated

The status of a pointer is undefined on entry to the program unit in which
the pointer is declared or if:

= Its target is never allocated.
= Its target was deallocated (except through the pointer.
= The target goes out of scope, causing it to become undefined.

If the association status is undefined, the pointer must not be referenced or
deallocated. It may be nullified, assigned a target, or allocated storage with
the ALLOCATE statement.

The status of a pointer is associated if it has been allocated storage with the
ALLCOCATE statement or is assigned a target. If the target is allocatable, it
must be currently allocated.

If the association status is associated, the pointer may be referenced,
deallocated, nullified, or pointer assigned.

The status of a pointer is disassociated if the pointer has been nullified with
the NULLI FY statement or deallocated, either by means of the DEALLOCATE
statement or by being assigned to a disassociated pointer.

If the association status is disassociated, the same restrictions apply as for a
status of undefined. That is, the pointer must not be referenced or
deallocated, but it may be nullified, assigned a target, or allocated storage
with the ALLOCATE statement.

You can use the ASSOC ATED intrinsic function to determine the association status of a
pointer; see Chapter 11, “Intrinsic procedures,” on page 467 for a description of this intrinsic.

50

Chapter 3

A pointer example

The example below, ptr_sts.fo0, illustrates different pointer operations,

ASSQO ATED intrinsic to determine pointer status.

Example 3-4 ptr_sts.fo0

PROGRAM nai n
! This program perforns sinple pointer operations, including
calls to the ASSOCI ATED intrinsic to determ ne status.

Decl are pointer as a deferred shape array with PO NTER
attribute.

REAL, PO NTER :: ptr(:)

REAL, TARGET :: tgt(2) =(/ -2.2, -1.1 /) ! initialize target

PRINT *, "Initial status of pointer:"
call get_ptr_sts

ptr => tgt I poi nter assignment
PRINT *, "Status after pointer assignnment:"
call get_ptr_sts

PRINT *, "Contents of target by reference to pointer:", ptr

| use an array constructor to assign to tgt by reference to ptr
ptr = (/ 1.1, 2.2 /)

PRINT *, “Contents of target after assignment to pointer:”, tgt

NULLI FY(ptr)
PRINT *, "Status after pointer is nullified:"
call get_ptr_sts

ALLOCATE(ptr(5)) ! allocate pointer

PRINT *, "Status after pointer is allocated:"
! To learn if pointer is allocated, call the ASSOCI ATED
! intrinsic without the second argunent

I F (ASSCCI ATED(ptr)) PRINT *, " Pointer is allocated."
ptr = (/ 3.3, 4.4, 5.5, 6.6, 7.7 /) ! array assi gnnent
PRINT *, ‘Contents of array pointer:’, ptr

DEALLOCATE(pt r)
PRINT *, “Status after array pointer is deallocated:"
IF (.NOT. ASSOCI ATED(ptr)) PRINT *, " Pointer is deallocated."”

CONTAI NS
! Internal subroutine to test pointer’s association status.
! Pointers can be passed to a procedure only if its interface

Data types and data objects
Pointers

including calls to the

Chapter 3

51

Data types and data objects

Pointers
is explicit to the caller. Internal procedures have an
explicit interface. |If this were an external procedure,

its interface would have to be declared in an interface
bl ock to be explicit.

SUBROUTI NE get _ptr_sts

| F (ASSOCI ATED(ptr, tgt)) THEN

PRINT *, " Pointer is associated with target."
ELSE

PRINT *, " Pointer is disassociated fromtarget."
END | F

END SUBROUTI NE get _ptr_sts
END PROGRAM nmi n

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 ptr_sts.f90
$ a.out
Initial status of pointer:
Pointer is disassociated fromtarget.
Status after pointer assignnent:
Pointer is associated with target.
Contents of target by reference to pointer: -2.2 -1.1
Contents of target after assignnent to pointer: 1.1 2.2
Status after pointer is nullified:
Pointer is disassociated fromtarget.
Status after pointer is allocated:
Pointer is allocated.
Contents of array pointer: 3.3 4.4 5.5 6.6 7.7
Status after array pointer is deall ocated:
Pointer is deallocated.

52 Chapter 3

4 Arrays

This chapter describes arrays and the array-handling features of HP Fortran. This includes
the following topics:

= Array fundamentals

Chapter 4 53

Arrays

Array declarations

Array-valued structure component references
Array constructors

Array expressions

Array-valued functions

Array inquiry intrinsics

54

Chapter 4

Arrays
Array fundamentals

Array fundamentals

An array consists of a set of elements, each of which is a scalar and has the same type and
type parameter as declared for the array. Elements are organized into dimensions.
Fortran 90 allows arrays up to seven dimensions. The number of dimensions in an array
determines its rank.

Dimensions have an upper bound and a lower bound. The total number of elements in a
dimension—its extent—is calculated by the formula:

upper - bound - | ower-bound + 1

The size of an array is the product of its extents. If the extent of any dimension is zero, the
array contains no elements and is a zero-sized array.

Elements within an array are referenced by subscripts—one for each dimension. A subscript
is a specification expression and is enclosed in parentheses. As an extension,

HP Fortran allows a subscript expression of type real; the expression is converted to type
integer after it has been evaluated.

The shape of an array is determined by its rank and by the extents of each dimension of the
array. An array’s shape may be expressed as a vector where each element is the extent of the
corresponding dimension. For example, given the declaration:

REAL, DI MENSI ON(10,2,5) :: x
the shape of x can be represented by the vector [10, 2, 5].

Two arrays are conformable if they have the same shape, although the lower and upper
bounds of the corresponding dimensions need not be the same. A scalar is conformable with
any array.

A whole array is an array referenced by its name only, as in the following statements:

REAL, DI MENSION(10) :: x, vy, z

PRINT *, x

X =y +z

The array element order used by HP Fortran for storing arrays is column-major order;
that is, the subscripts along the first dimension vary most rapidly, and the subscripts along
the last dimension vary most slowly. For example, given the declaration:

I NTEGER, DI MENSION(3,2) :: a
the order of the elements would be:

a(l,1)
a(2,1)
a(3,1)

Chapter 4 55

Arrays
Array fundamentals

a(l,2)
a(2,2)
a(3,2)

The following array declarations illustrate some of the concepts presented in this section:

! The rank of al is 1 as it only has one dinmension, the extent of
! the single dinension is 10, and the size of al is also 10

! al has a shape represented by the vector [10].

REAL, DI MENSI ON(10) :: al

! a2 is declared with two di mensi ons and consequently has a rank
I of 2, the extents of the dinmensions are 2 and 4
| respectively,and the size of a2 is 8

I The array’s shape can be represented by the vector [2, 4].

I NTEGER, DI MENSION(2,4) :: a2

a3 has a rank of 3, the extent of the first two dinensions is
5,and the extent of the third dimension is zero. The size of
a3 is the product of all the extents and is therefore zero
The shape of a3 can be represented by the vector [5, 5, 0].
LOG CAL, DI MENSION(5,5,0) :: a3

! a and b are confornable, ¢ and d are conformable. The shape of
! a and b can be represented by the vector [3, 4]. The shape of
! ¢ and d can be represented by the vector [6, 8].

REAL, DIMENSION :: a(3,4), b(3,4), c(6,8), d(-2:3,10:17)

56

Chapter 4

Arrays
Array declarations

Array declarations

An array is a data object with the dimension attribute. Its rank—and possibly the
extents—are defined by an array specification. The array specification is enclosed in
parentheses and can be attached either to the DI MENSI ON attribute, as in:

I NTEGER, DI MENSION(17) :: a, b
or to the array name, as in:
REAL :: y(3,25)

If the array specification is attached both to the DI MENSI ON attribute and to the array name in
the same declaration statement, the specification attached to the name takes precedence. In
the following example:

I NTEGER, DI MENSION(4,7) :: a, b, c(15)

a and b are declared as two-dimensional arrays, but c is declared as a one-dimensional array.
An array specification can declare an array as one of the following:

= Explicit-shape array

< Assumed-shape array

= Deferred-shape array

< Assumed-size array

The following sections describe these types and the form of the array specification for each
type. For information about initializing arrays with the array constructor, see “Array
constructors” on page 73.

Explicit-shape arrays

An explicit-shape array has explicitly declared bounds for each dimension; the bounds are
neither taken from an actual array argument (“assumed”) nor otherwise specified prior to use
(“deferred”). Each dimension of an explicit-shape array has the following form:

[l ower-bound :] upper-bound

where | ower - bound and upper - bound are specification expressions and may be positive,
negative, or zero. The default for | ower - bound is 1.

Chapter 4 57

Arrays
Array declarations

For a given dimension, the values of | ower - bound and upper - bound define the range of the
array in that dimension. Usually, | ower - bound is less than upper - bound; if | ower - bound is
the same as upper - bound, then the dimension contains only one element; if it is greater, then
the dimension contains no elements, the extent of the dimension is zero, and the array is
zero-sized.

The simplest form is represented by an array declaration in which the name of the array is
not a dummy argument and all bounds are constant expressions, as in the following example:

I NTEGER :: a(100, 4, 5)
This form of array may have the SAVE attribute and may be declared in any program unit.

Other forms of the explicit-shape array include:

< An automatic array: An array that is declared in a subprogram but is not a dummy
argument and has at least one nonconstant bound. Automatic arrays may be declared in a
subroutine or function, but may not have the SAVE attribute nor be initialized.

Character strings can also be declared as automatic data objects; see “Character strings
as automatic data objects” on page 39.

« Adummy array: An array that is identified by its appearance in a dummy argument list;
its bounds may be constants or expressions. Dummy arrays may only be declared in a
subroutine or function.

= An adjustable array: A particular form of a dummy array. Its name is specified in a
dummy argument list, and at least one of its bounds is a nonconstant specification
expression.

Explicit-shape arrays may also be used as function results, as described in “Array-valued
functions” on page 77 and in “Array dummy argument” on page 140.

The following code segment illustrates different forms of explicit-shape arrays:

SUBROUTI NE sort (listl,list2, mn)

! exanpl es of arrays with explicit shape

INTEGER :: mn

I NTEGER :: cnt1(2:99)

! a rank-one array, having an explicit shape represented by

! the vector [98]

REAL :: list1(100), list2(0:m1,-mn)

I two dummy arrays with explicit shape: 1listl is a rank-one

I array with an extent of 100; list2 is a rank-two array with an
I extent of m* (mtn+l). 1list2 is also an adjustable array.

REAL :: work(100, n)
! work is an automatic array; it does not appear in the dummy
! argunent list and at |east one of its bounds is not constant

58 Chapter 4

Arrays
Array declarations

| NTEGER, PARAMETER :: buffsize =0
REAL :: buffer (1. buffsize)
I buffer has explicit shape, but no elements and is zero-sized

END SUBROUTI NE sort

Assumed-shape arrays

An assumed-shape array is a dummy argument that assumes the shape of the
corresponding actual argument. It must not have the PO NTER attribute. Each dimension of
an assumed-shape array has the form:

[I ower - bound]
where | ower - bound is a specification expression. The default for | ower - bound is 1.

The actual argument and the corresponding dummy argument may have different bounds for
each dimension. An assumed-shape array subscript may extend from the specified

| ower - bound to an upper bound that is equal to | ower - bound plus the extent in that
dimension of the actual argument minus one.

The following code segment illustrates different declarations of assumed-shape arrays.

SUBROUTINE initialize (a,b,c,n)
| exanpl es of assuned-shape arrays
INTEGER :: n

INTEGER :: a(:)

! the array a is a rank-one assuned-shape array, it takes its
! shape and size fromthe correspondi ng actual argument; its

! lower bound is 1 regardless of the | ower bound defined for

! the actual argument

COVPLEX :: b(ABS(n):)

! a rank-one assuned-shape array, the |ower bound is ABS(n) and
! the upper bound will be the | ower bound plus the extent of

! the correspondi ng actual argument mnus one

REAL, DIMENSION(:,:,:,:,:) :: ¢C

! an assuned-shape array with 5 dinensions; the | ower bound for
! each dinmension is 1

END SUBROQUTINE initialize

Chapter 4 59

Arrays
Array declarations

If a procedure has an argument that is an assumed-shape array, its interface must be explicit
within the calling program unit. A procedure’s interface is explicit if it is an internal
procedure within the caller procedure or if the interface is declared in an interface block

within the caller.

For example, to call the external subroutinei ni ti al i ze in the previous example, its interface

must appear in an interface block, as in the following:

PROGRAM nai n
I NTEGER :: parts(0:100)
COWPLEX :: coeffs(100)

REAL ;. onega(-2:+3, -1:+3, 0:3, 1:3, 2:3)
| NTERFACE
SUBROUTINE initialize (a,b,c,n)
INTEGER :: n

INTEGER :: a(:)
COVPLEX :: b(ABS(n):)
REAL, DIMENSION(:,:,:,:,:) :: C
END SUBROUTINE initialize
END | NTERFACE
CALL initialize(parts, coeffs, omega, | bound(onega, 1))

END PROGRAM nai n

SUBROUTINE initialize (a,b,c,n)
INTEGER :: n
INTEGER :: a(:)
COVPLEX :: b(ABS(n):)
REAL, DI MENSION(:,:,:,:,:) :: C

END SUBROUTINE initialize
For more information about:
= Internal procedures, see “Internal procedures” on page 135

= Interface blocks, see “Procedure interface” on page 149

< Arrays used as dummy arguments, see “Array dummy argument” on page 140

60

Chapter 4

Arrays
Array declarations

Deferred-shape arrays

A deferred-shape array has either the PO NTER attribute or the ALLOCATABLE attribute. Its
shape is not specified until the array is pointer assigned or allocated. Although a
deferred-shape array can have the same form as an assumed-shape array, the two are
different. The assumed-shape array is a dummy argument and must not have the PO NTER
attribute.

The array specification for a deferred-shape array has the form:
[, 0]

The specification for a deferred-shape array defines its rank but not the bounds. The bounds
are defined either when the array is allocated or when an array pointer becomes associated
with a target.

Array pointers and allocatable arrays are described in the following sections.

Array pointers

An array pointer is a deferred-shape array with the PO NTER attribute. Its bounds and
shape are defined only when the array is associated with a target in a pointer assignment
statement or in an ALLOCATE statement. An array pointer must not be referenced until it is
associated.

Following are example declarations of array pointers:

! pl is declared as a pointer to a rank-one
| array of type real; pl is not associated with any target
REAL, PO NTER, DIMENSION(:) :: pl

| p2 is a pointer to an integer array of rank-two;
! it nmust be associated with a target before it can be referenced
I NTEGER, POINTER :: p2(:,:)

| err is a pointer to a rank-3 array of type err_type
TYPE err_type
I NTEGER :: class
REAL :: code
END TYPE err_type
TYPE(err_type), PO NTER, DI MENSION(:,:,:) :: err

! The next statenent is ILLEGAL: pointers cannot have an
I explicit shape.
I NTEGER, PO NTER :: p3(n)

For information about associating an array pointer with a target, see “Pointers” on page 49.
For information about the PO NTER attribute and ALLOCATE statement, see Chapter 10, “HP
Fortran Statements.”

Chapter 4 61

Arrays
Array declarations

Allocatable arrays

An allocatable array is a deferred-shape array with the ALLOCATABLE attribute. Its bounds
and shape are defined when it is allocated with the ALLOCATE statement. Once allocated, the
allocatable array may be used in any context in which any other array may appear. An
allocatable array can also be deallocated with the DEALLQOCATE statement.

An allocatable array has an allocation status that can be tested with the ALLOCATED intrinsic
inquiry function. Its status is unallocated when the array is first declared and after it is
deallocated in a DEALLOCATE statement. After the execution of the ALLOCATE statement, its
status is allocated. An allocatable array with the unallocated status may not be referenced
except as an argument to the ALLOCATED intrinsic or in an ALLOCATE statement. If it has the
allocated status, it may not be referenced in the ALLOCATE statement. It is an error to allocate
an allocatable array that is already allocated, or to deallocate an allocatable array either
before it is allocated or after it is deallocated.

In HP Fortran, an allocatable array that is unallocated, is local to a procedure, and does not
have the SAVE attribute. It is automatically deallocated when the procedure exits.

The following example, alloc_array.f90, calls a subroutine that allocates and deallocates an
allocatable array and uses the ALLOCATED intrinsic function to test its allocation status:

Example 4-1 alloc_array.fo0

PROGRAM nai n
! driver programfor calling a subroutine that allocates and
| deal | ocates an allocatable array
CALL test_alloc_array
END PROGRAM mai n

SUBROUTI NE test_al |l oc_array
| dermonstrate how to allocate and deall ocate an allocatable array

! the array natrix is rank-2 allocatable array, with no
I shape or storage
REAL, ALLOCATABLE, DI MENSION(:,:) :: matrix

INTEGER :: n
LOG CAL :: sts

| sts is assigned the value .FALSE. as the array is not yet

I allocated
sts = ALLOCATED(matri x)
PRINT *, 'Initial status of matrix: ', sts

PRINT *, "Enter an integer (rank of array to be allocated):"'
READ *, n

! dynamically create the array matrix; after allocation, array

62 Chapter 4

Arrays
Array declarations

I will have the shape [n, n]
ALLOCATE(matrix(n,n))

| test allocation by assigning to array

matrix(n,n) = 9.1

PRINT *, 'patrix(',n,',",n,') ="', matrix(n,n)

| sts is assigned the value . TRUE. as the allocatable array

| does exist and its allocation status is therefore allocated
sts = ALLOCATED(matri x)

PRINT *, 'Status of natrix after ALLOCATE: ', sts

DEALLOCATE (matri x)

| sts is assigned the value .FALSE. as the

! allocation status of a deallocated array

sts = ALLOCATED (matri x)

PRINT *, 'Status of matrix after DEALLOCATE: ', sts
END SUBROUTI NE test_al l oc_array

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 alloc_array.f90

$ a.out

Initial status of natrix: F

Enter an integer (rank of array to be allocated):
4

matrix(4, 4) = 9.1

Status of matrix after ALLOCATE: T
Status of matrix after DEALLOCATE: F

For information about the ALLOCATABLE, ALLQOCATE, DEALLOCATE statements, see Chapter 10,
“HP Fortran Statements.” See also “ALLOCATED(ARRAY)” on page 486.

Assumed-size arrays

An assumed-size array is a dummy argument whose size is taken from the associated
actual argument. Its declaration specifies the rank and the extents for each dimension except
the last. The extent of the last dimension is represented by an asterisk (*), as in the following:

I NTEGER :: a(2,5,%*)

All dummy array arguments and their corresponding actual arguments share the same initial
element and are storage associated. In the case of explicit-shape and assumed-size arrays, the
actual and dummy array need not have the same shape or even the same rank. The size of the
dummy array, however, must not exceed the size of the actual argument. Therefore, a

Chapter 4 63

Arrays
Array declarations

subscript in the last dimension of an assumed-size array may extend from the lower bound to
a value that does not cause the reference to go beyond the storage associated with the actual
argument.

Because the last dimension of an assumed-size array has no upper bound, the dimension has
no extent and the array consequently has no shape. The name of an assumed-size array
therefore cannot appear in contexts in which a shape is required, such as a function result or
a whole array reference.

The following example, assumed_size.f90, illustrates two assumed-size arrays: x (declared in
subr)and i _array (declared in f unc):

Example 4-2 assumed_size.f90
PROGRAM nai n
REAL :: a(2,3) ! an explicit-shape array, represented by the
! vector [10, 10]
k =0
DOi =1, 3
DOj =1, 2
k =k +1
a(j, i) =k
END DO
END DO
PRINT *, '"main: a =, a

CALL subr (a)
END PROGRAM mai n

SUBROUTI NE subr (x)
REAL :: x(2,*) ! an assunmed-size array; the subscript for the
! | ast dinension may take any value 1 - 3

I PRINT *, x ! | LLEGAL, whole array reference not allowed
PRINT *, ‘main: x(2, 2) =, x(2, 2)
PRINT *, 'returned by func: ', func(x), ', the value in x(2,3)'

END SUBROUTI NE subr

REAL FUNCTI ON func(y)
REAL :: y(0:*) ! an assunmed-size array; the subscript may
! take any value 0 - 5

func = y(5)
END FUNCTI ON func

Here are the command lines to compile and execute the program, along with the output from
a sample run:

64 Chapter 4

Arrays
Array declarations

$ f90 assuned_size. f90

$ a.out

main: a=1.0203040506.0

main: x(2, 2) = 4.0

returned by func: 6.0, the value in x(2,3)

An assumed-size array is a FORTRAN 77 feature that has been superseded by the
assumed-shape array; see “Assumed-shape arrays” on page 59.

Chapter 4 65

Arrays
Array sections

Array sections

An array section is a selected portion of another array (the parent) that is itself an array,
even if it consists of only one element, or possibly none. An array section can appear wherever

an array name is allowed.

The syntax for specifying an array section is:

array-name (section-subscript-list)[(substring-range)]
where:

section-subscript-1ist

is a comma-separated list of sect i on- subscri pt.

secti on-subscri pt

is one of:

e subscri pt

e subscript-triplet

e vector-subscript
subscri pt

is a scalar integer expression.
subscript-triplet

takes the form:

[subscript]:[subscript][:stride]

where stri de is a scalar integer expression.
vect or - subscri pt

is a rank-one integer array expression.

substring-range

specifies a character substring, as described in “Character substrings” on
page 38. If subst ri ng- r ange is specified, ar r ay- name must be of type

character.

66

Chapter 4

Arrays
Array sections

Section-subscri pt-1ist mustspecify section-subscri pt for each dimension of the parent
array. The rank of the array section is the number of subscript-tripl ets and vect or
-subscri pt s that appear in the secti on-subscri pt-1i st. Because an array section is also
an array, at least one subscript-tripl et orvector-subscript must be specified.

The following sections provide more information about subscript-triplet and vector-subscript.

Subscript triplet

A subscript triplet selects elements from the parent array to form another array. It specifies
a lower bound, an upper bound, and a stride for any dimension of the parent array. Elements
are selected in a regular manner from a dimension. The stride can, for example, select every
second element.

All three components of a subscript triplet are optional. If a bound is omitted, it is taken from
the parent array. However, an upper bound must be specified if a subscript triplet is used in
the last dimension of an assumed-sized array.

A bound in a subscript triplet need not be within the declared bounds for that dimension of
the parent array if all the elements selected are within its declared bounds. If the stride is
omitted, the default is to increment by one.

The stride must not be zero. If it is positive, the subscripts range from the lower bound up to
and including the upper bound, in steps of stride. When the difference between the upper
bound and lower bound is not a multiple of the stride, the last subscript value selected by the
subscript triplet is the largest integer value that is not greater than the upper bound. The
array expression a(1: 9: 3) selects subscripts 1, 4, and 7 from a.

Strides may also be negative. A negative stride selects elements from the parent array
starting at the lower bound and proceeds backwards through the parent array in steps of the
stride down the last value that is greater than the upper bound. For example, the expression
a(9: 1: - 3) selects the subscripts 9, 6, and 3 in that order from a.

If the section bounds are such that no elements are selected in a dimension (for example, the
section a(2: 1)), the section has zero-size.

The following example shows subscript triplet notation assigning the same value to a regular
pattern of array elements.

I NTEGER, DI MENSION(3,6) :: Xx,y,z ! declare 3 3x6 arrays

! initialize the arrays, using whol e-array assignments.
x =0, y=02z=0

| assign to elements of x, y, and z, using subscript triplets

x(3,2:4:1) =1
y(2,2:6:2) =2
z(1:2,3:6) =3

Chapter 4 67

Arrays
Array sections

The arrays x, y, and z now have the follow ng val ues:

!

! X y z

' 0000O00O0 0000O00O 003333
' 0000O00O0 020202 003333
' 011100 0000O00O 000O0O0O

In the following example of an array substring, the variable dat es(5: 10) is an array section
that includes elements 5 through to 10 of the parent array dates, and the variable

dat es(5: 10) (8: 11) is also an array section of the array dates but only contains the last 4
character positions of the elements 5 through to 10.

CHARACTER(11) :: dates(20)
dates(5:10)(8:11) = "1776"

Vector subscripts

A vector subscript is any expression that results in a rank-one array with integer value.
The values of the array select the corresponding elements of the parent array for a given
dimension. Vector subscripts can describe an irregular pattern and may be useful for indirect
array addressing. For example, if v represents a rank-one integer array initialized with the
values 4, 3, 1, 7, then the array section a(v) is a rank-one array composed of the array
elements a(4), a(3), a(1), and a(7) —in that order.

Vector subscripts are commonly specified using array constructors, which are described in the
next section. For example, the expressions a(v) anda((/ 4, 3, 1, 7/)) reference the same
section of the array a.

Vector subscripts may not appear:

= On the right hand side of a pointer assignment statement.
< Inan I/O statement as an internal file.

< As an actual argument that is associated with a dummy argument declared with
| NTENT(QUT) or | NTENT(1 NCQUT) or with no | NTENT.

A vector subscript may specify the same element more than once. When a vector subscript of
this form specifies an array section, the array section is known as a nany- one array
secti on. An example of a nany- one array sectionis:

a((/ 4, 3, 4, 71))

where element 4 has been selected twice. A many-one array section may not appear in either
an input list or on the left-hand side of an assignment statement.

The following example, vector_sub.f90, illustrates an array section using a section subscript
list.

68 Chapter 4

Arrays
Array sections

Example 4-3 vector_sub.f90

PROGRAM mai n
! mis arank-1 array that has been
! initialized with the values of an array constructor

I NTEGER, DIMENSION(4) :: m= (/ 2, 3, 8, 1/)
I NTEGER :: i

! initialize a (a rank-1 array) with the val ues
' 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 11.0
REAL, DI MENSION(10) :: a = (/ (i*1.1, i=1,10) /)

! bis an uninitialized 4x2 array
REAL, DI MENSION(4,2) :: b

I print a section of a, using a vector subscipt
PRINT *, a(m

| assign the values 5.5, 11.0, 6.6, and 5.5 to the first colum
I b; this is an exanple of a nmany-one array
b(:,1) =a((/ 5 10, 6, 5/))

! the vector subscript MN(m4) represents a rank-1 array with
! the values 2, 3, 4, 1; the second colum of b is assigned

! the values 11.0, 6.6, 5.5, 5.5

b(:,2) = b(MN(m4),1)

! increnment a(2), a(3), a(8), and a(l) by 20.0
a(m = a(m + 20.0

I print the new values in a
PRINT *, a
END PROGRAM mai n

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 vector_sub.f90
$ a.out
2.2 3.38.81.1
21.1 22.2 23.3 4.4 5.56.6 7.7 28.8 9.9 11.0

Chapter 4 69

Arrays
Array-valued structure component references

Array-valued structure component references

A structure component reference can specify an array or a scalar. If, for example, the parentin
the reference is declared as an array and likewise one of the components is declared as an
array, this makes possible an array-valued structure component reference. Conceptually, an
array-valued structure component reference is similar to a reference to an array section (see
“Array sections” on page 66).

Consider the following code:

TYPE student _data

CHARACTER(25) :: nanme

I NTEGER ;. average, test(4)
END TYPE student _data

TYPE course_data
CHARACTER(25) :: course_title
| NTEGER ;1 course_num class_size
TYPE(student _data) :: student(10)

END TYPE course_data

TYPE (course_data) :: course(5)

These statements prepare a database for maintaining course information for 50 students—10
students per course. The information about the students is held in st udent —an array of
derived type. Likewise, the information about the five courses is held in cour se, which is also
an array of derived type and which has st udent as one of its components. The following
statement assigns a test score to a one student in one course, using a structure component
reference:

course(5)%tudent (7) % est(4) = 95

The reference is scalar-valued: 95 is assigned to a single element, t est (4) of student (7) of
course(5).

However, it is also possible to reference more than one element in a structure component
reference. The following statement assigns the same score to one test taken by all students in
one course:

course(4)¥%student% est(3) = 60

The structure component reference is array-valued because thirty elements are assigned with
the one reference. The reference is to a section of the array cour se, rather than to the entire
array.

The next statement also makes an array-valued structure component reference to initialize
all the tests of one student in one course:

course(3)%tudent (3)%est = 0

70 Chapter 4

Arrays
Array-valued structure component references

The next statement uses a subscript triplet in an array-valued structure component reference
to assign the same score to one test of three students in one course:

course(2)%student (1:3)% est(4) = 82

It would be convenient if we could initialize all tests of all students in all courses to 0. But the
Standard does not allow structure component references in which more than one of the parts
specifies a rank greater than 0. In other words, the following is not legal:

course¥%student%est = 0 ! |LLEGAL

The following example, array_val_ref.fo0, contains the code examples listed in this section:

Example 4-4 array_val_ref.fo0

PROGRAM nai n
I illustrates array-val ued structure conmponent references

! define a derived type that will be used to declare an
! obj ect of this type as a conponent of another derived type
TYPE student _data
CHARACTER(25) :: name
I NTEGER ;. average, test(4)
END TYPE student _data

TYPE course_data
CHARACTER(25) :: course_title

| NTEGER ;1 course_num class_size

TYPE(student _data) :: student(10) ! an array of derived
I type
END TYPE course_data
TYPE (course_data) :: course(5) ! an array of derived
I type

! scal ar-val ued structure conponent reference
course(5)%tudent (7) % est(4) = 95
PRI NT *, course(5)%tudent (7)% est(4)

! array-val ued structure conmponent reference
course(4)¥%tudent% est(3) = 60
PRI NT *, course(4)%tudent % est (3)

! array-val ued structure conmponent reference
course(3)%tudent (3)%est = 0
PRI NT *, course(3)%tudent (3)% est

! array-val ued structure conponent reference, using
! a subscript triplet to reference a section of the
I array conponent student

course(2)%tudent (1: 3)% est(4) = 82

Chapter 4 71

Arrays
Array-valued structure component references

PRI NT *, course(2)%tudent (1:3)% est(4)

! the followi ng conmented-out statement is illegal
I only one part (of the combined conmponents and

| parent) in a structure conmponent reference

! may have a rank greater than O

I course%student%est = 0

END PROGRAM nai n

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 array_val _ref.f90
$ a.out
95
60 60 60 60 60 60 60 60 60 60
000O
82 82 82

72 Chapter 4

Arrays
Array constructors

Array constructors

An array constructor is used to assign values to an array. The generated values are
supplied from a list of scalar values, arrays of any rank, and implied DOspecifications. An
array constructor may appear in any context in which a rank-one array expression is allowed.
An array with a rank greater than one may be constructed by using the RESHAPE intrinsic
function. The type of an array constructor is taken from the values in the list, which must all
have the same type and type parameters (including character length). The extent is taken
from the number of values specified.

The syntax of an array constructor is:
(/ ac-value-list /)

where ac-val ue-1i st is a comma-separated list of one or more ac- val ues. Each ac- val ue
may be any of the following:

= Scalar expressions, for example:
(/ 1.2, 0.0, 2.3 /)

= An array expression, for example:
(/ x(0:5) /)

where the values in x(0) through x(5) become the values of the array constructor. If the
array the value list has a rank greater than one, the values are generated in
column-major order, as explained in “Array fundamentals” on page 55.

= An implied-DOspecification, taking the form:
(ac-value-list, do-var = exprl, expr2 [, expr3])

where do- var is the name of a scalar integer variable, expr 1 is the initial value, expr 2 is
the final value, and expr 2 is the stride (the default is 1). For example:

(/ i, i =1, 10)

When used to initialize an array in a type declaration or in an assignment statement, all
elements in the array must be initialized. For example, the following is illegal:

INTEGER :: i(10) = (/ 1, 2, 3 /) ! ILLEGAL: too few
! initializers

If no values are supplied, the array constructor is zero-sized. For example, the size of the
following array constructor:

(/ (i, i=10,n) /)

Chapter 4 73

Arrays
Array constructors

depends on the value of the variable n; if the value of the variable is less than 10, then the
constructor contains no values.

If the list contains only constant values, the array constructor may initialize a named
constant or a type declaration statement. An array constructor may not initialize variables in
a DATA statement, which may contain scalar constants only.

As an extension, HP Fortran allows the use of [and] in place of (/ and /).
The following are examples of array constructors:

| array x is assigned three real val ues
x = (/19.3, 24.1, 28.6/)

! One vector, consisting of 16 integer values, is assigned to j
j = (/4, 10, k(1:5), 2 +1, (mn), n=-7,-2),16, 1/)

! assign 5 val ues
a = (/(base(k), k=1,5)/)

! The naned constant t is a rank-one array initialized with
! the values 36.0 and 37.0

REAL, DI MENSI ON(2) : @t

PARAMETER (t=(/ 36.0, 37.0/))

! the array constructor is reshaped as 1357
! 2468
! and is then assigned to z

z=RESHAPE((/1,2,3,4,5,6,7,8/), (/2,4/))

! an array constructor is used for the second conponent of
! the structure constructor
al aska = site(”"NOVE", (/-63,4/))

diagonal = (/ (b(i,i), i=1,n) /)
hilbert = RESHAPE((/ ((1.0/(i+j), i=1,n), j=1,n) /), (/ n,nl/))
ident = RESHAPE ((/ (1, (O, i=1,n), j=1,n-1), 1 /), (/ n,nl/))

As shown in last three examples, an array constructor with implied- DOloops and the RESHAPE
function permit construction of arrays that cannot otherwise be expressed conveniently with
alternative notations.

74 Chapter 4

Arrays
Array expressions

Array expressions

Array operations areperformed in parallel. That is, an operation is performed on each element
independently and in any order. The practical effect of this is that, because an assignment
statement may have the same array on both the left and right-hand sides, the right-hand side
is fully evaluated before any assignment takes place. This means that in some cases the
compiler may create temporary space to hold intermediate results of the computation.

A scalar may appear in an array expression. If the scalar is used in an expression containing
whole array references—for example

a=b+ 20 ! a and b are conformabl e arrays of type real

then the effect is as if the scalar were evaluated and then broadcast to form a conformable
array of elements, each having the value of the scalar. Thus, a scalar used in an array context
is conformable with the array or arrays involved.

Zero-sized arrays may also appear in an array expression. Although they have no elements,
they do have a shape and must therefore follow the rule of conformable arrays. Because
scalars are conformable with any array, they may therefore appear in an operation involving a
zero-sized array.

The following illustrates valid and invalid array expressions.
SUBROUTI NE foo(a, b, c)

! a is an assuned-shape array w th rank-one
REAL :: a(:)

! bis a pointer to a rank-two array
REAL, PO NTER :: b(:,:)

! ¢ is an assuned-size array
REAL :: c(*)

! dis an allocatable array; its shape can only be defined in an
! ALLCCATE st at enent
REAL, ALLOCATABLE :: d(:)

| create the array d with the same size as a; a and d have
! the sanme shape and are therefore confornable
ALLOCATE(d(Sl ZE(a)))

| copy the array a into d
d =a

! sets each element of the array associated with b to 0.0;

Chapter 4 75

Arrays
Array expressions

| the effect is as if the scalar were broadcast into a

| tenporary array, with the same shape as b; b is then assigned
I to theleft hand si de

b =

I corresponding elenents of a and d are added together and then

| stored back into the corresponding array el ement of d
d=a+d

conceptual ly the operand SQRT(d) is evaluated into an
internmediate array with the sane shape as d; each el enent of
the internediate array will be added to the correspondi ng

! element of a and stored into the correspondi ng el ement of d
d = a + SQRT(d)

DEAL LOCATE(d)
| exanples of illegal uses of arrays

! ILLEGAL - c is an assuned-size array and so has no shape
! an assuned-size array may not be used as a whol e array
| operand(except in an argument |ist)
a=c¢c
ILLEGAL - the arrays a and b do not have the same shape and are

|

! therefore not confornable

a=a+t+b

I ILLEGAL - d was previously deall ocated and nmust not be
I referenced subsequently

a=a+d

END SUBROQUTI NE f oo

76 Chapter 4

Arrays
Array-valued functions

Array-valued functions

A function may be array-valued; that is, its return value may evaluate to an array of values
rather than to a scalar. Array-valued functions may appear in any array expression except:

= Inan input list

= On the left side of an assignment statement (unless returning the result from within a
function)

Array-valued functions may also be used in an array expression wherever a scalar function
reference is allowed but must be conformable—that is, the function result must have the same
shape as the expression.

The following sections describe intrinsic functions and user-defined functions that are
array-valued.

Intrinsic functions

Elemental procedures and transformation procedures have particular relevance to array
expressions. Elemental procedures—for example, SQRT and SI N—are specified for scalar
arguments, but with an array argument they return an array-valued result with the same
shape as the argument. Each element of the result is as if the function were applied to each
corresponding element of the argument.

A transformational procedure—for example, RESHAPE, SUM and MATMJL—generally has one or
more array arguments that the procedure operates on as a whole, and usually returns an
array-valued result whose elements may depend not only on the corresponding elements of
the arguments but also on the values of other elements of the arguments.

User-defined functions

User-defined functions can return either a scalar-valued result or an array-valued result. A
scalar function can appear in an array expression; its effect is to broadcast its value
throughout a conformable array. A reference to a user-defined array-valued function must
obey the rules for functions in general, and must also conform to the shape of the expression
in which it appears.

User-defined functions are described in “External procedures” on page 129.

The following code segment illustrates two array-valued functions, genr and (user-defined)
and RESHAPE (intrinsic):

Chapter 4 77

Arrays
Array-valued functions

PROGRAM mai n

The followi ng interface bl ock describes the characteristics of
the function genrand; the function inputs a single integer
scalar and returns a real array of rank-one with an extent

!
!
!
! equal to the value of its argunent

| NTERFACE
FUNCTI ON genr and(n)
INTEGER: : n

REAL, DI MENSI ON (n)::genrand
END FUNCTI ON genr and
END | NTERFACE

REAL :: a(100)
REAL :: b(10, 10)

! set array a to the result returned by the function genrand
! note that the left and right hand side are conformable
a = genrand(Sl| ZE(a))

| add each elenent of a to the corresponding el ement of the

! result returned by genrand, form ng an internedi ate rank-one
! result that is passed into the intrinsic function RESHAPE

! This intrinsic transforns its argument into a 10 by 10 array.
! Again, the left and right hand side are conformable

b = RESHAPE(a + genrand(100),(/ 10, 10 /))

END PROGRAM nai n

78

Chapter 4

Arrays
Array inquiry intrinsics

Array inquiry intrinsics

Table 4-1 lists and briefly describes the inquiry intrinsic functions that return the properties
of an array. For a full description of these intrinsics, see Chapter 11, “Intrinsic procedures,”
on page 467.

Table 4-1 Array inquiry intrinsic functions
Intrinsic Description

ALLCCATED Returns the allocation status of an allocatable array;
see “Allocatable arrays” on page 62.

ASSCQC ATED Returns the association status of an array pointer;
see “Pointer association status” on page 50.

LBOUND Returns either the lower bound of a specified
dimension or the lower bounds of the array as a
whole.

SHAPE Returns the shape of the array as a rank-one integer
array.

Sl ZE Returns the size of the array or the extent of a

particular dimension.

UBOUND Returns the upper bound of a specified dimension or
the upper bounds of the array as a whole.

Chapter 4 79

Arrays
Array inquiry intrinsics

80 Chapter 4

5 Expressions and assignment

This chapter describes expressions and assignment. More specifically, it covers the following
topics:

= Expressions, including their components:

Chapter 5 81

Expressions and assignment

Operands
Operators

Special forms of expression

Assignment, including the following topics:

Assignment statement
Pointer assignment

Masked array assignment

NOTE This chapter discusses intrinsic operators and assignment only. For
information about user-defined operators and assignment, see “Defined
operators” on page 153 and “Defined assignment” on page 155.

82 Chapter 5

Expressions and assignment
Expressions

Expressions

An expression is the specification of data and, possibly, a set of operations that enable the
computer to evaluate the expression and produce a value. Because an expression results in a
value, it has a type, kind, and shape. If an expression is of the character type, it also has a
length parameter.

The general form of an expression is:
[operandl] operator operand2
oper andl, oper and2

are data objects or expressions that evaluate to data. They may be
array-valued or scalar-valued.

oper at or

is either an intrinsic or defined operator. If oper at or is unary, oper andl
must not be specified.

The following sections describe operands, operators, and expressions in more detail.

Operands
An operand may be any of the following:

< Aconstant or a variable, suchas 1.0,' ab' , or a

= An array element or an array section, such as a(1, 3) ora(1, 2: 3)

= A character substring or a structure component, such as ch(1: 3) or enpl oyee%ane
< An array constructor, such as (/ 1.0, 2.0/)

= A structure constructor, such as enpl oyee(8, "WIson", 123876)

< A function reference, such as SQRT(x)

< An expression in parentheses, such as (b + SINy)**2)

Any variable or function reference used as an operand in an expression must have been
previously defined. Likewise, any pointer must have been previously associated with a target.
If an operand has the PO NTER attribute, the target associated with it is the operand.

When an operand is a whole array reference, the complete array is referenced. An
assumed-size array variable cannot be an operand. An array section of an assumed-size array
can be an operand if the extent of the last dimension of the section is defined by the use of a

Chapter 5 83

Expressions and assignment
Expressions

subscript, a section subscript with an extent for the upper bound, or a vector subscript.
(Assumed-size arrays are discussed in “Assumed-size arrays” on page 63, and array sections
in “Array sections” on page 66.)

If two operands in an expression are arrays, they must have the same shape. If one operand is
a scalar, it is treated as if it were an array of the same shape as the other operand, in which all
elements have the value of the scalar. The result of the operation is an array in which each
element is the result of applying the operator repeatedly to corresponding elements of the two
operands.

The rules governing how the use of operands in an expression vary, depending on the type of
expression. For example, some operands that may appear on the right-hand side of an
assignment statement but not in an initialization expression. See “Special forms of
expression” on page 90 for detailed information about the different forms of an expression and
the restrictions that those forms impose on operands.

Operators

HP Fortran recognizes the following types of operators:
= Arithmetic operators

= Relational operators

= Concatenation operator

= Logical operators

= Bitwise operators

= Defined operators

All of these except the last are intrinsic operators—that is, the operations they perform are
defined by HP Fortran. Intrinsic operators are described in the following sections. Defined
operators are those that the programmer defines—or overloads, if the operator already has
already been defined—using the | NTERFACE statement. Defined operators and overloading are
discussed in “Defined operators” on page 153.

Arithmetic operators
The arithmetic operators are:

= Additive operators (+ and -). These can be used either as unary operators or binary
operators.

< Multiplicative operators (/ , *, and **). These are binary.

84 Chapter 5

Expressions and assignment
Expressions

Two operands joined by a binary operator can be of different numeric types or different kind
type parameters. The type of the result is:

= If the type and kind type parameters of the operands are the same, the result has the
same type and kind type parameter.

= If the type of the operands is the same but the kind type parameters differ, the result has
the same type and the larger kind type parameter.

= If either operand is of type complex, the result is of type complex.

= If either operand is of type real and the other operand is not of type complex, the result is
of type real.

Except for a value raised to an integer power, each operand that differs in type or kind type
parameter from that of the result is converted to a value with the type and kind type of the
result before the operation is performed.

Logical and integer operands can be combined with arithmetic operators. The logical operand
is treated as an integer of the same kind type parameter, and the result of the operation is of
type integer. If the operands have different kind type parameters, the shorter is considered to
be extended as a signed integer. For information about logical values, see “Logical operators”
on page 86.

The arithmetic operators behave as expected, with the following qualifications:

= The division of an integer by an integer is defined to be the integer closest to the true
result that is between zero and the true result.

= Exponentiation of an integer to a negative integer—i 1**i 2, wherei 2 is negative—is
interpreted as 1/ (i 1**(-i 2)), where the division is interpreted as described for division
of one integer by another.

= Ifx1and x2 are real and x1 is negative, then x1**x2 could be an invalid expression, as
the result could be complex. Note, however, that CVPLX(x1) **x2 is valid; the result is the
principal value.

The following are HP extensions to the Fortran 90 Standard:

= The exponentiation operator may be followed by a signed entity, as in the following
example:

iR

The Fortran 90 Standard does not allow adjacent operators.

Chapter 5 85

Expressions and assignment
Expressions

= Operands of logical and integer types may be combined with the arithmetic operators. The
logical variable is treated as an integer of equivalent size, and the result of the operation
is an integer value. When different lengths of operands are involved, the shorter is
considered extended as a signed integer. The following is an example:

LOd CAL(1) :: booleanl = -4

LOG CAL(4) :: booleand = 2**16 + 27

I NTEGER(1) :: flagl

| NTEGER(4) :: flag4

flag4 = bool ean4 - bool eanl Iset flagd to 2**16 + 31

! arelational operator with a |ogical operand
| F (bool ean4 > 65536) THEN

flagl = -(bool ean4/65536) !set flagl to -1
ENDI F

Relational operators

The relational operatorsare .EQ ,.NE.,.GI.,.CGE ,.LT.,.LE ,==/= > >= < and <=. All
relational operators are binary. The letter forms of the relational operators have the same
meaning as the symbol forms. Thus, . EQ is a synonym for ==, . NE. is a synonym for / =, and
so on.

If the operands in a relational operation are numerical expressions with different type or kind
type parameters, the operands are converted to the type and kind type parameters that the
sum of the operands would have and are then compared; see “Arithmetic operators” on

page 84 for information about the result of mixed arithmetic expressions.

If the operands are character expressions, the shorter operand is blank-padded to the length
of the other prior to the comparison. The comparison starts at the first character and proceeds
until a character differs or equality is confirmed. See Appendix C for the collating sequence.

Concatenation operator
The concatenation operator is// . It is binary.

In a concatenation operation, each operand of the concatenation operator must be of type
character and have the same kind type parameter. The character length parameter of the
result is the sum of the character length parameters of the operands.

Logical operators

The logical operator are . AND.,. OR ,. EQV.,. NEQV.,. XCR. , and . NOT. . The . NOT. operator is
unary; the others are binary. The . XOR is an HP extension having the same meaning as the
. NEQV. operator.

86 Chapter 5

Expressions and assignment
Expressions

As an HP extension, the operands of a logical expression may be of type integer. Functions
returning integers may appear in logical expressions, and functions returning logicals may
appear in integer expressions.

If the operands of a logical operation have different kind type parameters, the operand with
the smaller parameter is converted to a value with the larger parameter before the operation
is performed. The result has the larger kind type parameter.

Table 5-1 shows the behavior of the logical operators for the different permutations of operand
values. Note that the . XOR operator is a synonym for the . NEQV. operator and behaves
similarly.

Table 5-1 Logical operators
opndl opnd2 AND. R . EQV. . NEQV. .NOT. opnd1
. TRUE. . TRUE. . TRUE. . TRUE. . TRUE. . FALSE. . FALSE.
. TRUE. . FALSE. . FALSE. . TRUE. . FALSE. . TRUE. . FALSE.
. FALSE. . TRUE. . FALSE. . TRUE. . FALSE. . TRUE. . TRUE.
. FALSE. . FALSE. . FALSE. . FALSE. . TRUE. . FALSE. . TRUE.

Bitwise operators

As an extension to the Standard, HP Fortran allows logical operators to be used as bitwise
operators on integer operands. The logical operations are bitwise; that is, they are performed
for each bit of the binary representations of the integers. When the operands are of different
lengths, the shorter is considered to be extended to the length of the other operand as if it
were a signed integer, and the result has the length of the longer operand.

When logical operators are used on integer operands, any nonzero value is considered . TRUE,,
and a zero value is considered . FALSE. .

In general, an actual argument of type integer may not be used in a reference to a procedure
when the corresponding dummy argument is of type logical, nor may an actual argument of
type logical be used when the dummy argument is of type integer. As an HP extension, logical
and integer arguments may be used interchangeably in calls to bit manipulation intrinsics.
See Chapter 11, “Intrinsic procedures,” on page 467 for information about the bit
manipulation intrinsics.

The following example shows the use of the . AND. operator to perform a bitwise AND
operation:

INTEGER i, j

i =5

Chapter 5 87

Expressions and assignment
Expressions

j =3

PRINT *, i .AND. |

I Qutput fromthe PRINT statenent: 1

The next example shows the use of logical operators to perform bit-masking operations.

I NTEGER(2) mask2
| NTEGER(4) mask4
DATA mask2/ -4/
DATA mask4/ Z"ccc2"/

mask4 = mask4 . NEQV. mask2 Iset mask4 to z"ffff333e"

. NOT. mask4 Iset mask2 to Z"cccl"

mask?2

The next example makes a standard-conforming reference to a bit manipulation intrinsic:

I NTEGER :: nask = 65535
LOG CAL :: is_even = .FALSE.
I'F (1 AND(nesk, 1) /= 0) is_even = . TRUE.

HP Fortran allows the following nonstandard version of the preceding example:
LOG CAL :: nask = z"ffff"

I NTEGER :: is_even = .FALSE.
I'F (1 AND(nesk, 1)) is_even = . TRUE.

Operator precedence
When an expression expands to
oper andl oper at or 1 oper and2 oper at or 2 oper and3 ...

each operator is assigned a precedence. The defined order of evaluation is that any

subexpressions containing an operator with higher precedence than the adjacent operators is
evaluated first. Where operators are of equal precedence, evaluation is from left to right. The
exception to this rule is the exponentiation operator (**), which is evaluated from right to left.

Any expression or subexpression may be enclosed in parentheses. These expressions are
always evaluated first, using the rules explained above. This usage of parentheses is therefore
equivalent to normal mathematical usage.

Table 5-2 lists the precedence of the operators, and Table 5-3 gives example expressions that
illustrate operator precedence.

Table 5-2 Operator precedence

Precedence Operators

88 Chapter 5

Expressions and assignment
Expressions

Table 5-2 Operator precedence (Continued)

Highest User defined unary operators

*x
*
Unary + Unary -
¥ -
11
.EQ .NE .LT. .LE .GI. .CGE
== [= < <= > >=
. NOT.
. AND.
.OR
CEQV. . NEQV. . XCR
Lowest User-defined binary operators
Table 5-3 Examples of operator precedence

Expression How evaluated Explanation

atb*c a + (b*c) * has a higher precedence
than +.

a/ b*c (a/b)*c / and * have the same
precedence, and evaluation
is left to right.

ar*p**c a**(b**c) ** evaluates right to left.

a. AND. b. AND. | ((a. AND. b). AND.c). | Logical operators evaluate

c.ORd CR d) left to right.

Chapter 5

89

Expressions and assignment
Expressions

The Standard allows the compiler to generate code that evaluates an expression by any
sequence that produces a result mathematically equivalent to the sequence implied by the
statement. This laxity permits code optimization, including (for example) the reordering of
expressions and the promotion of common subexpressions.

Because the order of evaluation is not defined by the Standard, a function reference within an
expression may not modify any of the other operands within the same expression. For
example, f un(x) +x is indeterminate if the reference to f un modifies the value of the
argument x.

Special forms of expression

Certain language constructs allow only restricted forms of expressions. For example, the
value specified for a named constant in a PARAMETER statement may be defined by an
expression, but it must be possible to evaluate the expression at compile-time. This means
that the expression must not contain any operands that depend on program execution for
their value. To take another example, a bound of a dummy array argument may be specified
as an expression, but it must be possible to evaluate this expression on entry to the
subprogram.

There are special restrictions imposed on operands and operators that may appear in an
expression, depending on whether the expression is one of the following:

= Constant expressions
= Initialization expressions
= Specification expressions

The following sections describe the special forms of expression.

Constant expressions

A constant expression is either a constant or an expression containing only intrinsic
operators and constant operands. This restriction also applies to any clearly defined part of a
constant—for example, a substring with constant start and end points, or an array or
structure constructor. A constant expression may include references to intrinsic functions that
can be evaluated at compile-time. A constant expression may appear in any context in which
any expression may appeatr.

The following are examples of constant expressions:

123 I an integer literal
"Hello ™ [/ ™ World” I a character constant expression
3.0_single ! areal literal constant where single is

90 Chapter 5

Expressions and assignment
Expressions

! a nanmed integer constant

coord(0.0,infinity) I a structure constructor in which
I "infinity" is a named constant

(I SQRT(x), x, x*x /) ! an array constructor in which x is a
I narmed real constant

X*X + 2*x*y + y*y I a constant numeric expression where x
! and y are named constants

SUMiterations,DIM=l) | reference to a transformationa
! intrinsic where iterations is an
! array-val ued named constant

SHAPE(mat ri x) ! areference to an inquiry intrinsic in
I which "matrix" is an array with
I constant bounds

Initialization expressions

An initialization expression is a more specialized form of constant expression that can
appear as the initial value in a declaration statement. Initialization expressions have these
additional restrictions:

= Exponentiation is only allowed if the second operand is an integer.

= Any subexpression within the expression must itself be an initialization expression.
= All arguments to intrinsic function references must be initialization expressions.

= Only the following transformational intrinsic functions may be referenced:

REPEAT

RESHAPE

SELECTED | NT_KI ND

SELECTED REAL_KI ND

TRANSFER

TRI'M

I T WA N SR A

< Any inquiry intrinsic that is referenced may interrogate a property of an entity (such as
bounds or kind type parameter) only if the property is a constant.

< Any elemental intrinsic functions must have integer or character arguments and an
integer or character result.

Initialization expressions are required for the following:

Chapter 5 91

Expressions and assignment
Expressions

= Values of named constants. Any entity declared with the PARAMETER attribute must be
initialized with an initialization expression.

=« Kind parameter in a type specification statement.

= The KI NDdummy argument of a type conversion intrinsic function.
= Initial values in type declaration statements.

= Expressions in structure constructors in DATA statements.

= Case values in CASE statements.

= Subscript expressions or substring ranges in EQU VALENCE statements.
The following entities may not be initialized:

e Dummy arguments

= Function results

= Allocatable arrays

= Pointers

= External names

= Intrinsic names

< Automatic objects

The following are examples of initialization expressions:

- 456 I an integer litera
("Hello "/ "World") ! a character constant expression
pi *r ** 2 I a constant numeric expression, where

! pi and r are nanmed constants

ABS(i * j) I reference to an elenmental intrinsic
I where i and j are naned integer
I constants
SELECTED_REAL_KI NIX 7) | reference to a transformational intrinsic

The following are illegal initialization expressions:

X ** 2.5 ! the power operand is not an integer

LOG(10. 0) ! the intrinsic function is neither

92 Chapter 5

Expressions and assignment
Expressions

! integer nor character type

suM (/ i, 217)) ! reference to a prohibited function

For information about initializing arrays with an array constructor, see “Array constructors”
on page 73.

Specification expressions

A specification expression has a scalar value, is of type integer, and can be evaluated on
entry to the scoping unit in which it appears. A specification expression may appear (for
example) as a bound in an array declaration or as the length in a CHARACTER type declaration.

An operand in a specification expression is one of the following:
< Aliteral or named constant or part of a constants.
= Avariable that is available by argument, host, or use association or is in common.

< An array constructor or structure constructor where each element or component is also a
specification expression or is a variable in an implied-DOloop appearing in the array
constructor.

= A dummy argument having neither the OPTI ONAL attribute nor the | NTENT(OUT)
attribute.

= An argument to an intrinsic function.
= Areference to an elemental intrinsic function that returns an integer result.
= Areference to any of the following transformational intrinsic functions:

1 REPEAT

1 RESHAPE

1 SELECTED | NT_KI ND

1 SELECTED REAL_KI ND

1 TRANSFER

a TRM

= Any inquiry intrinsic except ALLOCATED, ASSOCI ATED, and PRESENT. Other inquiry
intrinsics may be referenced so long as the property interrogated is not defined by either a
pointer assignment or ALLOCATE statement. Furthermore, an inquiry intrinsic may not
interrogate the following properties of an assumed size array:

d Upper bound of the last dimension

O Extent of the last dimension

Chapter 5 93

Expressions and assignment
Expressions

 Size of the array
0 Shape of the array

The differences between specification expressions and initialization expressions are

summarized in Table 5-4.
Table 5-4

Initialization and specification expressions

Initialization expression

Specification expression

Can be either scalar or array-valued.

Must be scalar-valued.

Can be of any type.

Must be of type integer.

Must be a constant expression.

Can reference variables by host, argument, or
use storage association; can reference
variables in common.

Except for ALLOCATED, ASSOCI ATED, and
PRESENT, can reference inquiry intrinsics
to interrogate a property of an entity,
provided that the property is constant.

Can reference inquiry intrinsic functions,
except for ALLOCATED, ASSQOCI ATED, and
PRESENT. The arguments must be
specification expressions or variables whose
bounds or type parameters inquired about are
not assumed, are not defined by the ALLOCATE
statement, or are not defined by pointer
assignment.

The following are examples of specification expressions:

789 I an integer litera
MAX(mtn, 0) ! mand n are integer
LEN(c) I ¢cis a character va

I host association

SELECTED | NT_KI NI 5) ! reference to a tran
I intrinsic

UBOUND(ar r, DI Men) ! reference to an arr
I intrinsic in which
| accessible via USE

! variable in comon

const ant
dummy ar gunents

riable accessible via

sformati ona

ay inquiry
arr is an array
and n is a

94

Chapter 5

Expressions and assignment
Assignment

Assignment

An assignment operation defines a variable by giving it a value. In HP Fortran, there are four
types of assignment:

= Intrinsic assignment (also known as the assignment statement)
= Pointer assignment
= Masked-array assignment (also known as the WHERE construct)
= Defined assignment

The following sections describe the first three assignment types. The last—defined
assignment—is defined by the programmer, using the | NTERFACE statement. For information
about defined assignment, see “Defined assignment” on page 155.

Assignment statement

An assignment statement gives the value of an expression to a variable. It has the following
syntax:

vari abl e = expression

var i abl e may be any nonpointer variable or a pointer variable that is associated with a
target. (If vari abl e is a pointer, expr essi on is assigned to the target.) The valid
combinations of types for var i abl e and expr essi on are given in Table 5-5. The intrinsic
functions that document the conversions are described in Chapter 11.

Table 5-5 Conversion of vari abl e=expr essi on

Variable Expression type Conversion

type p yp

Integer Integer, real, or complex I NT(expression, KIND(variable))

Real Integer, real, or complex REAL(expression, KIND(variable))

Character Character (same kind CMPLX(expression, KINDX(variable))

parameters)

Logical Logical Truncate expr essi on if its length is greater
than that of vari abl e; otherwise, pad value
assigned to var i abl e, with blanks.

Chapter 5 95

Expressions and assignment

Assignment

Table 5-5 Conversion of vari abl e=expr essi on (Continued)
Variable Expression type Conversion
type
Logical Logical LOG CAL(expression, KIND(variable))
Derived type | Same derived type None

As described in “Bitwise operators” on page 87, HP Fortran allows integer and logical
operands to be used interchangeably. HP Fortran also allows logical expressions to be
assigned to integer variables and integer expressions to logical variables. As shown in
Table 5-5, a logical expression may also be assigned to real or complex variables, and

similarly, a real or complex expression may be assigned to a logical variable.

If vari abl e is a scalar, expr essi on must be scalar. If vari abl e is an array or an array
section, expr essi on must be either an array-valued expression of the same shape or a scalar.
If vari abl e is an array or an array section, and expr essi on is a scalar, the value of

expr essi on is assigned to all elements of vari abl e. If vari abl e and expr essi on are both
arrays, the assignment is carried out element by element with no implied ordering.

The expr essi on is evaluated completely before the assignment is started. For example, the
following code segment:
CHARACTER (LEN=4):: ¢

c(1l:4) = 'abcd
c(2:4) c(1:3)

sets c(2:4) to"abc", not to "aaa", which might result from a left-to-right
character-by-character assignment.

The following examples illustrate assignments of different data types:

! declarations of the variables used in the assignment statenents
! to foll ow
integer icnt
type circle
real radius
real xreal y
end type
type (circle) circlel, circle2
real area, pi
| ogi cal bool x, booly, pixel (10, 10)
i nteger a(10,5)
integer, dinension (10,10):: natrix1, natrix2
character*3 initials
character*10 surnane
character*20 nane

96 Chapter 5

Expressions and assignment
Assignment

icnt =icnt + 1 I integer assignment

circlel = circle2 ! derived-type assignnment

area = pi * circle% adi us**2 ! real assignnent

pi xel (x,y) = boolx .AND. booly ! assigns a |ogical expression to
! an element of the | ogica
I array pixe

a(:,1:2) =0 ! first two colums of a are set to zero

maxtrixl = maxtrix2 ! each element of nmaxtrix2 is assigned to

I the corresponding el ement of maxtrix1

name = initials // surnane ! character assignnent using the
I concatenation operator

Pointer assignment

Pointer assignment establishes an association between a pointer and a target. Once the
association is established, if the pointer is referenced on the left-hand side of an assignment
statement, it is the target to which the assignment is made. And if the pointer is referenced in
an expression, the target is taken as the operand in the expression.

The syntax of a pointer assignment is:
poi nt er - obj ect =>target - expressi on
poi nt er - obj ect
is a variable with the PO NTER attribute.
t ar get - expr essi on

is one of the following:

= A variable with the TARGET or PO NTER attribute
= A function reference or defined operation that returns a pointer result

The type, kind, and rank of poi nt er - obj ect andt ar get - expr essi on must be the same. If

t ar get - expr essi on is an array, it cannot be an assumed-size array or an array section with a
vector subscript. For information about assumed-size arrays, see “Assumed-size arrays” on
page 63. For information about array sections with vector subscripts, see “Vector subscripts”
on page 68.

Chapter 5 97

Expressions and assignment
Assignment

If t ar get - expr essi on is a pointer already associated with a target, then poi nt er - obj ect
becomes associated with the target of t ar get - expr essi on. If t ar get - expressi onis a
pointer that is disassociated or undefined, then poi nt er - obj ect inherits the disassociated or
undefined status of t ar get - expr essi on. For information about pointer status, see “Pointer
association status” on page 50.

The following example, ptr_assign.fo0, illustrates association of scalar and array pointers
with scalar and array targets:

Example 5-1 ptr_assign.fo0

PROGRAM nai n
I NTEGER, PO NTER :: pl, p2, p3(:) ! declare three pointers, p3
! is a deferred-shape array
INTEGER, TARGET :: t1 =99, t2(5) =(/ 1, 2, 3, 4, 5/)

! pl, p2 and p3 are currently undefined.
pl =>1t1l ! pl is associated with t1.
PRINT *, 'contents of t1 referenced through pl:', pl

p2 => pl | p2 is associated with t1.
! pl renmins associated with t1.
PRINT *, 'contents of t1 referenced through pl through p2:', p2

pl => t2(1) I pl is associated with t2(1).
! p2 renmins associated with t1.

PRINT *, 'contents of t2(1) referenced through pl:', pl

p3 =>1t2 ! p3 is associated with t2.
PRINT *, &
"contents of t2 referenced through the array pointer p3:', p3
pl => p3(2) ! plis associated with t2(2).
PRINT *, &

"contents of t2(2) referenced through p3 through pl:', pl

NULLI FY(p1) I pl is disassociated.
I'F (.NOT. ASSCCI ATED(pl)) PRINT *, "pl is disassociated."

p2 => pl I Now p2 is al so disassoci at ed.
I F (.NOT. ASSOCI ATED(p2)) PRINT *, &
"p2 is disassociated by pointer assignnent."
END PROGRAM mai n

Here are the command lines to compile and execute the program, along with the output from
a sample run:
$ f90 ptr_assign.f90

$ a.out
contents of t1 referenced through pl: 99

98 Chapter 5

Expressions and assignment
Assignment

contents of t1 referenced through pl through p2: 99

contents of t2(1) referenced through pl: 1

contents of t2 referenced through the array pointer p3: 1 2 3
45

contents of t2(2) referenced through p3 through pl: 2

pl is disassociated

p2 is disassociated by poi nter assignment.

Masked array assignment

In a masked array assignment, a logical expression—called a mask— controls the selection of
array elements for assignment. Masked array assignment is implemented by the WHERE
statement and the WHERE construct. The syntax of the WHERE statement is:

WHERE (arr ay- | ogi cal - expr essi on) array = array- expr essi on

where arr ay- | ogi cal - expr essi on, ar ray, and ar r ay- expr essi on must all be conformable.
The array- | ogi cal - expressi on (the mask) is evaluated for each element and the outcome
(- TRUE. or . FALSE.) determines whether an assignment is made to the corresponding
element of arr ay.

The syntax of the WHERE construct is:

WHERE (array-I ogical -expression)
array = array-expression

[array array- expressi on]
[ELSEWHERE

array = array-expression

[array = expression] ...]
END WHERE

The WHERE construct is similar to the WHERE statement, but more general in that several ar r ay
= array-expr essi on statements can be controlled by one array- | ogi cal - expr essi on. In
addition, an optional ELSEWHERE part of the construct assigns array elements whose
corresponding ar r ay- | ogi cal - expr essi on elements evaluate to . FALSE. .

When a WHERE construct is executed, array- | ogi cal - expr essi on is evaluated just once and
therefore any subsequent assignment in a WHERE block (the block following the WHERE
statement) or ELSEWHERE block to an entity of ar ray- | ogi cal - expr essi on has no effect on
the masking. Thereafter, successive assignments in the WHERE block are evaluated in sequence
as if they were specified in a WHERE statement, as follows:

WHERE (arr ay- | ogi cal - expr essi on) array = array- expr essi on
Each assignment in the ELSEWHERE is executed as if it were:
WHERE (. NOT. array-| ogi cal - expressi on) array = ar r ay- expr essi on

For example, the following WHERE construct:

Chapter 5 99

Expressions and assignment
Assignment

VWHERE (a > b)

a=>b

b =0
EL SEWVHERE

b =a

a=20
END WHERE

is evaluated as if it was specified as:

mask = a > b

VWHERE (nesk) a = b
VWHERE (mask) b = 0
WHERE (. NOT. nask) b
WHERE (. NOT. mask) a

a
0

Only assignment statements may appear in a WHERE block or an ELSEWHERE block. Within a

WHERE construct, only the WHERE statement may be the target of a branch.

The form of a WHERE construct is similar to that of an | F construct, but with this important
difference: no more than one block of an | F construct may be executed, but in a WHERE
construct at least one (and possibly both) of the WHERE and ELSEWHERE blocks will be executed.
In a WHERE construct, this difference has the effect that results in a WHERE block may feed into,
and hence affect, variables in the ELSEWHERE block. Notice, however, that results generated in

an ELSEWHERE block cannot feed back into variables in the WHERE block.

The following example score2grade.fo0 illustrates the use of a masked assignment to find the
letter-grade equivalent for each test score in the array t est _scor e. To do the same operation
without the benefit of masked array assignment would require a DOloop iterating over the
array either in an | F-ELSE-I F construct or in a CASE construct, testing and assigning to each

element at a time.
Example 5-2
PROGRAM nai n

!
I assi gnnent
!
!
!

! as assuned-shape arrays

! be explicit
I

| NTERFACE

SUBROUTI NE convert (num

score2grade.fo0

illustrates the use of the WHERE statenent in nasked array

use an array constructor to initialize the array that holds
the nunerical scores
I NTEGER, DI MENSI ON(10)
(/75,87,99, 63, 75, 51, 79, 85, 93, 80/)

I array to hold the equivalent letter grades (A B, C, etc.)
CHARACTER, DI MENSI ON(10) :
! because the array argunments are declared in the procedure
the procedure’s interface nust

test_score = &

| etter_grade

100

Chapter 5

Expressions and assignment
Assignment

I NTEGER :: nunt:)
CHARACTER :: letter(:)
END SUBROUTI NE convert
END | NTERFACE

PRI NT *, ' Nunerical score:', test_score
CALL convert(test_score, letter_grade)
PRI NT ' (A 10A3)', ' Letter grade: ", letter_grade

END PROGRAM nai n

SUBROUTI NE convert (num letter)
! declare the dummy argunents as assuned-shape arrays
I NTEGER :: nunt:)
CHARACTER :: letter(:)

! use the WHERE statenents to figure the letter grade
I equival ents
WHERE (num >= 90) letter ="'A

WHERE (num >= 80 . AND. num < 90) letter ='B
WHERE (num >= 70 . AND. num < 80) letter ='C
WHERE (num >= 60 . AND. num < 70) letter ='D

WHERE (num < 60) letter ="'F
END SUBROUTI NE convert

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 score2grade. f90

$ a.out
Nurerical score: 75 87 99 63 75 51 79 85 93 80
Letter grade: C B ADCUZFTCODBAB

The next example is a subroutine that uses the WHERE construct to replace each positive
element of array a by its square root. The remaining elements calculate the complex square
roots of their values, which are then stored in the corresponding elements of the complex
array ca. In the ELSEWHERE part of the construct, the assignment to array a should not appear
before the assignment to array ca; otherwise, all of ca will be set to zero.

SUBROUTI NE find_sqrt(a, ca)
REAL :: a(:)
COWPLEX :: ca(:)

WHERE (a > 0.0)
ca = CMPLX(0.0)
a = SQRT(a)

EL SEWVHERE
ca = SQRT(CWPLX(a))
a =0.0

END VWHERE

END SUBROUTI NE fi nd_sqrt

Chapter 5 101

Expressions and assignment
Assignment

102 Chapter 5

6 Execution control

The normal flow of execution in a Fortran 90 program is sequential. Statements execute in
the order of their appearance in the program. However, you can alter this flow. The following
topics, described in this chapter, describe how to achieve this:

Chapter 6 103

Execution control

= Control constructs and statement blocks
< Flow control statements

For a full description of each Fortran 90 control statement, see
Chapter 10, “HP Fortran Statements.” For information about the WHERE construct, see
“Masked array assignment” on page 99.

104 Chapter 6

Execution control
Control constructs and statement blocks

Control constructs and statement blocks

A control construct consists of a statement block whose execution logic is defined by one of the
following control statements:

e CASE statement
e DOstatement
e | Fstatement

A statement block is a sequence of statements delimited by a control statements and its
corresponding terminal statement. A statement block consists of zero or more statements and
can include nested control constructs. However, any nested construct must have its beginning
and end within the same statement block.

Although the Standard forbids transferring control i nt o a statement block except by means of
its control statement, HP Fortran allows it. The Standard does permit the transferring control
out of astatement block. For example, the following | F construct contains a GO TOstatement
that legally transfers control to a label that is defined outside the | F construct:

IF (var > 1) THEN
varl =1

ELSE
GO TO 2

END | F

2 varl = var2

The next logical | F statement is nonstandard (but permitted by HP Fortran) because it would
transfer control into the DOconstruct:

I'F (.NOT.done) GO TO 4 ! nonstandard!
DOi =1, 100
sum=b + ¢

4 b=b+1
END DO

The following sections describe the operations performed by the three control constructs.

CASE construct

The CASE construct selects (at most) one out of a number of statement blocks for execution.

Chapter 6 105

Execution control
Control constructs and statement blocks

Syntax

[construct-name :] SELECT CASE (case-expr)
[CASE (case-selector) [construct-nane]
st at ement - bl ock]

[CASE DEFAULT [construct - nane]
st at ement - bl ock]
END SELECT [construct-nane]

Notes on syntax
case- sel ector is one of the following:

= case-val ue

e low:

e : high

 low: high

case- sel ect or s must be mutually exclusive and must agree in type with case- expr.

case- expr must evaluate to a scalar value and must be an integer, logical, or character type.

If const ruct - nane is given in the SELECT CASE statement, the same name may appear after
any CASE statement within the construct, and must appear in the END CASE statement. The
construct name cannot be used as a name for any other entity within the program unit.

CASE constructs can be nested. Construct names can then be useful in avoiding confusion.

Although the Standard forbids branching to any statement in a CASE construct other than the
initial SELECT CASE statement from outside the construct, HP Fortran allows it. The
Standard allows branching to the END SELECT statement from within the construct.

Execution logic
The execution sequence of the CASE construct is as follows:

1. case- expr is evaluated.

2. The resulting value is compared to each case-sel ector.

3. If a match is found, the corresponding st at errent - bl ock executes.
4

. If no match is found but a CASE DEFAULT statement is present, its st at enent - bl ock
executes.

5. If no match is found and there is no CASE DEFAULT statement, execution of the CASE
construct terminates without any block executing.

106 Chapter 6

Execution control
Control constructs and statement blocks

6. The normal flow of execution resumes with the first executable statement following the
END SELECT statement, unless a statement in st at enent - bl ock transfers control.

Example

The following CASE construct prints an error message according to the value of i os_err:

I NTEGER :: ios_err

SELECT CASE (i os_err)
CASE (:900)

PRI NT *, "Unknown error”
CASE (913)

PRI NT *, "Qut of free space”
CASE (963:971)

PRINT *, "Format error”
CASE (1100:)

PRINT *, "I SAM error”
CASE DEFAULT

PRI NT *, "M scel | aneous Error”
END SELECT

DOconstruct

The DOconstruct repeatedly executes a statement block. The syntax of the DOstatement
provides two ways to specify the number of times the statement block executes:

= By specifying a loop count.
= By testing a logical expression as a condition for executing each iteration.

You can also omit all control logic from the DOstatement, in effect creating an infinite loop.
The following sections describe the three variations of the DOconstruct.

You can use the CYCLE and EXI T statements to alter the execution logic of the DOconstruct.
For information about these statements, see “Flow control statements” on page 113.
Counter-controlled DOloop
A counter-controlled DOloop uses an index variable to determine the number of times the loop
executes.
Syntax
[construct-nanme :] DOindex = init, limt [, step]

st at ement - bl ock
END DO [construct-nane]

HP Fortran also supports the older, FORTRAN 77-style syntax of the DOloop:

Chapter 6 107

Execution control
Control constructs and statement blocks

DO | abel index = init, linmt [, step]
st at ement - sequence
| abel term nal -statenent

A third form, combining elements of the other two, is also supported:

[construct-name :] DO label index =init, linmt [, step]

Execution logic
The following execution steps apply to all three syntactic forms, except as noted:

1. The loop becomes active, and i ndex issettoinit.

2. The iteration count is determined by the following expression:
MAX(INT (limt - init + step) / step, 0)
st ep is optional, with the default value of 1. It may not be 0.

Note that the iteration count is O if either of the following conditions is true:

= step (if present) is a positive number and i ni t is greater thanlimt.
e stepisanegative numberandinit islessthanlimt.

3. If the iteration count is 0, the construct becomes inactive and the normal flow of execution
resumes with the first executable statement following the END DOor terminal statement.

4. st at enent - bl ock executes. (In the case of the old-style syntactic form, both
st at ement - sequence and t er m nal - st at enent execute.)

5. The iteration count is decremented by 1, and i ndex is incremented by st ep, or by 1 if
st ep is not specified.

6. Go to Step 3.

NOTE To ensure compatibility with older versions of Fortran, you can use the
+onet ri p compile-line option to ensure that, when a counter-controlled DOloop
is encountered during program execution, the body of the loop executes at least
once.

Examples

This example uses nested DOloops to sort an array into ascending order:
I NTEGER :: scores(100)

DOi =1, 99

108 Chapter 6

Execution control
Control constructs and statement blocks

DOj =i+1, 100
I F (scores(i) > scores(j)) THEN
temp = scores(i)
scores(i) = scores(j)
scores(j) = tenp
END | F
END DO
END DO

The following example uses the older syntactic form. Note that, unlike the newer form,
old-style nested DOloops can share the same terminal statement:

DO 10 i =1, 99
DO 10 j = i+1, 100
if (scores(i) <= scores(j)) GO TO 10
temp = scores(i)
scores(i) = scores(j)
scores(j) tenp
10 CONTI NUE

Conditional DOloop

A conditional DOloop uses the WH LE syntax to test a logical expression as a condition for
executing the next iteration.

Syntax

[construct-nanme :] DO WHI LE (| ogical -expression)
st at ement - bl ock
END DO [construct-nane]

Fortran 90 also supports the older syntax of the DO WH LE loop:

DO | abel WHI LE (| ogical -expression)
st at enent - sequence
| abel term nal -statenent

Execution logic

1. The loop becomes active.

2. The | ogi cal - expr essi on is evaluated. If the result of the evaluation is false, the loop
becomes inactive, and the normal flow of execution resumes with the first executable
statement following the END DOstatement, or in the old DGloop syntax, the terminal
statement.

3. st at enent - bl ock executes. (In the case of the old-style syntactic form, both
st at ement - sequence and t er m nal - st at enent execute.)

4. Go to Step 2.

Chapter 6 109

Execution control
Control constructs and statement blocks

Example

I Conpute the nunber of years it takes to double the value of an
I investnent earning 4% interest per annum

REAL :: noney, invest, interest

I NTEGER :: years

money = 1000

i nvest = noney
interest = .04
years = 0

DO WHI LE (noney < 2*invest) ! doubl ed our noney?
years = years + 1
nmoney = noney + (interest * noney)

END DO

PRINT *, "Years =", years

Infinite DOloop

The DOstatement for the infinite DOloop contains no loop control logic. It executes a statement
block for an indefinite number of iterations, until it is terminated explicitly by a statement
within the block; for example, a RETURNor EXI T statement.

Syntax

[construct-nane :] DO
st at ement - bl ock
END DO [construct-nane]

Execution logic
The execution sequence of an infinite DOloop is as follows:

1. The loop becomes active.
2. st at enent - bl ock executes.
3. Go to Step 2.

Example

| Conmpute the average of input values; press 0 to exit
INTEGER :: i, sum n

sum= 0

n=20

average: DO
PRINT *, 'Enter a new number or 0 to quit'
READ *, i
IF (i == 0) EXIT

110 Chapter 6

Execution control
Control constructs and statement blocks

sum = sum + i
n=n+1
END DO aver age
PRINT *, 'The average is ', sunin

| F construct

The | F construct selects between alternate paths of execution. The executing path is
determined by testing logical expressions. At most, one statement block within the | F
construct executes.

Syntax

[construct-nane :] | F (logical-expressionl) THEN
st at ement - bl ock1l

[ELSE I F (Il ogi cal -expression2) THEN [construct-nane]
st at ement - bl ock2]

[ELSE [construct - nane]
st at enent - bl ock3]
END | F [construct-nang]

Execution logic

1.1 ogi cal - expr essi onl is evaluated. If itis true, st at enent - bl ockl1 executes.

2. If | ogi cal - expr essi onl evaluates to false and ELSE | F statements are present, the
| ogi cal - expr essi on for each ELSE | F statement is evaluated. The first expression to
evaluate to true causes the associated st at ement - bl ock to execute.

3. If all expressions evaluate to false and the ELSE statement is present, its
st at enent - bl ock executes. If the ELSE statement is not present, no statement block
within the construct executes.

4. The normal flow of execution resumes with the first executable statement following the
END | F statement.

Example

| Conpare two integer val ues
IF (numl < nun?) THEN

PRINT *, "nunl is snaller than nun2.”
ELSE | F (nunml > nun®) THEN

PRINT *, "nunl is greater than nung.”

Chapter 6 111

Execution control
Control constructs and statement blocks

ELSE
PRI NT *, "The nunbers are equal”
END | F

112 Chapter 6

Execution control
Flow control statements

Flow control statements

Flow control statements alter the normal flow of program execution or the execution logic of a
control construct. For example, the GO TOstatement can be used to transfer control to another
statement within a program unit, and the EXI T statement can terminate execution of a DO
construct.

This section describes the operations performed by the following flow control statements:
= OONTI NUE statement

= CYCLE statement

= EXI Tstatement

= Assigned GO TOstatement

e Computed QO TOstatement

= Unconditional GO TOstatement
e Arithmetic | F statement

= Logical | Fstatement

= PAUSE statement

= STOP statement

For additional information about these statements, see Chapter 10, “HP Fortran Statements.”

QONTI NUE statement

The CONTI NUE statement has no effect on program execution. It is generally used to mark a
place for a statement label, especially when it occurs as the terminal statement of a
FORTRAN 77-style DOloop.

Syntax

CONTI NUE

Execution logic

No action occurs.

Chapter 6 113

Execution control
Flow control statements

Example

I find the 50th triangul ar nunber
triangular_num= 0
DO 10 i =1, 50
triangul ar_num = triangul ar_num + i
10 CONTI NUE
PRINT *, triangular_num

CYCLE statement

The CYCLE statement interrupts execution of the current iteration of a DOloop.

Syntax

CYCLE [do-construct-nane]

Execution logic

1. The current iteration of the enclosing DOloop terminates. Any statements following the
CYCLE statement do not execute.

2. If do- const r uct - nane is specified, the iteration count for the named DO loop decrements.
If do- const r uct - name is not specified, the iteration count for the immediately enclosing
DO loop decrements.

3. If the iteration count is nonzero, execution resumes at the start of the statement block in
the named (or enclosing) DOloop. If it is zero, the relevant DO loop becomes inactive.

Example

LOG CAL :: even
I NTEGER :: nunber

loop: DOi =1, 10
PRINT *, "Enter an integer: ”
READ *, nunber
I F (nunber == 0) THEN
PRI NT *, "Mist be nonzero.”
CYCLE | oop
END | F
even = (MOD(number, 2) == 0)
IF (even) THEN
PRINT *, "Even”
ELSE
PRINT *, "Cdd”
END | F
END DO | oop

114 Chapter 6

Execution control
Flow control statements

EXlI T statement

The EXI T statement terminates a DO loop. If it specifies the name of a DOloop within a nest of
DO loops, the EXI T statement terminates all loops by which it is enclosed, up to and including
the named DO loop.

Syntax

EXIT [do-construct-nane]

Execution logic

If do- const ruct - name is specified, execution terminates for all DOloops that are within
range, up to and including the DO loop with that name. If no name is specified, execution
terminates for the immediately enclosing DOloop.

Example

DO
PRINT *, "Enter a nonzero integer:
READ *, nunber
I F (nunber == 0) THEN
PRI NT *, ”Bye”
EXIT
END | F
even_odd = MOD(nunber, 2)
I F (even_odd == 0) THEN
PRI NT *, "Even”
ELSE
PRI NT *, "Cdd”
END | F
END DO

Assigned O TOstatement

The assigned GO TOstatement transfers control to the statement whose statement label was
assigned to an integer variable by an ASSI G\ statement.

Syntax

GO TO integer-variable [, (label-list)]

Ifl abel -1i st is present, then the label previously assigned to i nt eger - vari abl e must be in
the list.

Chapter 6 115

Execution control
Flow control statements

Execution logic

Control transfers to the executable statement at i nt eger - vari abl e.

Example

I NTEGER i nt _| abel
ASSI GN 20 TO int_| abel
GOTO i nt _| abel

20 ...

Computed QO TOstatement

The computed GO TOstatement transfers control to one of several labeled statements, as
determined by the value of an arithmetic expression.

Syntax

GO TO (label-list) [,] integer-expression

Execution logic

1. i nt eger - expr essi on is evaluated.

2. The resulting integer value (the index) specifies the ordinal position of the label that is
selected from | abel -1 i st .

3. Control transfers to the executable statement with the selected label. If the value of the
index is less than 1 or greater than the number of labels in | abel -1 i st, the computed GO
TOstatement has no effect, and control passes to the next executable statement in the
program.

Example

DO
PRINT *, "Enter a nunber 1-3:
READ *, k
GO TO (20, 30, 40) k
PRI NT *, " Nunber out of range.”

116 Chapter 6

Execution control
Flow control statements

EXIT
20 i =20
GO TO 100
30 i =30
GO TO 100
40 i = 40
100 print *, i
END DO

Unconditional QO TOstatement

The unconditional GO TOstatement transfers control to the statement with the specified label.

Syntax

GO TO | abel

Execution logic

Control transfers to the statement at | abel .

Example

Older, “dusty-deck” Fortran programs often combine the GO TOstatement with the logical | F
statement to form a kind of leap-frog logic, as in the following:

I'F (nunl /= nunR) GO TO 10
PRINT *, "nunl and nunR are equal .”
GO TO 30
10 IF (nunl > nunR) GO TO 20
PRINT *, "nunl is snaller than nun2.”
GO TO 30
20 PRINT *, "nunl is greater than nunR.”
30 CONTI NUE

Arithmetic | F statement

The arithmetic | F transfers control to one of three labeled statements, as determined by the
value of an arithmetic expression.

Syntax
IF (arithnetic-expression) labell, Iabel2, |abel3
Execution logic

1. arithmeti c-expression is evaluated.

Chapter 6 117

Execution control
Flow control statements

2. If the resulting value is negative, control transfers to the statement at | abel 1.
3. If the resulting value is 0, control transfers to the statement at | abel 2.

4. If the resulting value is positive, control transfers to the statement at | abel 3.

Example

As shown in this example, two or more labels in the label list can be the same.
i = MOD(total, 3) + 1
IF (i) 10, 20, 10

Logical | F statement

The logical | F statement executes a single statement, conditional upon the value of a logical
expression. The statement it executes must not be:

< A statement used to begin a construct
= Any ENDstatement

= Any | Fstatement

Syntax

I'F (logical-expression) executabl e-statenent

Execution logic
1.1 ogi cal - expr essi on is evaluated.
2. If it evaluates to true, execut abl e- st at enent executes.

3. The normal flow of execution resumes with the first executable statement following the | F
statement. (If execut abl e- st at enent is an unconditional GO TOstatement, control
resumes with the statement specified by the QO TOstatement.)

Example

LOd CAL :: finished

IF (finished) PRINT *, "Done.”

118 Chapter 6

Execution control
Flow control statements

PAUSE statement

The PAUSE statement causes a temporary break in program execution.

Syntax

PAUSE [pause-code]
where pause- code is a character constant or a list of up to 5 digits.

Execution logic

1. Execution of the program is suspended, and the following message is written to standard
output:

To resume execution, type 'go'.

If pause- code is specified, the following message is written:
To resume execution, type 'go'.

PAUSE pause- code

2. The normal flow of execution resumes after the user types the word go followed by
RETURN. If the user enters anything other than go, program execution terminates.

If the standard input device is other than a terminal, the message is:

To resume execution, execute a kill -15 pid
command.

pi d is the unique process identification number of the suspended program. The ki | |
command can be issued at any terminal at which the user is logged in.

Example

PAUSE 999

STCP statement
The STCP statement terminates program execution.

Syntax

STOP [stop-code]
where st op- code is a character constant, a named constant, or a list of up to 5 digits.

Chapter 6 119

Execution control
Flow control statements

Execution logic

Program terminates execution. If st op- code is specified, the following is written to standard
output:

STOP st op-code

Example

STOP " Program has stopped executing.”

120 Chapter 6

/ Program units and procedures

This chapter describes the internal structure of each type of program unit, how it is used, and
how information is communicated between program units and shared by them. This includes

the following topics:

Chapter 7 121

Prog

ram units and procedures

Terminology and concepts
Main program

External procedures
Internal procedures
Statement functions
Arguments

Procedure interface
Modules

Block data program unit

For detailed information about individual statements that can be used to build program units

and procedures, see Chapter 10, “HP Fortran Statements.”

122

Chapter 7

Program units and procedures
Terminology and concepts

Terminology and concepts

The following sections define the terms and explain the concepts that are mentioned
throughout this chapter.

Program units

A program consists of the following program units:

= Main program unit

= External procedure, which can be either a subroutine or a function
< Module program unit

= Block data program unit

A complete executable program contains one (and only one) main program unit and zero or
more other program units, each of which is separately compilable. A program unit is an
ordered set of constructs, statements, comments, and | NCLUDE lines. The heading statement
identifies the kind of program unit; it is optional in a main program unit only. An END
statement marks the end of a program unit.

The only executable program units are the main program and external procedures.
Program execution begins with the first executable statement in the main program and ends
(typically) with the last. During execution, if the main program references an external
procedure, control passes to the procedure, which executes and returns control to the main
program. An executing procedure can also reference other procedures or even reference itself
recursively.

The main program unit is described in “Main program” on page 126, and external procedures
are described in “External procedures” on page 129.

The nonexecutable program units are:

= The module program unit, which contains data declarations, user-defined type
definitions, procedure interfaces, common block declarations, namelist group
declarations, and subprogram definitions used by other program units. Modules are
described in “Modules” on page 158.

< The block data program unit, which specifies initial values for variables in named
common blocks. Block data program units are described in “Block data program unit” on
page 166.

Chapter 7 123

Program units and procedures
Terminology and concepts

Procedures

A procedure is a subroutine or function that contains a sequence of statements and that
may be invoked during program execution. Depending on where and how it is used, a
procedure can be one of the following:

< Intrinsic procedures are defined by the language and are available for use without any
declaration or definition. Intrinsic procedures implement common computations that are
important to scientific and engineering applications. Intrinsic procedures are described in
detail in Chapter 11, “Intrinsic procedures,” on page 467.

< An external procedure is a separately compilable program unit whose name and any
additional entry points have global scope. External procedures are described in “External
procedures” on page 129.

< Aninternal procedure has more limited accessibility than an external procedure. It can
appear only within a main program unit or an external procedure and cannot be accessed
outside of its hosting program unit. Internal procedures are described in “Internal
procedures” on page 135.

< A module procedure can be defined only within a module program unit and can be
accessed only by use association. Module procedures are described in “Modules” on
page 158.

Scope

All defined Fortran entities have a scope within which their properties are known. For
example, a label used within a subprogram cannot be referenced directly from outside the
subprogram; the subprogram is the scoping unit of the label. A variable declared within a
subprogram has a scope that is the subprogram. A common block name can be used in any
program unit, and it refers to the same entity—that is, the name has global scope. At the
other extreme, the index variable used within an implied-DOloop in a DATA statement or array
constructor has a scope consisting only of the implied-DOloop construct itself.

Association

If the concept of scope limits the accessibility of entities, then the concept of association
permits different entities to become accessible to each other in the same or different scope.
The different types of association are:

= Argument association is the association that is established between actual arguments
and dummy arguments during a procedure reference. For more information, see
“Argument association” on page 139.

124 Chapter 7

Program units and procedures
Terminology and concepts

< Host association applies to nested scoping units, where the outer scoping unit (for
example, an external procedure) plays host to the inner scoping unit (for example, an
internal procedure). Host association allows the host and its nested scoping units to share
data. For information about internal procedures, see “Internal procedures” on page 135.

= Pointer association is the association between a pointer and its target that is
established by a pointer assignment statement. For more information, see “Pointer
association status” on page 50 and “Pointer assignment” on page 97.

= Sequence association is the association that is established between dummy and actual
arguments when they are arrays of different rank. For more information, see “Array
dummy argument” on page 140.

= Storage association is the association of different objects with the same storage area
and is established by the EQUI VALENCE and COVMMON statements. For more information
about storage association, refer to the descriptions of the EQU VALENCE and COVMON
statements in Chapter 10, “HP Fortran Statements.” Derived-type objects that include the
SEQUENCE statement in their definition can also be storage associated; see “Sequence
derived type” on page 43.

= Use association allows different program units access to module entities by means of the
USE statement. For more information about modules and the USE statement, see
“Modules” on page 158.

Chapter 7 125

Program units and procedures
Main program

Main program
A main program is a program unit. There must be exactly one main program in an executable
program. Execution always begins with the main program.

The main program can determine the overall design and structure of the complete program
and often performs various computations by referencing procedures. A program may consist of
the main program alone, in which case all the program logic is contained within it.
A main program has the form:
[PROGRAM pr ogr am nane]

[specification-part]

[execution-part]

[internal - procedure-part]
END [PROGRAM [pr ogr am nane]]

progr am name

i s the name of the program. pr ogr am nane can appear on the END PROGRAM
statement only if it also appears on the PROGRAMstatement; the name must
be the same in both places.

speci fication-part

is zero or more of the statements listed in Table 7-1 as well as any of the
following:

= Type declaration statement
= Derived-type definition
= Interface block
= Statement function
= Cray-style pointer statement (HP extension)
= Structure definition (HP extension)
= Record declaration (HP extension)
execut i on- part

is zero or more of the statements or constructs listed in Table 7-2 as well as
any of the following:

= Assignment statement

= Pointer assignment statement

126 Chapter 7

i nt ernal - procedure-part

takes the form:

CONTAI NS
[internal -procedure]...

Table 7-1 Specification statements
ALLOCATABLE FCRVAT PO NTER
COVWON IMPLIAT SAVE
DATA I NTRI NSI C STATI C
DI MENSI ON NAMELI ST USE
EQUI VALENCE OPTI ONAL VI RTUAL
EXTERNAL PARAMETER VCLATI LE

Table 7-2 Executable statements
ACCEPT ELSE N
ALLOCATE ELSE I F CPEN
ASSI GN ELSEWHERE PAUSE
BACKSPACE ENCCDE PR NT
CALL END READ
CASE construct ENDFI LE REW ND
CLCSE EXIT STOP
CONTI NUE FORVAT TYPE (1/0)
CYCLE &0 TO WHERE
DEALLCCATE I F WHERE construct
DECCDE | F construct WR TE
DO | NQUI RE

Program units and procedures

Main program

where i nt er nal - procedur e is one or more internal procedures; see
“Internal procedures” on page 135.

Chapter 7

127

Program units and procedures
Main program

Table 7-2 Executable statements (Continued)

DOconstruct NULLI FY

The only required component of a main program unit is the END statement. The following is
therefore a valid, compilable program:

END

128 Chapter 7

Program units and procedures
External procedures

External procedures

External procedures are implemented as either functions or subroutines. The major difference
between the two is that a function subprogram returns a value and can therefore appear as an
operand in an expression.

The following sections describe both types of external procedures, including the following
topics:

= Procedure definition

= Procedure reference

= Returning from a procedure call
= Alternate entry points

For detailed information about any of the statements associated with procedures (for example,
SUBRCQUTI NE and FUNCTI ON), refer to Chapter 10, “HP Fortran Statements.”

Procedure definition

The definition of an external procedure takes the form:

ext er nal - procedur e- st at enent
[specification-part]
[execution-part]
[internal - procedure-part]
end- ext er nal - procedur e- st at enent

ext er nal - pr ocedur e- st at enent

takes one of the following forms, depending on whether the procedure is a
subroutine or function

e [RECURSI VE] SUBROUTI NE nane &
[([dummy-arg-list])]

® [RECURSI VE] [type-spec] FUNCTI ON nane &
([dummy-arg-1ist]) [RESULT (result-nane)]

where nane is the name of the procedure; t ype- spec is the type of the
function’s result value; and dummy- ar g- | i st is a comma-separated list of
dummy arguments, as described in “Arguments” on page 139. The
SUBRQUTI NE and FUNCTI CN statements are fully described in Chapter 10,
“HP Fortran Statements.”

Chapter 7 129

Program units and procedures
External procedures

speci fication-part

is zero or more of the statements listed in Table 7-1 as well as the
AUTQVATI C statement.

execut i on- part

is zero or more of the statements listed in Table 7-2 as well as the following
statements:

= ENTRY statement

= RETURNstatement
i nt ernal - procedure-part

takes the form:

CONTAI NS
[internal -procedure]...internal-procedure

is the definition of an internal procedure; see “Internal procedures” on
page 135.

end- ext er nal - pr ocedur e- st at enent

takes one of the following forms, depending on whether the procedure is a
subroutine or function:

® END [SUBROUTI NE [subrouti ne-nane]]

® END [FUNCTI ON [function-nane]]

Procedure reference

A procedure reference—also known as a pr ocedur e cal | —occurs when a procedure name is
specified in an executable statement, which causes the named procedure to execute. The
following sections describe references to subroutines and functions, and recursive
references—when a procedure directly or indirectly calls itself.

Referencing a subroutine

A reference to an external subroutine occurs in a CALL statement, which specifies either the
subroutine name or one of its entry point names. The syntax of the CALL statement is:

CALL subroutine-nane [([actual -argument-list])]
act ual -argurent -1 i st

is a comma-separated list of the actual arguments that take the form:

130 Chapter 7

Program units and procedures
External procedures

[keyword =] actual -argunent
keywor d

is the name of a dummy argument that appears in the SUBROUTI NE
statement. For more information about keywor d, see “Keyword option” on
page 143.

act ual - ar gunent
is one of:
= Expression, including a variable name
= Procedure name
= Alternate return
For detailed information about arguments, see “Arguments” on page 139.

alternate-return

is one of:
e *| abel
e &l abel

| abel must be a branch target in the same scoping unit as the CALL
statement. The ampersand prefix (&) is an HP extension and is permitted in
fixed source form only. For information about alternate returns, see
“Returning from a procedure reference” on page 132.

For information about referencing a subroutine that implements a defined assignment, see
“Defined assignment” on page 155.

Referencing a function

An external function subprogram is referenced either by its name or by one of its entry point
names. The syntax of a function reference is:

name ([actual -argunent-list])

where nane is the function name or the name of one of its entry points (see “Alternate entry
points” on page 134). act ual - ar gument - | i st has the same as it does in a subroutine
reference (see “Procedure reference” on page 130), except that it may not include an alternate
return.

For information about referencing a function that implements a defined operator, see
“Defined operators” on page 153.

Chapter 7 131

Program units and procedures
External procedures

Recursive reference

A procedure that directly or indirectly invokes itself is r ecur si ve. Such a procedure must
have the word RECURSI VE added to the FUNCTI ONor SUBRCUTI NE statement.

If a function calls itself directly, both RECURSI VE and a RESULT clause must be specified in the
FUNCTI ON statement, making its interface explicit.

The following is a recursive function:

RECURSI VE FUNCTI ON factorial (n) RESULT(r)
INTEGER :: n, r
I'F (n.ne.0) THEN
r = n*factorial (n-1)
ELSE
r =1
ENDI F
END FUNCTI ON factori al

Both internal and external procedures can be recursive.

Returning from a procedure reference

When the END statement of a subprogram is encountered, control returns to the calling
program unit. The RETURN statement can be used to the same effect at any point within a
procedure. The syntax of the RETURN statement is:

RETURN [al t-return-arg]

where al t -ret urn-ar g is a scalar integer expression that evaluates to the position of one of
an alternate-return argument in the subroutine argument list. al t -ret ur n-ar g is not
permitted with RETURN statements appearing in functions.

By default, when control returns from a subroutine call, the next statement to execute is the
first executable statement following the CALL statement. However, by specifying alternate
returns as actual arguments in the subroutine call, the programmer can return control to
other statements. The alternate returns are labels prefixed with an asterisk (*). Each label is
inserted in the list of actual arguments in the position that corresponds to a placeholder—a
simple asterisk (*)—in the dummy argument list. For example, if the subroutine subr has the
following list of dummy arguments:

SUBRQUTI NE subr(x, vy, z, *, *)

then the actual arguments must include two labels for alternate returns, as in the following
call:

CALL subr(a, b, c, *10, *20)

132 Chapter 7

Program units and procedures
External procedures

As a compatibility extension, HP Fortran allows the ampersand (&) as a prefix character
instead of the asterisk, but only in fixed source form. Alternate returns cannot be optional,
and the associated actual argument cannot have keywords. For detailed information about
the syntax of the alternate return argument, refer to the descriptions of the CALL and RETURN
statements in Chapter 10, “HP Fortran Statements.”

The following example, alt_return.fo0, illustrates the alternate return mechanism. The
referenced subroutine, subr, selects one of two alternate return arguments based on the value
of the first argument, where_t o.

Example 7-1 alt_return.fo0
PROGRAM mai n
I illustrates alternate return argunents

INTEGER :: por ! point of return

por = -1 | interpreted by arithnetic IF
CALL subr(por, *10, *15) ! executes first
PRINT *, 'Default returning point'

por =0

CALL subr(por, *10, *15) ! executes second

GOTO 20 ! control should never reach here
10 PRINT *, 'Line 10 in main'

por =1

CALL subr(por, *10, *15) ! executes third

GOTO 20 ! control should never reach here
15 PRINT *, 'Line 15 in main'
20 CONTI NUE

END PROGRAM nai n

SUBROUTI NE subr (where_to, *, *)

! Argunent list includes placeholders for two alternate returns;
! the third argunent, where_to, is used to select a return

I argunent

I NTEGER :: where_to

| use arithrmetic IF to select a return
IF (where_to) 25, 30, 35 ! labels to transfer control
PRI NT *, ' Should never print'
25 PRINT *, 'Line 25 in subr'
RETURN ! default returning point
30 PRINT *, 'Line 30 in subr'
RETURN 1 ! select the first return argunent
35 PRINT *, 'Line 35 in subr’
RETURN 2 ! select the second return argunent

END SUBROUTI NE subr

Chapter 7 133

Program units and procedures
External procedures

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 alt_return.f90
$ a.out
Line 25 in subr
Default returning point
Line 30 in subr
Line 10 in main
Line 35 in subr
Line 15 in main

Alternate entry points

When a procedure is referenced, execution normally begins with the first executable
statement in the procedure. Using the ENTRY statement, however, the programmer can define
alternate entry points into the procedure and associate a name with each entry point. Each
ENTRY statement within a procedure defines a procedure entry, which can be referenced by
name as a separate, additional procedure.

The syntax for the ENTRY statement is:

ENTRY entry-nane ([dunmy-arg-list])[RESULT (result-nane)]

134 Chapter 7

Program units and procedures
Internal procedures

Internal procedures

An internal procedure is similar to an external procedure except that:

= It must be defined within a hosting program unit—a main, external, or module program
unit—following the CONTAI NS statement.

= It can be referenced by the host only.

= It can access other entities by host association within the host.
= It cannot have an ENTRY statement.

= It cannot be passed as an argument.

= It cannot contain an internal procedure.

The syntax of an internal procedure definition is the same as for an external procedure (see
“Procedure definition” on page 129), except that it has no internal procedure part. The
reference to an internal procedure is the same as for an external procedure; see “Procedure
reference” on page 130.

The following example, int_func.f90, declares and references an internal function. Note that
both the external procedure and the internal procedure have an assumed-shape array as a
dummy argument, which requires the procedure to have an explicit interface (see “Procedure
interface” on page 149). External procedures must be declared in an interface block to make
their interface explicit; the interface of internal procedures is explicit by default.

Example 7-2 int_func.fo0

PROGRAM mai n

| declare and initialize an array to pass to an externa
I procedure
REAL, DI MENSION(3) :: values = (/2.0, 5.0, 7.0/)

Because the dunmy argunent to print_avg is an assuned-shape
array (see the definition of print_avg below), the
procedure interface of print_avg nust

!
!
!
! be nade explicit within the calling programunit.

| NTERFACE
SUBROUTI NE print_avg(x)
REAL :: x(:)

END SUBROUTI NE print _avg
END | NTERFACE

CALL print_avg(val ues)

Chapter 7 135

Program units and procedures
Internal procedures

END PROGRAM nai n

I print_avg is an external subprogram
SUBROUTI NE print_avg(x)
REAL :: x(:) ! an assuned-shape array

! reference the internal function get_avg
PRI NT *, get_avg(x)

CONTAINS ! start of internal procedure part
REAL FUNCTI ON get _avg(a) ! get_avg is an internal procedure
! The interface of an internal procedure is explicit within
! the hosting unit, so this function may declare a as an
! assuned- shape array.
REAL a(:) ! an assumed-shape array

! references to the SUM and SIZE intrinsics
get _avg = SUMa) / Sl ZE(a)
END FUNCTI ON get _avg

END SUBROUTI NE print _avg

Here are the command lines to compile and execute the program, along with the output from

a sample run:

$ f90 int_func.f90
$ a.out
4. 66667

136

Chapter 7

Program units and procedures
Statement functions

Statement functions

If an evaluation of a function with a scalar value can be expressed in just one Fortran
assignment statement, such a definition can be included in the specification part of a main
program unit or subprogram. This definition is known as a st at ement functi on. It is local to
the scope in which it is defined. The syntax is:

function-nane (dummy-argunent-list) = scal ar-expression

All dummy arguments must be scalars. All entities used in scal ar - expr essi on must have
been declared earlier in the specification part. A statement function can reference another
statement function that has already been declared. The name cannot be passed as a
procedure-name argument. A statement function has an explicit interface.

The following example, stmt_func.f90, is the same as the one listed in “Internal procedures”
on page 135 except that it implements get _avg as a statement function rather than as an
internal function. As noted in the comments to the program, the elements of the array x are
passed to the statement function as separate arguments because dummy arguments of a
statement function must be scalars.

Example 7-3 stmt_func.fo0
PROGRAM nai n

| declare and initialize an array to pass to an externa
I procedure
REAL, DI MENSION(3) :: values = (/2.0, 5.0, 7.0/)

Because the dunmy argunent to print_avg is an assunmed-shape
array (see the definition of print_avg below), the
procedure interface of print_avg nust be made

!
!
!
I explicit within the calling programunit.

| NTERFACE
SUBROUTI NE print_avg(x)
REAL :: x(:)

END SUBROUTI NE print _avg
END | NTERFACE

CALL print_avg(val ues)
END PROGRAM mai n

I print_avg is an external subprogram
SUBROUTI NE print_avg(x)
REAL :: x(:) ! an assuned-shape array

| Define the statenent function get_avg

Chapter 7 137

Program units and procedures
Statement functions

! Note that the dummy arguments nust be scalar, so in order
! to find the average of the elements of the array, we nust
| pass each el ement as a separate argunent

get _avg(x1, x2, x3) = (x1 + x2 + x3) / 3

! reference the statenent function get_avg
PRINT *, get_avg(x(1), x(2), x(3))

END SUBROUTI NE print _avg

Here are the command lines to compile and execute the program, along with the output from
a sample run:
$ f90 stnt_func.f90

$ a.out
4. 66667

138 Chapter 7

Program units and procedures
Arguments

Arguments

Arguments data to be passed during a procedure call. Arguments are of two sorts: dummy
arguments and actual arguments. Dummy arguments are specified in the argument listin a
procedure definition. They define the number, type, kind, and rank of the actual arguments.
The actual arguments are the arguments that appear in the procedure reference and are the
actual entities to be used by the referenced procedure, even though they are known by the
dummy argument names.

This section covers the following topics related to arguments:

= Argument association
= Keyword option

= Duplicated association
= | NTENT attribute

e OREF and WAL

Argument association

Argument association is the linkage of actual argument to dummy argument that initially
occurs when a procedure having arguments is invoked. During the execution of the referenced
procedure, the dummy arguments are effectively aliases for the actual arguments. After
control returns to the program unit making the reference, the dummy arguments and actual
arguments are no longer associated, and the actual arguments may no longer be referenced by
the dummy argument names.

The principle of argument association is positional: the first item in the list of actual
arguments is associated with the first item in the list of dummy arguments, and so on with
the remaining arguments in each list. However, the programmer can use the keyword option
to override this positional correspondence; see “Keyword option” on page 143.

Dummy and actual arguments must agree in kind, type, and rank. The corresponding dummy
and actual arguments must both be scalars or both arrays; if they are both arrays, they must
have the same dimensionality. Likewise, if an actual argument is an expression or a reference
to a function, it must match the type and kind of the dummy argument.

The following sections provide more detailed information about these types of dummy
arguments:

e Scalars

Chapter 7 139

Program units and procedures
Arguments

= Arrays
= Derived types
« Pointers

e Procedure names

Scalar dummy argument

If the dummy argument is a scalar, the corresponding actual argument must be a scalar or a
scalar expression, of the same kind and type. If the dummy argument is a character variable
and has assumed length, it inherits the length of the actual argument. Otherwise, the length
of the actual argument must be at least that of the dummy argument, and only the characters
within the range of the dummy argument can be accessed by the subprogram. Lengths may
differ for default character types only.

Array dummy argument

If the dummy argument is an assumed-shape array, the corresponding actual argument must
match in kind, type, and rank; the dummy argument takes its shape from the actual
argument, resulting in an element-by-element association between the actual and dummy
arguments.

If the dummy argument is an explicit-shape or assumed-size array, the kind and type of the
actual argument must match but the rank need not. The elements are sequence
associated—that is, the actual and dummy arguments are each considered to be a linear
sequence of elements in storage without regard to rank or shape, and corresponding elements
in each sequence are associated with each other in array element order.

A consequence of sequence association is that the overall size of the actual argument must be
at least that of the dummy argument, and only elements within the overall size of the dummy
argument can be accessed by referenced procedure.

For example, if an actual argument has this declaration:

REAL a(0:3,0:2)

and the corresponding dummy argument has this declaration:

REAL d(2,3,2)

then the correspondence between elements of the actual and dummy arguments is as follows:

Dunmy <=> Actua

d(1,1,1) <=> a(0,0)
d(2,1,1) <=> a(1,0)
d(1,2,1) <=> a(2,0)

140 Chapter 7

Program units and procedures
Arguments

d(2,3,2) <=> a(3,2)

When an actual argument and the associated dummy argument are default character arrays,
they may be of unequal character length. If this is the case, then the first character of the
dummy and actual arguments are matched, and the successive characters—rather than array
elements—are matched.

The next example illustrates character sequence association. Assuming this declaration of the
actual argument:

CHARACTER*2 a(3, 4)

and this declaration of the corresponding dummy argument:

CHARACTER*4 d(2, 3)

then the correspondence between elements of the actual and dummy arguments is as follows:

Durmy <=> Actual

d(11) <> a(L1)//a(2 1)
d(2,1) <=> a(3,1)//a(1,2)

d(2,3) <=> a(2, 4)//a(3,4)

An actual argument may be an array section, but associating an array section with any other
but an assumed-shape dummy argument may cause a copy of the array section to be
generated and is likely to result in a degradation in performance.

For information about the different types of arrays, see “Array declarations” on page 57.

Derived-type dummy argument

When passing a derived-type object, the corresponding dummy and actual arguments of
derived types are assumed to be of the same derived type. Unless the interface of the
referenced procedure is explicit within the program unit that makes the reference, the
compiler does not perform any type-checking. It is the programmer’s responsibility to ensure
that the types of the dummy argument and the actual argument are the same, such as by
doing either of the following:

= Replicating the definition of the derived type in both subprograms

= Placing the definition in a module and making the definition available to both
subprograms by use association

For information about explicit interface, see “Procedure interface” on page 149. For
information modules and use association, see “Modules” on page 158.

Chapter 7 141

Program units and procedures
Arguments

Pointer dummy argument

If the dummy argument has the PO NTER attribute, the actual argument must also have the
PA NTER attribute. Furthermore, they must match in kind, type, and rank. If the dummy
argument does not have the PO NTER attribute but the actual argument is a pointer, the
argument association behaves as if the pointer actual argument were replaced by its target at
the time of the procedure reference.

Procedure dummy argument

If a dummy argument is a procedure, the actual argument must be the name of an
appropriate subprogram, and its name must have been declared as EXTERNAL in the calling
unit or defined in an interface block (see “Procedure interface” on page 149). Internal
procedures, statement functions, and generic names may not be passed as actual arguments.

If the actual argument is an intrinsic procedure, the appropriate specific name must be used
in the reference. It must have the | NTRI NSI Cattribute.

The following example, intrinsic_arg.f90, declares the intrinsics @8I N and QCCS with the

I NTRI NSI Cattribute so that they can be passed as arguments to the user-defined subroutine
cal | _i nt_arg. Note that the dummy argument, tri g_f unc, is declared in the subroutine
with the EXTERNAL attribute to indicate that it is a dummy procedure. This declaration does
not conflict with the declaration of the actual arguments in the main program unit because
each occurs in different scoping units.

Example 7-4 intrinsic_arg.f90

PROGRAM nai n
! declare the intrinsics QSIN and QCOS with the INTRINSIC
| attribute to allow themto be passed as argunents
REAL(16), INTRINSIC :: QSIN, QCCS

CALL call _int_arg(QsIN)
CALL cal | _i nt_ar g(QCOS)
END PROGRAM nmi n

SUBROUTI NE cal | _int_arg(trig_func)

! trig_func is an intrinsic function--see the declarations
! of the actual argunents in the main program trig_func
I is declared here as EXTERNAL to indicate that it is a

! dummy procedure.

REAL(16), EXTERNAL :: trig_func
REAL(16), PARAMETER :: pi=3.1415926
I NTEGER :: i

DOi = 0, 360, 45
! Convert degrees to radians (i*pi/180) and call the

142 Chapter 7

Program units and procedures
Arguments

! intrinsic procedure passed as trig_func
WRI TE(6, 100) i,” degrees “, trig_func(i*pi/180)
END DO
100 FORMAT (14, A9, F12.8)
END SUBROUTI NE cal | _int_arg

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 intrinsic_arg.f90

$ a.out

0 degrees 0. 00000000
45 degrees 0.70710675
90 degrees 1. 00000000
135 degrees 0. 70710686
180 degrees 0. 00000015
225 degrees -0.70710665
270 degrees -1.00000000
315 degrees -0.70710697
360 degrees -0.00000030

0 degrees 1. 00000000
45 degrees 0.70710681
90 degrees 0. 00000008
135 degrees -0.70710670
180 degrees -1.00000000
225 degrees -0.70710691
270 degrees -0.00000023
315 degrees 0. 70710659
360 degrees 1. 00000000

See Chapter 10, “HP Fortran Statements,” for information about the EXTERNAL and
| NTR NSI Cstatements. Intrinsic procedures are fully described in Chapter 11, “Intrinsic
procedures,” on page 467.

Keyword option

The keyword option allows the programmer to specify actual arguments in a procedure
reference independently of the position of the dummy arguments. Using the keyword option,
the programmer explicitly pairs an actual argument with its dummy argument, as shown by
the syntax:

dummy- ar gunent = actual - argunent

If the keyword option is used for an argument, it must be followed by other arguments with
the keyword option. If all arguments in the argument list use the keyword option, the actual
arguments may appear in any order.

Chapter 7 143

Program units and procedures
Arguments

As an example of how to use the keyword option, consider the SUMintrinsic function. As
described in “SUM(ARRAY, DIM, MASK)” on page 593, this intrinsic has three arguments:
array, di m and mask, in that order; di mand nask are optional arguments. The following are
therefore valid references to SUM

SUM a, 2)

SUM a, mask=a. gt . 0)
SUM di m=2, arr ay=a)

The following is an invalid reference—the mask keyword must be specified:

SUM a, di me2, a. gt . 0) ! I LLEGAL, mask keyword mi ssing

Optional arguments

An actual argument may be omitted from the argument list of a procedure reference if its
corresponding dummy argument is optional. A dummy argument is optional if it is declared
with the CPTI ONAL attribute and appears at the end of the argument list. The procedure
reference may also omit trailing arguments with the GPTI ONAL attribute. Otherwise,
keywords must be provided to maintain an identifiable correspondence (see “Keyword option”
on page 143). Only procedures with an explicit interface may have optional arguments.

The following example, optional_arg.f90, references an internal function that declares one of
its dummy arguments with the GPTI ONAL attribute. (Internal functions have an explicit
interface, making them eligible for optional arguments; see “Internal procedures” on

page 135.) The function uses the PRESENT intrinsic to test whether or not the optional
argument is present. If the intrinsic returns . TRUE. (an actual argument is associated with
the optional dummy argument), the function returns the sum of the two arguments;
otherwise, it returns the required argument incremented by 1.

Example 7-5 optional_arg.fo0

PROGRAM nai n
I illustrates the optional argument feature

INTEGER :: argl = 10, arg2 = 20

PRINT *, add_or_inc(argl) ! omt optional argunment
PRINT *, add_or_inc(argl, arg2)

CONTAINS ! internal procedure with explicit interface

I NTEGER FUNCTI ON add_or _inc(i1, i2)

! return the sum of both argunents if the second argunent

| (declared as optional) is present; otherwi se, return the
I first argunent increnented by 1

INTEGER :: i1l
I NTEGER, OPTIONAL :: i2 ! optional argunent

144 Chapter 7

Program units and procedures
Arguments

! use PRESENT intrinsic to see if i2 has an actua
I argunent associated with it
| F (PRESENT(i2)) THEN

add_or_inc =il +i2 ! add both argunents
ELSE

add_or_inc = i1 + 1 I increnent required argunent
END | F

END FUNCTI ON add_or _i nc
END PROGRAM mai n

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 optional _arg.f90
$ a.out

11

30

For information about the syntax, rules and restrictions governing the OPTI ONAL statement
and attribute, see “OPTIONAL (statement and attribute)” on page 382. For information about
the PRESENT intrinsic see “PRESENT(A)” on page 569.

Duplicated association

If a procedure reference would cause a data object to be associated with two or more dummy
arguments, the object must not be redefined within the referenced procedure. Consider the
following example:

PROGRAM p
CALL s (a,a)
CONTAI NS
SUBROUTI NE s (c, d)
c =22.01 ! ILLEGAL definition of one of the dummy
I arguments associated with data object a

END SUBROUTI NE

END PROGRAM

Both dummy arguments, ¢ and d, are associated with the actual argument a. The procedure
includes an assignment to c, the effect of which is to redefine a. This attempt to redefine a is
invalid. This rule actual arguments that are overlapping sections of the same array.

Similarly, if a data object is available to a procedure through both argument association and
either use, host, or storage association, then the data object must be defined and referenced
only through the dummy argument.

Chapter 7 145

Program units and procedures
Arguments

In the following code, the data object a is available to the subroutine as a consequence of
argument association and host association. The direct reference to a in the subroutine is
illegal.

PROGRAM p
CALL s (a, b)
CONTAI NS
SUBROUTI NE s (c, d)
c = 22.01 I valid definition of a through the dummy
I argunent
d = 3.0*a ! direct reference to a is | LLEGAL

END SUBROUTI NE
END PROGRAM

INTENT attribute

To enable additional compile-time checking of arguments and to avoid possibly unwanted side
effects, the | NTENT attribute can be declared for each dummy argument, which may be
specified as | NTENT(| N), | NTENT(QUT) or | NTENT(| NOUT) .

The values that may be specified for the | NTENT attribute have the following significance:

< I Nis used if the argument is not to be modified within the subprogram.

< QUT implies that the actual argument must not be used within the subprogram before it is
assigned a value.

< | NQUT (the form | NQUT is also permitted) implies that the actual argument must be
defined on entry and is definable within the subprogram.

See “INTENT (statement and attribute)” on page 354 for more information about the | NTENT
attribute.

%VAL and %REF built-in functions

By default, HP Fortran passes noncharacter arguments by reference. Instead of passing the
value of the actual argument to the referenced procedure, Fortran passes its address, with
which the name of the dummy argument becomes associated—as explained in “Argument
association” on page 139. When HP Fortran passes character arguments, it includes a hidden
length parameter along with the address of the actual argument.

However, it is possible to change the way arguments are passed by using the /AL and YREF
built-in functions, which HP Fortran provides as extensions:

146 Chapter 7

Program units and procedures
Arguments

= %VAL(arqg) specifies that the value of ar g—rather than its address—is to be passed to the
referenced procedure. ar g can be a constant variable, an array element, or a derived-type
component.

= OREF(arg) specifies that the address of ar g is to be passed to the referenced procedure.
Because this is how HP Fortran normally passes all noncharacter arguments, %=EF is
useful only when ar g is of type character. The effect of using %REF with a character
argument is to suppress the hidden length parameter.

These built-in functions are typically used to pass arguments from Fortran to a procedure
written in another language, such as a C function. The following example illustrates this use.
The program consists of a Fortran 90 main program unit and a C function. The main program
calls the C function, passing 4 arguments: an integer constant, a real variable, a character
variable, and an integer expression. The main program uses the built-in functions to change
Fortran’s argument-passing conventions to conform to C. C expects all arguments except the
string—Fortran’s character variable—to be passed by value. It expects the string to be passed
by reference, without the hidden length parameter.

Example 7-6 pass_args.fo0
PROGRAM nai n

REAL :: x = 3.4

INTEGER :: i1 =5, i2 =7

! C expects strings to be null-term nated, so use the
I concatenation operator to append a null character.
CHARACTER(LEN=5) :: str = "Hi!"//CHAR(0)

Pass 4 arguments--a constant, a variable, a character
variabl e, and an expression--to a function witten in C
Use HP Fortran’s built-in functions to change the
ar gunent - passi ng conventions to conformto C

CALL get_args(%WAL(20), 9WAL(X), YREF(str), 9/AL(i1+i2))
END PROGRAM mai n

Example 7-7 get_args.c

#i ncl ude <stdio. h>

/* accept 4 argunents froma Fortran 90 program which are
* passed as C expects themto be passed

*/

void get_args(int i1, float x, char *s, int i2)

{

/* display argument val ues */

printf("First argunent: %\n", i1);
printf("Second argunent: %\n", Xx);
printf("Third argunent: %s\n", s);
printf("Fourth argunent: %\n", i2);

Chapter 7 147

Program units and procedures
Arguments

Here are the command lines to compile and link both files, and to execute the program, along
with the output from a sample run:

$ cc -Aa -c get_args.c
$ 90 pass_args.f90 get_args.o

$ a.out

First argunent: 20
Second argunent: 3.400000
Third argument: Hi !

Fourth argunent: 12

For additional information about multi-language programming, refer to the
HP Fortran Programmer’s Guide. The built-in functions can also be used with the ALl AS
directive, where they have a slightly different syntax.

148 Chapter 7

Program units and procedures
Procedure interface

Procedure interface

A procedure interface is the information specified in a procedure reference, including the
name of the procedure, the arguments, and (if the procedure is a function) the result. If the
interface is explicit, all of the characteristics of the arguments and the result—type, kind,
attributes, and number—are defined within the scope of the reference. If the interface is
implicit, the compiler may be able to make sufficient assumptions about the interface to
permit the procedure reference.

All procedure interfaces are implicit except for the following:

= Intrinsic procedure

= Internal procedure

< Module procedure

= Recursive function that specifies a result clause

= External procedure whose interface is declared in an interface block

An explicit interface is required when:

= The procedure reference uses the keyword form of an actual argument.

= The procedure has CPTI ONAL arguments.

= Any dummy argument is an assumed-shape array or a pointer.

= The result of a function is array-valued or a pointer.

= The procedure is a character function, the length of which is determined dynamically.
= The procedure reference is to a generic name.

= The procedure reference implements a user-defined operator or assignment.

= The procedure has the same name as an intrinsic procedure, but you want it to have
precedence over the intrinsic; see “Availability of intrinsics” on page 469.

= You want the compiler to perform argument-checking at compile-time.
The following sections describe the interface block and its use for creating:
= Generic procedures

- Defined operators

= Defined assignment

Chapter 7 149

Program units and procedures

Procedure interface

Interface blocks

An interface block is used to provide an explicit interface for external procedures or to
define a generic procedure. An interface block may appear in any program unit, except a block
data program unit. It is specified in the specification part of the program unit.

The syntax for an interface block is:

| NTERFACE [generi c- spec]
[interface-body]...
[MODULE PROCEDURE nodul e- procedur e- name- i st]

END | NTERFACE

generi c-spec

generi c- nane

oper at or

i nt erface- body

is one of:

e generic-name

e OPERATOR (operator)
- ASSI GNVENT (=)

If generi c- spec is omitted, then the MODULE PROCEDURE statement must
also be omitted.

is the name of the generic procedure that is referenced in the subprogram
containing the interface block.

is a unary or binary operator—intrinsic or user-defined—of the form:

detter[letter]....

is:
functi on- st at enent

[specification-part]
end- f uncti on- st at erent

or

subr out i ne- st at enent
[specification-part]
end- subr out i ne- st at enent

nodul e- pr ocedur e- name- | i st

150

Chapter 7

Program units and procedures
Procedure interface

is a comma-separated list of names of module procedures that have

generi c- spec as a generic interface. Each module-procedure name must be
accessible either by use association or—if this interface block is in a module
that defines the module procedure—by host association.

If the MODULE PROCEDURE statement is present, then generi c- spec must
also be present.

The following example, proc_interface.f90, uses an interface block in the main program unit to
provide an explicit interface for the function avg.

Example 7-8 proc_interface.f90

! Define an external function avg with one assuned-shape dummy
! argunent. Note that the definition of the function nust
I lexically precede its declaration in the interface bl ock.
REAL FUNCTI ON avg(a)

REAL a(:)

avg = SUM a)/ Sl ZE(a)
END FUNCTI ON avg

PROGRAM nai n
REAL, DI MENSI ON(3) :: X
| NTERFACE
REAL FUNCTI ON avg(a)
REAL, |INTENT(IN) :: a(:)
END FUNCTI ON avg
END | NTERFACE
x=(/2.0, 4.0, 7.0/)
PRINT *, avg(x)
END PROGRAM mai n

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 proc_interface.f90
$ a.out
4.33333

Generic procedures

The Fortran 90 concept of generic procedures extends the FORTRAN 77 concept of generic
intrinsics to allow user-defined generic procedures. A procedure is generic if its name—a
generi ¢ nane—is associated with a set of specific procedures. Referencing the generic name
allows actual arguments to differ in type, kind, and rank. The differences in the arguments
determine which specific procedure is invoked.

Chapter 7 151

Program units and procedures
Procedure interface

A generic procedure is defined in an interface block that specifies its name and the interfaces
of the specific procedures; see “Interface blocks” on page 150. The specific procedures within
the interface block must all be subroutines or all functions. The interface for each procedure
must differ from the others in one or more of the following ways:

e The number of dummy arguments must differ.

= Arguments that occupy the same position in the dummy argument lists must differ in
type, kind, or rank.

e The name of a dummy argument must differ from the names of the other dummy
arguments in the argument lists of the other procedures, or all dummy arguments with
the same name must differ in type, kind, or rank.

There may be more than one interface block with the same generic name, but the specific
procedures whose interfaces appear in all such interface blocks must be distinguishable by
the above criteria.

The MCDULE PROCEDURE statement can be used to extend the list of specific procedures to
include procedures that are otherwise accessible to the program unit containing the interface
block. The MODULE PROCEDURE statement specifies only the procedure names; the procedure
interfaces are already explicit. The MODULE PROCEDURE statement may appear only in an
interface block that has a generic specification. Furthermore, the interface block must be
contained either in the same module that contains the definitions of the named procedures or
in a program unit in which the procedures are accessible through use association.

The following example assumes that two subroutines have been coded for solving linear
equations: r| i neq for when the coefficients are real, and zl i neq for when the coefficients are
complex. A generic name, | i neq, is declared in the | NTERFACE statement, enabling it to be
used for referencing either of the specific procedures, depending on whether the arguments
are real or complex:

| NTERFACE | i neq
SUBROUTI NE rlineq(ra,rb,rx)
REAL, DI MENSI ON(:,:) :: ra
REAL, DI MENSI ON(:) :: rb,rx
END SUBROUTI NE rli neq
SUBROUTI NE zl i neq(za, zb, zx)
COWPLEX, DI MENSI ON(:,:) :: za
COVPLEX, DI MENSI ON(:) :: zb, zx
END SUBROUTI NE zl i neq
END | NTERFACE | i neq

152 Chapter 7

Program units and procedures
Procedure interface

Defined operators

The OPERATOR clause can be used with the | NTERFACE statement either to define a new
user-defined operator or to extend—or over | oad—the behavior of an already defined or
intrinsic operator. This second use is similar to defining a generic procedure (see “Generic
procedures” on page 151). The re-defined operator becomes associated with a generic
oper at or .

When the GPERATCR clause is present in the | NTERFACE statement, the specific procedures
within the interface block must all be functions. The functions can implement the operator for
operands of different types, kinds, and ranks. These functions are restricted to one or two
mandatory arguments, depending on whether the defined operator is unary or binary. The
functions return the result of an expression of the form:

[operand] operator operand

Each dummy argument of the functions listed in the interface block must have the

I NTENT(I N) attribute. If operator is intrinsic, each specified function must take the same
number of arguments as the intrinsic operator has operands. Furthermore, the arguments
must be distinguishable from those normally associated with the intrinsic operation.
However, argument keywords must not be used when the argument is specified as an operand
to a defined operator.

If a user-defined operator is referenced by its generic name, the reference must resolve to a
unique, specific function name. The selection of the function is accomplished by matching the
number, type, kind, and rank of the operand with the dummy argument lists of the functions
specified in the interface block. As with generic name references (see “Generic procedures” on
page 151), exactly one procedure must match the properties of the operands, and the
matching function is selected and invoked.

The following program, def_op.f90, illustrates a defined operation. The operation, . i nrect .,
compares two derived-type operands. The one operand holds the x and y co-ordinates of a
point on a graph, and the other holds the set of co-ordinates defining a rectangle. If the point
is inside the rectangle, the operation evaluates to . TRUE. . The module in which the operation
is defined also contains the definitions of the types of the operands.

As noted in the comments, when a module is defined in the same file as any USE statements
that reference the module, the definition must lexically precede the USE statements. For
information about modules and the USE statement, see “Modules” on page 158.

Example 7-9 def_op.f90

! Note that, if a nodule definition and any USE statenents that
! reference the definition are in the same file, then the
! definition nust lexically precede the USE statenents.
MODULE coor d_op_def
! Defines a |ogical operation for conparing two derived-type

Chapter 7 153

Program units and procedures
Procedure interface

| operands, as well as the derived types

! Define a derived type for the co-ordinates of a point
! in a graph
TYPE coord_pt
INTEGER :: X, VY
END TYPE coord_pt

! define a derived type for the co-ordinates of a rectangle
TYPE rect_coords

TYPE(coord_pt) :: pl, p2
END TYPE rect_coords

! Interface block to define the |ogical operator .inrect.
| Evaluates to .TRUE. if the point operand lies inside
! the rectangl e operand
| NTERFACE OPERATOR (.inrect.)
MODULE PROCEDURE cnp_coor ds
END | NTERFACE

CONTAI NS
LOG CAL FUNCTI ON cnp_coords(pt, rect)
! returns .TRUE. if pt is inside rect

I argunents

TYPE (coord_pt), INTENT (IN) :: pt

TYPE (rect_coords), INTENT (IN) :: rect
cnp_coords = . FALSE. I initialization
IF (pt% >= rect %p1l% . AND. pt% < rect %p2% &
.AND. pt% >= rect%l1l% .AND. pt% < rect%2%) &

cnp_coords = . TRUE I pt is inside rect

END FUNCTI ON cnp_coor ds
END MODULE coor d_op_def

PROGRAM nmi n
I nake the defined operation and the derived-type definitions
I of the operands accessible to this program unit
USE coord_op_def

| specify a value for the rectangle co-ordinates

TYPE (rect_coords) :: rectangle = &
rect _coords(coord_pt(3, 5), coord_pt(7, 10))
TYPE (coord_pt) :: point ! user will specify value for this

PRINT *, "Enter two co-ordinates (integers) in a graph:
READ *, poi nt

I perform defined operation
IF (point .inrect. rectangle) THEN

154 Chapter 7

Program units and procedures
Procedure interface

PRINT *, 'The point lies inside the rectangle.’
ELSE
PRINT *, 'The point lies outside the rectangle.’
END | F
END PROGRAM nmi n

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 def _op.f90
$ a.out

Enter two co-ordinates (integers) in a graph:
4,8

The point lies inside the rectangle.

Defined assignment

The ASSI GNVENT clause can be used with the | NTERFACE statement to specify one or more
subroutines that extend—or overload—the assignment operator. Each subroutine must have
exactly two arguments. The first argument can have either the | NTENT(QUT) or the

I NTENT(| NQUT) attribute; the second argument must have the | NTENT(|1 N) attribute. The
first argument corresponds to the variable on the left-hand side of an assignment statement,
and the second to the expression on the right-hand side.

Similarly to generic names and defined operators, there can be more than one defined
assignment, but each occurrence of the assignment statement must resolve to a unique,
specific subroutine. The subroutine whose dummy arguments match the left-hand and
right-hand sides of the assignment statement in kind, type, and rank is selected and invoked
from the list of subroutines specified in the defined-assignment interface block.

The following example, def_assign.fo0, illustrates defined assignment. The assignment
consists of performing an elementary statistical analysis of the data on the right-hand
operand and storing the results in the left-hand operand. As noted in the comments, when a
module is defined in the same file as any USE statements that references the module, the
definition must lexically precede the USE statements. For information about modules and the
USE statement, see “Modules” on page 158.

Example 7-10 def_assign.fo0

! Note that, if a nodule definition and any USE statenents that
I reference the definition are in the same file, then the
I definition nust lexically precede the USE statenents.
MODULE def _assign_stats
! Defines the derived-type operands and extends the assi gnment
! operator to performa statistical analysis of the data in
I raw_data

! input data

Chapter 7 155

Program units and procedures
Procedure interface

TYPE raw_dat a

REAL :: x(100) ! values to be averaged

INTEGER :: n ! number of val ues assigned to x
END TYPE raw_dat a

! output data
TYPE stats_data

REAL :: sum nex, mn, avg ! statistical results
END TYPE stats_data

! interface block to extend the assignment operator
| NTERFACE ASSI GNVENT (=)

MODULE PROCEDURE do_stats
END | NTERFACE

CONTAI NS
SUBROUTI NE do_st at s(| side, rside)
| define the operations that are performed when
| rside is assigned (=) to Iside

TYPE (raw_data), INTENT (IN) :: rside
TYPE (stats_data), |NTENT (OUT) :: |side

! use a structure constructor for initialization
| side = stats_data(0, 0, 9999999.9, 0)

! find the sum nex, and mn
DO i =1, rside%
I side%sum = | side%sum + rside¥% (i)
I'F (Iside%ax < rside¥(i)) |side%rax = rside% (i)
IF (Iside%nin > rside¥(i)) |side%rin = rside%(i)
END DO

| side¥avg = | side¥%sum/ rside% ! the average
END SUBROUTI NE do_stats
END MODULE def _assign_stats

PROGRAM nai n
! Make the defined assignment and the definitions of the
! derived-type operands in the assignment accessible to
! this program unit
USE def _assign_stats

TYPE (raw_data) :: user_data I right-hand side of

I assi gnnent

TYPE (stats_data) :: user_stats ! left-hand side of assignnent
CALL get_data(user_data) ! collect user data

user_stats = user_data ! defined assignnment statenent

PRI NT *, ' Maxinum ="', user_stats%rax

156 Chapter 7

PRINT *, 'Mnimum =",
PRI NT *, 'Sum =",
PRINT *, ' Average =',

END PROGRAM nai n

Program units and procedures
Procedure interface

user_stat s%r n

user_stats¥%sum

user _st at s%avg

SUBROUTI NE get _dat a(dat a)
! this subroutine stores user-input values and the nunber
! of values stored in data

I make the definition of
USE def _assign_stats
data !

TYPE (raw_dat a)
REAL :: val
I NTEGER :: i

! get user input
DOi =1, 100
PRI NT *,
READ *,
I'F (val
data%(i) = val
data% =i !
END DO

val

END SUBROUTI NE get _data

"Enter a positive real

<0.0) EXIT

raw _data accessi bl e

t he argunent

(negative to quit):"'

! negative, so | eave

count of values so far

Here are the command lines to compile and execute the program, along with the output from

a sample run:

$ f90 def_assign.f90
$ a.out

Enter a positive real
25.5

Enter a positive real
35.5

Enter a positive real
45.5

Enter a positive real
-1

Maxi mum = 45.5

M nimum = 25.5

Sum = 106.5

Average = 35.5

(negative to quit):
(negative to quit):

(negative to quit):

(negative to quit):

Chapter 7

157

Program units and procedures
Modules

Modules

A module is a nonexecutable program unit that contains—usually related—definitions and
declarations that may be accessed by use association. Typically, modules are used for:

=« Defining and declaring derived types

-« Defining and declaring global data areas
= Defining operators

« Creating subprogram libraries

The definitions within a module are made accessible to other program units through use
association. The program unit that requires access to the module must have a USE statement
at the head of its specification part, and the statement must specify the name of the module.

The following sections describe the module program unit and the USE statement. The last
section gives an example program that uses a module.

NOTE Compiling programs that contain modules requires care to ensure that each
module is compiled before the program unit that uses it. For detailed
information about compiling programs that contain modules, refer to the
HP Fortran Programmer’s Guide.

Module program unit

The syntax of a module program unit is:
MODULE nodul e- nane

[specification-part]

[modul e- procedure- part]
END [MODULE [npdul e- nane]]
where:
nodul e- nane

is the name of the module.

speci fication-part

158 Chapter 7

Program units and procedures
Modules

is zero or more of the statements listed in Table 7-1 with the exception of the
FORMVAT statement. Also, speci fi cati on-part must not contain statement
function definitions or automatic objects. (Specifying the SAVE attribute
within a module is unnecessary in HP Fortran as entities declared within a
module retain their values by default.)

Each entity declared in speci fi cati on-part and each of the procedure
defined in nmodul e- pr ocedur e- part has either the PUBLI Cor PR VATE
attribute. By default, all entities have the PUBLI C attribute and are thereby
accessible by use association. Entities having the PR VATE attribute are
accessible from within the module only.

The PUBLI Cand PRI VATE attributes and statements are fully described in
Chapter 10, “HP Fortran Statements.”

nodul e- pr ocedur e- part

is:
CONTAI NS
nmodul e- procedur e[nodul e- procedure. . .]

nodul e- pr ocedur e

is either a function or subroutine. nodul e- pr ocedur e has the same
structure as an external function or subroutine except that the END
statement of nodul e- pr ocedur e must include the SUBRCUTI NE or FUNCTI ON
keywor d, as appropriate; for an external procedure this is optional. For
information about external subroutines, see “External procedures” on

page 129.

Note the following about module procedures:

= They have an explicit interface within the using program unit. It is not
necessary to create an interface block for a module procedure.

= They can also contain internal procedures.

= They can be passed as an actual argument.

The following may be contained in a module and be made accessible by use association:

Declared variables
Named constants
Derived-type definitions
Procedure interfaces

Module procedures

Chapter 7 159

Program units and procedures
Modules

e Generic names

< Namelist groups

USE statement

The USE statement provides access to module entities within the using program unit—that is,
the program unit in which the statement is specified. The USE statement specifies the name of
the module that the program unit wants to access. The information in the specified module is
made accessible to the program unit by use association. The USE statement must appear at
the head of the specification part of a program unit.

The USE statement can take either of two forms:

e USE nodul e-narre[, rename-list]
e USE nodul e-name, ONLY : access-|ist
where:
renane-|i st
is a comma separated list of:
| ocal -nane => nodul e-entity-nane
nodul e-entity-name
is the name of a module entity.
| ocal - nane

is the name by which nodul e- ent i t y- name will be accessed within the
using program unit.

access-|i st
is a comma-separated list of:
[l ocal -name =>] nodul e-entity-nane

As shown in the syntax description, the USE statement provides a renaming feature that
allows module entities to be renamed within a using program unit. The association between

| ocal - narre and nodul e- enti ty-nane is conceptually similar to argument association: the
one name is an alias for the other, and the association between the two is in effect only within
the using program unit.

160 Chapter 7

Program units and procedures
Modules

The renaming feature can be used to resolve name conflicts when more than one module
contains an entity with the same name. Consider a program unit that has access by use
association to two modules: nod_def s1 nod_def s2. The names of the entities in nod_def sl
are a, b, and c; and the names of the entities in mod_def s2 are b, ¢, and d. The following USE
statements will avoid name conflicts within the using program unit:

USE nod_def sl
USE nod_defs2, b => local _b, ¢ => local _c

The ON\LY clause provides an additional level of control over access to module entities. As
described in “Module program unit” on page 158, the PRI VATE and PUBLI Cattributes control
access to module entities in all using program units. The O\LY clause controls access within a
specific program unit.

For example, consider a module named nod_def s that contains the entities ent _x, ent _y, and
ent _z. If a program unit contains the following USE statement:

USE nod_defs, ONLY : ent_x, entry += |local _y

it has access to ent _x and ent _y only. Furthermore, it must access ent _y by the name
| ocal _y.

A program unit may have more than one USE statement specifying the same module:

« If one of the USE statements is without the ONLY clause, then all module entities with the
PUBLI C attribute are accessible. Furthermore, all | ocal - nanes from the renane-1ists
and access- | i sts are interpreted as a single concatenated r enane- | i st .

= If all of the USE statements have the O\LY clause, all of the access- | i st s are interpreted
as a single concatenated access- i st.

For more information, see “USE” on page 454.

Program example
The following example program consists of three files:

e min.f90
e precision.f90
e lin_eq_slv.f90

The file nai n. f 90 is the driver that has access to entities in two modules—pr eci si on and
| i near _equat i on_sol ver —by use association. The modules are the other two files.

Chapter 7 161

Program units and procedures
Modules

The purpose of pr eci si on is to communicate a kind type parameter to the other program
units in the program, for the sake of precision portability. The second

module—I i near _equat i on_sol ver —contains three module procedures, the first of which,
sol ve_l i near _equati ons, uses the other two; sol ve_| i near _equat i ons is itself invoked by
the main program.

Stated algebraically, the equations that mai n. f 90 provides as input for solution are:

2x + 3y + 4z = 20

3x + 4y + 5z = 26

4x + 5y - 6z = -4

Example 7-11 main.f90

PROGRAM nai n
! use the two nodul es defined in precision.f90 and
! lin_eq_slv.f90

USE preci si on

USE | i near_equati on_sol ver

I MPLI CI' T NONE

! the natrix a contains the coefficients to solve; b holds
! the constants on the right-hand side of the equation

I the solution goes in x

REAL (adequate) :: a(3,3), b(3), x(3)

INTEGER :: i, j

! set by solve_linear_equations to indicate whether or not
! a solution was possible
LOG CAL :: error

I initialize the matrix
DOi =1,3
DOj =1
a(i,j)
END DO
END DO
a(3,3) = -a(3,3)

, 3
:i+j

! initialize the vector of constants
b = (/ 20, 26, -4 1)
CALL solve_linear_equations (a, x, b, error)

I'F (error) THEN
PRI NT *, 'Cannot sol ve.
ELSE
PRINT *, 'The solution:', X
END | F
END PROGRAM nai n

162 Chapter 7

Program units and procedures
Modules

Example 7-12 precision.fo0

MODULE pr eci si on
The nanmed constant adequate is a kind nunber of a rea
representation with at least 10 digits of precision and 99
digits range that normally results in 64-bit arithnetic
This constant ensures the sanme |evel of precision
regardl ess of whether the program
of whether the programis conpiled on a 32-bit or 64-bit

I singl e-precision nachine

| NTEGER, PARAMETER :: adequate = SELECTED REAL_KI ND(10, 99)
END MODULE preci si on

Example 7-13 lin_eq_slv.fo0

MODULE | i near _equati on_sol ver
USE preci sion
I MPLI CI' T NONE
PRI VATE adequate ! to avoid a "double definition" of adequate
I in programunits that al so use precision

! forbid outside access to these two nodul e procedures
PRI VATE :: factor, back_substitution

CONTAINS ! npdul e procedures defined here
SUBROUTI NE sol ve_l i near_equations (a, x, b, error)
| solve the systemof |inear equations ax = b; set error to
! true if the extents of a, x, and b are inconpatible or
| a zero pivot is found
REAL (adequate), DIMENSION (:, :), INTENT (IN :: a
REAL (adequate), DI MENSION (:), INTENT (QUT) :: x
REAL (adequate), DIMENSION (:), INTENT (IN :: b
LOGd CAL, |INTENT (OUT) :: error
REAL (adequate), DI MENSION (SIZE (b), SIZE (b) + 1) :: m
INTEGER :: n
n = SIZE (b)
! check for conpatible extents
error = SIZE(a, DIM1) /= n .OR SIZE(a, DIM2) /=n &
.OR SIZE(X).LT. n
I'F (error) THEN
x = 0.0
RETURN
END | F

! append the right-hand side of the equation to m
m(1l:n, 1:n) = a

m(1l:n, n+l) = b

I factor mand performforward substitution in the |ast
I colum of m

CALL factor (m error)

I'F (error) THEN

Chapter 7 163

Program units and procedures
Modules

x =0.0
RETURN
END | F
I perform back substitution to obtain the solution
CALL back_substitution (m x)
END SUBROUTI NE sol ve_l i near _equati ons

SUBROUTI NE factor (m error)
! Factor min place into a |ower and upper triangular
! matrix using partial pivoting
| Set error to true if a pivot element is zero; Perform
! forward substitution with the lower triangle on the
! right-hand side n{:,n+1)
REAL (adequate), DIMENSION (:, :), INTENT (INOUT) :: m
LOGd CAL, | NTENT (OUT) :: error
I NTEGER, DI MENSION (1) :: max_| oc
REAL (adequate), DIMENSION (SIZE (m DI M=2)) :: tenp_row
INTEGER :: n, k
I NTRI NSI C MAXLCC, SIZE, SPREAD, ABS

n = SIZE (m Dl M1)
triang_loop: DOk =1, n
max_|l oc = MAXLOC (ABS (m (k:n, k)))
tenp_row (k:n+l1l) = m(k, k:n+l)
m (k, k:n+l) = m (k-1+nmax_loc(1), k:n+l)
m (k- 1+max_l oc(1), k:n+l) = tenp_row (k:n+1)
IF (m(k, k) == 0) THEN
error = . TRUE.
EXIT triang_| oop
ELSE
m (k, k:in+l) = m(k, k:n+l) / m(k, k)
m (k+1:n, k+1l:n+l) = m(k+1l:n, k+l:n+l) - &
SPREAD (m (k, k+1:n+l1), 1, n-k) * &
SPREAD (m (k+1:n, k), 2, n-k+1)
END | F
END DO triang_| oop
END SUBROUTI NE f act or

SUBROUTI NE back_substitution (m x)
! Perform back substitution on the upper triangle to conpute
! the solution
REAL (adequate), DIMENSION (:, :), INTENT (IN) :: m
REAL (adequate), DI MENSION (:), INTENT (QUT) :: x
INTEGER :: n, k
I NTRINSI C SI ZE, SUM

n = SIZE (m DI M1)
DOk =n, 1, -1
x (k) = m(k, n+l) - SUM (m (k, k+1:n) * x (k+1:n))

164 Chapter 7

Program units and procedures
Modules

END DO
END SUBROUTI NE back_substitution
END MODULE | i near _equati on_sol ver

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 precision.f90 lin_eqg_slv.f90 main.f90
$ a.out
The solution: 1.0 2.0 3.0

The order in which the files appear on the f 90 command line is significant: files that contain
modules must be compiled before files containing the program units that use the modules. For
more information about compiling programs that use modules, see the

HP Fortran Programmer’s Guide

Chapter 7 165

Program units and procedures
Block data program unit

Block data program unit

A block data program unit initializes data values in common blocks. The syntax of a block

data program unit is:

BLOCK DATA [bl ock- dat a- nane]

[specification-part]

END [BLOCK DATA [bl ock- dat a- nane]]

bl ock- dat a- nane

is the name of the block data program unit. Note that the name is optional.
If omitted, no more than one unnamed block data program unit may appear
in an executable program.

speci fication-part

is zero or more of the following:

Type declaration statement

USE statement

| MPLI A T statement
COWON statement

DATA statement

EQU VALENCE statement

Derived-type definition

The following attribute-specification statements:

a
a
a
a
a

a

DI MENSI ON
| NTRINSI C
PARAMETER
PA NTER
SAVE
TARCGET

If a USE statement appears in a block data program unit, it makes only the named constants
accessible to the program unit.

166

Chapter 7

Program units and procedures
Block data program unit

The block data program unit can initialize more than one common block. However, a common
block can be initialized in only one block data program unit. It is not necessary to initialize
every object within the common block, but the common block must be completely specified.

As an extension, HP Fortran allows the initialization of objects in blank—or
unnamed—common. The following example illustrates this extension:

BLOCK DATA bl ank
COWDON/ /aa(3),ab(5) ! an unnanmed conmon bl ock
DATA aa/ 3*1. 0/
DATA ab/ 1.0, 2.0, 3*4.0/

END BLOCK DATA bl ank

Chapter 7 167

Program units and procedures
Block data program unit

168 Chapter 7

8 1/0 and file handling

This chapter describes input/output and file handling as supported by HP Fortran. This
includes the following topics:

e Records

Chapter 8 169

I/0 and file handling

< Files

= Connecting a file to a unit
= File access methods

= Nonadvancing 1/O0

= |/O statements

= Syntax of I/O statements
= ASA carriage control

= Example programs

170

Chapter 8

I/0 and file handling
Records

Records

The record is the basic unit of Fortran 90 1/O operations. It consists of either characters or
binary values, depending upon whether the record is formatted or unformatted. The following
sections describe both formatted and unformatted records, plus the special case of the
end-of-file record.

Note that nonadvancing I/O makes it possible to read and write partial records. For more
information, see “Nonadvancing 1/0” on page 184.

Formatted records

A formatted record consists of characters that have been edited during list-directed or
namelist-directed 1/O, or by a format specification during a data transfer. (For information
about format specifications, see “Format specification” on page 204.) The length of a formatted
record is measured in characters; there is no predefined maximum limit to the length of a
formatted record.

Unformatted records

An unformatted record consists of binary values in machine-representable format. The length
of an unformatted record is measured in bytes. Unformatted records cannot be processed by
list-directed or namelist-directed 1/0 statements or by 1/O statements that use format
specifications to edit data.

End-of-file record

The end-of-file record is a special case: it contains no data and is the last record of a sequential
file. The end-of-file record is written:

= By the ENDFI LE statement

= When the file is closed—either explicitly by the CLOSE statement or implicitly when the
program terminates—immediately following a write operation

= When a BACKSPACE statement executes after a write operation, before the file is
backspaced

If the end-of-file record is encountered during the execution of the READ statement, the
program execution will abort unless the READ statement includes the END= specifier, the

| OSTAT= specifier, or both. For information about these specifiers, see the description of the
READ statement in Chapter 10, “HP Fortran statements,” on page 233.

Chapter 8 171

I/0 and file handling
Files

Files

Afile is a collection of data, organized as a sequence of logical records. Records in a file must
be either all formatted or all unformatted, except for the end-of-file record.

The following sections describe the two types of files, external files and internal files.

External files

An external file is stored on disk, magnetic tape, or some other peripheral device. External
files can be accessed sequentially or directly as described in “File access methods” on
page 177.

Scratch files

A scratch file is a special type of external file. It is an unnamed, temporary file that exists only
while it is open—that is, it exists no longer than the life of the program. HP Fortran uses the
t empnan(3S) system routine to name the scratch file. The name becomes unavailable through
the file system immediately after it is created, and it cannot be seen by the | s(1) command
and cannot be opened by any other process.

To create a scratch file, you must include the STATUS=" SCRATCH specifier in the CPEN
statement, as in the following:

OPEN (25, STATUS=' SCRATCH)

In all other respects, a scratch file behaves like other external files. For an example of a
program that uses a scratch file, see “File access” on page 197.

Internal files

An internal file is stored in a variable where it exists for the life of the variable. Its main use
is to enable programs to transfer data internally between a machine representation and a
character format, using edit descriptors to make the conversions. (For more information about
edit descriptors, see “Edit descriptors” on page 205.)

An internal file can be one of the following:

= A character variable
< Acharacter array
< A character array element

= Acharacter substring

172 Chapter 8

I/0 and file handling
Files

= An integer or real array (HP Fortran extension)
< Any of the above that is either a field of a structure or a component of a derived type

Note, however, that a section of a character array with a vector subscript cannot be used as an
internal file.

Accessing records in an internal file is analogous to accessing them in a formatted sequential
file; see “Formatted 1/O” on page 177. For an example program that uses an internal file, see
“Internal file” on page 194.

Chapter 8 173

I/0 and file handling
Connecting afile to a unit

Connecting a file to a unit

Before a program can perform any 1/O operations on an external file, it must establish a
logical connection between the file and a unit number. Once the connection is established, the
program can reference the file by specifying the associated unit number (a nonnegative
integer expression). In the following example, the OPEN statement connects unit number 1 to
the file my_dat a, allowing the WRI TE statement to write the values int ot al _acct and

bal ance to ny_dat a:

OPEN (UNI T=1, FILE='nmy_data')
WRITE (1, '(F8.2)') total _acct, bal ance

The following sections describe three types of unit numbers:

= Those that are explicitly connected by means of the CPEN statement
= Preconnected unit numbers

= Automatically opened unit numbers

Connecting to an external file

Typically, the connection between an external file and a unit number is established by the
OPEN statement. When the program is finished using the file, the connection is terminated by
the CLCSE statement. Once the connection is terminated, the unit number can be assigned to a
different file by means of another CPEN statement. Similarly, a file whose connection was
broken by a OLCSE statement can be reconnected to the same unit number or to a different
unit number.

A unit cannot be connected to more than one file at a time.

The following code establishes a connection between unit 9 and the external file first _file,
which is to be by default opened for sequential access. When the program is finished with the
file, the CLCSE statement terminates the connection, making the unit number available for
connection to other files. Following the CLCSE statement, the program connects unit 9 to a
different external file, new fil e:

I connect unit 9 to first_file
OPEN (9, FILE="first_file")
! process file

! term nate connection
CLCSE (9)
I connect sane unit nunber to new file

174 Chapter 8

I/0 and file handling
Connecting afile to a unit

OPEN (9, FILE='new file')
! process file

I term nate connection
CLCSE (9)

Performing I/O on internal files

An internal file is not connected to a unit number and therefore does not require an CPEN
statement. It is referenced as a character variable. In the following example, the WRI TE
statement transfers the data from char_var to the internal fileint _fil e, using list-directed
formatting. Because i nt_fil e is declared to be 80 characters long, it is assumed that the
length of char _var will be no more than 80 characters.

CHARACTER(LEN=80) :: int_file
WRI TE (FILE=int_file, FMI=*) char_var

For information about internal files, see “Internal files” on page 172.

Preconnected unit numbers

Unit numbers 5, 6, and 7 are preconnected; that is, they do not have to be explicitly opened
and are connected to system-defined files, as follows:

< Unit 5 is connected to standard input—by default, the keyboard of the machine on which
the program is running.

= Unit 6 is connected to standard output—by default, the terminal/display of the machine
on which the program is running.

= Unit 7 is connected to standard error—by default, the terminal/display of the machine on
which the program is running.

Each predefined logical unit is automatically opened when a Fortran 90 program begins
executing and remains open for the duration of the program. This means, for example, that
standard output can be used by a PRI NT statement without prior execution of an CPEN
statement. Attempting to CLOSE a preconnected logical unit has no effect.

A preconnected unit number can be reused with an OPEN statement that assigns it to a new
file. Once a preconnected unit number is connected to a new file, however, it cannot be
reconnected to its original designation.

You can use the HP-UX input/output redirection (< and >) and piping (]) operators to redirect
from standard input, standard output, or standard error to a file of your own choosing.

Chapter 8 175

I/0 and file handling
Connecting afile to a unit

Automatically opened unit numbers

Unit numbers that have not been associated with a file by an OPEN statement can be
automatically opened using the READ or VRl TE statement. When a file is automatically
opened, a string is created of the form:

ftnxX
where XXis replaced by the unit number in the range 01 to 99.

If you have made an environment variable assignment of the form f t nXX = pat h, the file
named in pat h is opened. Otherwise, the file whose name is f t nXX is opened in the current
directory. If the file does not exist, it is created.

The following program

PROGRAM Aut 0
VWRITE (11, (A)') 'Hello, world!’
END

writes the string

Hel l o, world

to the file ft n11.

If this program is compiled to a. out and is run as follows (using / bi n/ sh or / bi n/ ksh)

ftnll=datafile
export ftnll
a. out

the output string is written to the file dat af i | e instead of ft n11.

Automatically opened files are always opened as sequential files. Other characteristics of an
automatically opened file, such as record length and format, are determined by the data
transfer statement that creates the file. If the statement does not specify formatted,
list-directed, or namelist-directed 1/O, the file is created as an unformatted file.

176 Chapter 8

I/0 and file handling
File access methods

File access methods

HP Fortran allows both sequential access and direct access. You specify the access method
with the OPEN statement when you connect the file to a unit number. The following example
opens the file new dat a for direct access:

OPEN(40, ACCESS=' DI RECT', RECL=128, FILE='new data')
If you do not specify an access method, the file is opened for sequential access.

The following sections describe both sequential and direct methods.

Sequential access

Records in a file opened for sequential access can be accessed only in the order in which they
were written to the file. A sequential file may consist of either formatted or unformatted
records. If the records are formatted, you can use list-directed, namelist-directed, and
formatted 1/O statements to operate on them. If the records are unformatted, you must use
unformatted 1/0 statements only. The last record of a sequential file is the end-of-file record.

The following sections describe the types of I/0O that can be used with sequential files, namely:

= Formatted I/O

= List-directed 1/O

= Namelist-directed 1/0
= Unformatted 1/O

Formatted 1/O

Formatted 1/0O uses format specifications to define the appearance of data input to or output
from the program, producing ASCII records that are formatted for display. (Format
specifications are described in detail in “Format specification” on page 204.) Data is
transferred and converted, as necessary, between binary values and character format. You
cannot perform formatted 1/0 on a file that has been connected for unformatted 1/0O; see
“Unformatted 1/0” on page 183.

Formatted 1/0O can be performed only by data transfer statements that include a format
specification. The format specification can be defined in the statement itself or in a FORVAT
statement referenced by the statement.

For an example of a program that accesses a formatted file, see “File access” on page 197.

Chapter 8 177

I/0 and file handling
File access methods

List-directed 1/O

List-directed 1/O is similar to formatted 1/O in that data undergoes a format conversion when
it is transferred but without the use of a format specification to control formatting. Instead,
data is formatted according to its data type. List-directed 1/O is typically used when reading
from standard input and writing to standard output.

List-directed 1/O uses the asterisk (*) as a format identifier instead of a list of edit descriptors,
as in the following READ statement, which reads three floating-point values from standard
input:

READ *, A, B, C

List-directed 1/O can be performed only on internal files and on formatted, sequential external
files. It works identically for both file types.

Input Input data for list-directed input consists of values separated by one or more blanks, a
slash, or a comma preceded or followed by any number of blanks. (No values may follow the
slash.) An end-of-record also acts as a separator except within a character constant. Leading
blanks in the first record read are not considered to be part of a value separator unless
followed by a slash or comma.

Input values can be any of the values listed in Table 8-1. A blank is indicated by the symbol b.
Table 8-1 Input values for list-directed 1/O

Value | Meaning

z A null value, indicated by two successive separators with
zero or more intervening blanks (for example, ,b/).

c A literal constant with no embedded blanks. It must be
readable by an |, F, A or L edit descriptor. Binary, octal, and
hexadecimal data are illegal.

r*c Equivalent tor (an integer) successive occurrences of ¢ in the
input record. For example, 5*0. 0 is equivalent to 0.0 0.0
0.0 0.0 0.0.

rz Equivalent to r successive occurrences of z.

Reading always starts at the beginning of a new record. Records are read until the list is
satisfied, unless a slash in the input record is encountered. The effect of the slash is to
terminate the READ statement after the assignment of the previous value; any remaining data
in the current record is ignored.

178 Chapter 8

Table 8-2 outlines the rules for the format of list-directed input data.

Table 8-2 Format of list-directed input data
Data type Input format rules
Integer Conforms to the same rules as integer constants.
Real and Any valid form for real and double precision. In
double addition, the exponent can be indicated by a signed
precision integer constant (the Q D, or E can be omitted), and

the decimal point can be omitted for those values
with no fractional part.

Complex and
double
complex

Two integer, real, or double precision constants,
separated by a comma and enclosed in parentheses.
The first number is the real part of the complex or
double complex number, and the second number is
the imaginary part. Each of the numbers can be

preceded or followed by blanks or the end of a record.

Logical

Consists of a field of characters, the first nonblank
character of which must be a T for true or an F for
false (excluding the optional leading decimal point).
Integer constants may also appear.

Character

Same form as character constants. Delimiting with
single or double quotation marks is needed only if
the constant contains any separators; delimiters are
discarded upon input. Character constants can be
continued from one record to the next. The
end-of-record does not cause a blank or any other
character to become part of the constant. If the
length of the character constant is greater than or
equal to the length, | en, of the list item, only the
leftmost | en characters of the constant are
transferred. If the length of the constant is less than
| en, the constant is left-justified in the list item with
trailing blanks.

I/0 and file handling
File access methods

Output The format of list-directed output is determined by the type and value of the data in
the output list and by the value of the DELI M= specifier in the OPENstatement. For information
about the DELI M= specifier, see the description of the CPENstatement in Chapter 10, “HP

Fortran statements,” on page 233.

Chapter 8

179

I/0 and file handling
File access methods

Table 8-3 summarizes the rules governing the display of each data type.

Table 8-3 Format of list-directed output data
Data Output format rules
type

Integer Output as an integer constant.

Real and Output with or without an exponent, depending on the
Double magnitude. Also, output with field width and decimal
Precision | places appropriate to maintain the precision of the data
as closely as possible.

Complex Output as two numeric values separated by commas and
enclosed in parentheses.

Logical If the value of the list element is . TRUE. , then T is output.
Otherwise, F is output.

Character | Output using the Al en format descriptor, where | en is
the length of the character expression (adjusted for
doubling). If DELI M=' NONE (the default), no single (') or
double (") quotation marks are doubled, and the records
may not be suitable list-directed input. If the value
specified by DELI M= is not ' NONE , only the specified
delimiter is doubled. Character strings are output
without delimiters, making them also unsuitable for
list-directed input.

With the exception of character values, all output values are preceded by exactly one blank. A
blank character is also inserted at the start of each record to provide ASA carriage control if
the file is to be printed; see “ASA carriage control” on page 193 for a description of this. For
example, the following statement:

PRINT *, 'Hello, world!"
outputs the line (where b indicates a blank):
bHel | o, bwor | d!

If the length of the values of the output items is greater than 79 characters, the current record
is written and a new record started.

Slashes, as value separators, and null values are not output by list-directed WR TE
statements.

180 Chapter 8

I/0 and file handling
File access methods

Namelist-directed 1/O

Namelist-directed 1/0O enables you to transfer a group of variables by referencing the name of
the group, using the NML= specifier in the data transfer statement. The NAMELI ST statement
specifies the variables in the group and gives the group a name.

Like list-directed 1/0, namelist-directed 1/O does not use a format specification when
formatting data but uses default formats, as determined by the data types.

In the following example, the NAMELI ST statement defines the group nane_gr oup, which
consists of the variablesi , j , and c. The READ statement reads a record from the file connected
to unit number 27 into nanme_gr oup. The PRI NT statement then writes the data from the
variables in nanme_gr oup to standard output. (As an extension, HP Fortran allows this use of
the PRI NT statement in namelist 1/0.)

INTEGER :: i, |

CHARACTER(LEN=10) :: ¢

NAMELI ST /name_group/ i, j, ¢

READ (UNI T=27, NML.=nane_gr oup)
PRI NT nanme_gr oup

Each namelist-directed output record begins with a blank character to provide for ASA
carriage control if the records are to be printed (see “ASA carriage control” on page 193).

Namelist-directed 1/O can be performed only on formatted, sequential external files.

The following program illustrates namelist-directed 1/O:

PROGRAM nanel i st

| NTEGER, DI MENSI ON(4) :: ivar

CHARACTER(LEN=3), DI MENSION(3,2) :: cvar
LOG CAL :: lvar

REAL :: rvar

NAMELI ST /nl/ ivar, cvar, lvar, rvar
READ (*,nl)

PRI NT nl

END PROGRAM nanel i st

If the input data is:

&nl

ivar = 4,3,2,1

| var =t oodl es

cvar=,,' QRS , 2%, 2*' XXX

rvar=5. 75E25, cvar(3,2)(1:2)="AB
/

then the output will be:

Chapter 8 181

I/0 and file handling
File access methods

b&N\LbI VAR =4 3 2 1bCVAR ="', 'QRS',
", XXX, "ABX bLVAR = TbRVAR =
5. 75000E+25b/

The following sections describe the format of namelist-directed input and output. See
“NAMELIST” on page 369 for detailed information about the NAVELI ST statement.

Input A namelist-directed input record takes the following form:

1. An ampersand character (& immediately followed by a namelist group name. The group
name must have been previously defined by a NAMELI ST statement.

As an extension, the dollar sign ($) can be substituted for the ampersand.

2. A sequence of name-value pairs and value separators. A name-value pair consists of the
name of a variable in the namelist group, the equals sign (=), and a value having the same
format as for list-directed input (z, c, r *c, and r *). A name-value pair can appear in any
order in the sequence or can be omitted.

A value separator may be one of the following:

= Blanks
e Tabs
= Newlines
= Any of the above with a single comma
3. A terminating slash (/). As an extension, ($END) can be substituted for the slash.

Names of character type may be qualified by substring range expressions and array names by
subscript/array section expressions. If the name in a name-value pair is that of an array, the
number of the values following the equals sign must be separated by value separators and
must not exceed the number of elements in the array. If there are fewer values than elements,
null values are supplied for the unfilled elements.

Namelist-directed input values are formatted according to the same rules as for list-directed
input data; see Table 8-2.

Output The output record for namelist-directed 1/0 has the same form as the input record,
but with these exceptions:

= The namelist group name is always in uppercase.

« Logical values are either Tor F.

182 Chapter 8

I/0 and file handling
File access methods

< Asin list-directed output, character values are output without delimiters by default,
making them unsuitable for namelist-directed input. However, you can use the DELI M=
specifier in the OPEN statement to specify the single or double quotation mark as the
delimiter to use for character constants.

= Only character and complex values may be split between two records.

Unformatted 1/O

Unformatted 1/0 does not perform format conversion on data it transfers. Instead, data is
kept in its internal, machine-representable format. You cannot perform unformatted 1/0 on
files that have been connected for formatted 1/0 (see “Formatted 1/0” on page 177).

Unformatted I/0 is more efficient than formatted, list-directed, or namelist-directed 1/0
because the transfer occurs without the conversion overhead. However, because unformatted
1/0 transfers data in internal format, it is not portable.

Direct access

When performing 1/0 on a direct-access file, records can be read or written in any order. The
records in a direct-access file are all of the same length.

Reading and writing records is accomplished by READ and WRI TE statements containing the
REC= specifier. Each record is identified by a record number that is a positive integer. For
example, the first record is record number 1; the second, number 2; and so on. If REC= is not
specified:

= The READstatement inputs from the current record, and the file pointer moves to the next
record.

< The WR TE statement outputs to the record at the position of the file pointer, and the file
pointer is advanced to the next record.

As an extension, HP Fortran allows sequential 1/0 statements to access a file connected for
direct access.

Once established, a record number of a specific record cannot be changed or deleted, although
the record may be rewritten. A direct-access file does not contain an end-of-file record as an
integral part of the file with a specific record number. Therefore, when accessing a file with a
direct-access read or write statement, the END= specifier is not valid and is not allowed.

Direct-access files support both formatted and unformatted record types. Both formatted and
unformatted 1/0 work exactly as they do for sequential files. However, you cannot perform
list-directed, namelist-directed, or nonadvancing 1/O on direct-access files.

For an example program that uses direct access, see “File access” on page 197.

Chapter 8 183

I/0 and file handling
Nonadvancing /0

Nonadvancing 1/0

By default, a data transfer leaves the file positioned after the last record read or written. This
type of 1/O is called advancing. Fortran 90 also allows nonadvancing 1/O, which positions the
file just after the last character read or written, without advancing to the next record. It is
character-oriented and can be used only with external files opened for sequential access. It
cannot be used with list-directed or namelist-directed 1/O.

To use nonadvancing 1/0, you must specify ADVANCE=' NO in the READ or WRI TE statement.
The example program in “File access” on page 197 uses nonadvancing I/O in the first WRI TE
statement, which is reproduced here:

WRI TE (6, FMI='(A)', ADVANCE='NO) &
Enter nunber to insert in list:

The effect of nonadvancing 1/0 on the WR TE statement is to suppress the newline character
that is normally output at the end of a record. This is the desired effect in the example
program: by using a nonadvancing VRl TE statement, the user input to the READ statement
stays on the same line as the prompt.

You can get the same effect with the newline ($) edit descriptor, an HP Fortran extension that
also suppresses the carriage-return/linefeed sequence at the end of a record; see “Newline ($)
edit descriptor” on page 208.

For an example program that illustrates nonadvancing 1/O in a READ statement, see
“Nonadvancing 1/0” on page 195. For more information about nonadvancing 1/0 and the
ADVANCE= specifier, see the READand WR TE statements in Chapter 10.

184 Chapter 8

I/0 and file handling
I/O statements

1/0 statements

HP Fortran supports three types of 1/0O statements:

= Data transfer statements (see Table 8-4)
= File positioning statements (see Table 8-5)
= Auxiliary statements (see Table 8-6)

For detailed information about all 1/O statements, refer to Chapter 10, “HP Fortran
statements,” on page 233.

Table 8-4 Data transfer statements

Statement Use

ACCEPT Inputs data from the preconnected default input device
(standard input) (extension).

DECCDE Inputs data from an internal file (extension).

ENCCDE Outputs data to an internal file (extension).

PRI NT Outputs data to the preconnected default output device
file (standard output)

READ Inputs data from a connected or automatically opened
unit.

TYPE Synonym for the PRI NT statement (extension).

WR TE Outputs data to a connected or automatically opened
unit.

NOTE Although the DECODE and ENCCDE statements are available as compatibility

extensions for use with internal files, they are nonportable and are provided for

compatibility with older versions of Fortran. To keep your programs

standard-conforming and portable, you should use the READ and WRl TE

statements with both external and internal files.

Chapter 8

185

I/0 and file handling

I/O statements

ACCEPT and TYPE are also available as compatibility extensions for reading
from standard input and writing to standard output. However, if you wish your
program to be portable, you should use the READand PR NT statements instead

of the ACCEPT and TYPE statements.

Table 8-5 File positioning statements

Statement | Use

BACKSPACE | Moves the file pointer of the connected sequential file to
the start of the previous record.

ENDFI LE Writes an end-of-file record as the next record of the
sequential file.

REW ND Moves the file pointer of the connected file to the initial
point of the file.

Table 8-6 Auxiliary statements

Statement | Use

CLCSE Disconnects a unit from a file.

I NQUI RE Requests information about a file or unit.

CPEN Connects an existing file to a unit, creates a file and
connects it to a unit, or changes certain specifiers of a
connection between a file and a unit.

186 Chapter 8

I/0 and file handling
Syntax of I/O statements

Syntax of 1/O statements

The general syntactic form of file-positioning and auxiliary statements is:
statement-name (io-specifier-list)

where

st at ement - nane is one of the statements listed in Table 8-5 or Table 8-6.

i o-specifier-1list isacomma-separated list of 1/O specifiers that control the statement’s
operation.

The general form of a data-transfer statement is:

statenment-nanme (io-specifier-list) data-list

where

st at ement - nane is one of the statements listed in Table 8-4.

i o-specifier-1list isacomma-separated list of 1/O specifiers that control the data transfer.
dat a- | i st is a comma-separated list of data items.

The following sections describe the 1/O specifiers and the form of dat a- | i st . For detailed
information about the syntax of individual 1/0O statements, see Chapter 10, “HP Fortran
statements,” on page 233.

I1/O specifiers

1/0 specifiers provide 1/0 statements with additional information about a file or a data
transfer operation. They can also be used (especially with the | NQU RE statement) to return
information about a file. Table 8-7 lists all 1/O specifiers supported by HP Fortran and
identifies the statements in which each can appear. Note that the ACCEPT, DECCDE, ENCCDE,

Chapter 8 187

I/0 and file handling
Syntax of I/O statements

and TYPE statements are not listed in the table as they are nonstandard. All 1/O specifiers and
statements are fully described in Chapter 10, “HP Fortran statements,” on page 233. Each 1/0
specifier is described under the 1/0O statement in which it may appear.

Table 8-7 I/O statements and specifiers
g —
I1/0 Specifiers % g % é E g g g %
B "R A 6| m
ACCESS= v
ACTI ON= v
ADVANCE= v v
BLANK= v v
DELI M= v v
D RECT= v
END= v
EOR= v
ERR= v v v v v v v
EXl ST=
FI LE= v v
FMT= v v
FORME v v
FCRVATTED= v
| OLENGTH= v
| OSTAT= v v v v v v v v
= v
NAMED= v
NEXTREC= v
188 Chapter 8

I/0 and file handling
Syntax of I/O statements

Table 8-7 I/O statements and specifiers (Continued)

I1/0 Specifiers

9
2

37 14aN\3
34 INON |
IN Md
avad
aN M
ETRY

o
i

FOVdSHOVE

NUMVBER=

CPENED=

NN NSNS TS

~
~

RECL=

SEQUENTI AL=
Sl ZE= v

STATUS= v v

UNFCRVATTED= v

N T= v v v v v v v v

WR TE=

1/0 data list

The 1/0O data list can be used with any data transfer statement except namelist 1/O; see
“Namelist-directed 1/0” on page 181 for a description of this. The general form of the 1/O data
listis:

iteml[, itenR...]

where i t emis a either a simple data element or an implied-DO loop.

The following sections describe simple data elements and the implied-DO loop.

Chapter 8 189

I/0 and file handling
Syntax of I/O statements

Simple data elements
In a read operation, the simple data element specifies a variable, which can include:

= Ascalar

= Anarray

= An array element or section
= A character substring

= Astructure

= A component of a structure
< Arecord

= Afield of a record

= A pointer

In a write operation, the simple data element can include any variable that is valid for a read
operation, plus most expressions. Note that, if the expression includes a function reference,
the function must not itself perform 1/O.

The output list in the following PRI NT statement contains two simple list elements, a variable
named r adi us and an expression formed from r adi us:

99 FORMAT('Radius = ', F10.2, 'Area = ', F10.2)
PRINT 99, radius, 3.14159*radi us**2

The next READ statement contains three simple elements: a character substring (nane(1: 10)),
a variable (i d), and an array name (scor es):

88 FORMAT(A10, |9, 1015)
READ(5, 88) nane(1l:10), id, scores

If an array name is used as a simple data element in the 1/O list of a WR TE statement, then
every element in the array will be displayed. If a format specification is also used, then the
format will be reused if necessary to display every element. For example, the following code

INTEGER :: i(10) = (/1,2,3,4,5,6,7,8,9,10/)
88 FORMAT(' N1:',15, ' N2:',15, ' N3:',15)
PRI NT 88, i

will output the following:

N1: 1 N2: 2 N3: 3
N1: 4 N2: 5 N3: 6
N1: 7 N2: 8 N3: 9
N1: 10 N2:

190 Chapter 8

I/0 and file handling
Syntax of I/O statements

The following restrictions apply to the use of arrays in input and output:

= Sections of character arrays that specify vector-valued subscripts cannot be used as
internal files.

< An assumed-size array cannot be referenced as a whole array in an input or output list.

The following restrictions apply to the use of structures and records in input and output:

= All components of the structure or fields of the record must be accessible within the
scoping unit that contains the data transfer statement.

= Every component of the structure or field of the record is written.

< Astructure in an 1/O list must not contain a pointer that is an ultimate component—that
is, the last component in a variable reference. In the expression a%%, a and b can be
pointers, but not c.

Implied-DO loop

An implied-DOloop consists of a list of data elements to be read, written, or initialized, and a
set of indexing parameters. The syntax of an implied-DOloop in an 1/O statement is:

(list , index =init , limt [, step])

where

list is an 1/0O list, which can contain other implied-DO loops.

i ndex is an integer variable that controls the number of times the elements in

| i st are read or written. The use of real variables is supported but
obsolescent.

init is an expression that is the initial value assigned to i ndex at the start of the
implied-DOloop.

limt is an expression that is the termination value for i ndex.

step is an expression by which i ndex is incremented or decremented after each
execution of the DOloop. st ep can be positive or negative. Its default value is
1.

Inner loops can use the indexes of outer loops.

The implied-DOloop acts like a DOconstruct. The range of the implied-DOloop is the list of
elements to be input or output. The implied-DOloop can transfer a list of data elements that
are valid for a write operation. i ndex is assigned the value of i ni t at the start of the loop.
Execution continues in the same manner as for DOloops (see “DO construct” on page 107).

Chapter 8 191

I/0 and file handling
Syntax of I/O statements

The implied-DOloop is generally used to transmit arrays and array elements, as in the
following:

I NTEGER :: b(10)
PRINT *, (b(i), i = 1,10)

If b has been initialized with the values 1 through 10 in order, the PR NT statement will
produce the following output:

12345678910

If an nonsubscripted array name occurs in the list, the entire array is transmitted at each
iteration. For example:

REAL :: x(3)
PRI NT *, (x, i=1, 2)

If X has been initializedtobe[1 2 3], the output will be:
1.02.03.01.020 3.0
The list can contain expressions that use the index value. For example:

REAL :: x(10) = (/.1, .2, .3, .4, .5 .6, .7, .8, .9, 11/)
PRINT *, (i*2, x(i*2), i =1, 5)

print the numbers
2.24.46.68.8101

Implied-DO loops can also be nested. The form of a nested implied-DOloop in an 1/0 statement
is:

(((list, index1 = initl, limtl, stepl), index2 = init2, limt2,
step2) ... indexN =initN limtN stepN

Nested implied-DOloops follow the same rules as do other nested DOloops. For example, given
the following statements:

REAL :: a(2,2)

a(1,1)
a(2,1)
a(1, 2)
a(2,2)

A OwWN PR

WRI TE(6, *) ((a(i,j),i=1,2),]j=1,2)
the output will be:
1.0 2.0 3.0 4.0

The first, or nested DOloop, is completed once for each execution of the outer loop.

192 Chapter 8

I/0 and file handling
ASA carriage control

ASA carriage control

The program asa(1) processes the output of a Fortran 90 program that uses ASA carriage
control characters so that it can be properly handled by many printers.

The syntax of asa is:
asa [fil e-nanes]

where fi | e- nanes is a list of file names to be output with carriage control characters
interpreted according to ASA rules.

Table 8-8 describes the ASA carriage-control characters.

Table 8-8 ASA carriage-control characters
Character Meaning
blank Advance one line.
0 Advance two lines.
1 Advance to top of next page.
+ Do not advance; overstrike previous line.

asa reads input from fi | e- nanes or from standard input if fi | e- names is not specified. The
first character of each line is interpreted as a control character. Lines beginning with any
character other than those listed in Table 8-8 are interpreted as if they began with a blank,
and an appropriate diagnostic appears on standard error. The first character of each line is
not printed. The asa program interprets input lines and sends its output to standard output.
Each input file begins on a new page.

To properly view the output of programs that use asa carriage control characters, asa should
be used as a filter. For example, the following example pipes the output of fortran_asa, an
executable HP Fortran program that outputs lines with ASA carriage control characters,
through the asa filter to the line printer command, | p:

fortran_asa | asa | Ip

Chapter 8 193

I/0 and file handling
Example programs

Example programs

This section gives example programs that illustrate 1/O and file-handling features of HP
Fortran.

Internal file

The following example, int_file.f90, illustrates how internal files can use edit descriptors
internally. The comments within the program explain in detail what the program does.

Example 8-1 int_file.f90

! The nain programis a driver for the function roundoff, which
! truncates and rounds a floating-point nunber to a requested
! nunmber of decimal places. The main program pronpts for two
! nunbers, a doubl e-precision nunmber and an integer. These are
! passed to the function roundoff as arguments. The
I doubl e-precision argunent (x) is the value to be rounded, and
! the integer (n) represents the nunber of decimal places for
! rounding. The function converts both arguments to character
I fornat, storing themin separate internal files. The function
! uses the F edit descriptor (to which n in character format has
! been appended) to round x. This rounded value is finally
! converted back froma character string to a doubl e-precision
! nunber, which the function returns
PROGRAM nai n

REAL (KIND=8) :: x, y, roundoff

I Use nonadvancing I/O to suppress the new ine and keep the
! pronpt on the sane line as the input.

WRITE (6, '(X, A)', ADVANCE='NO) 'Enter a real nunmber: '
READ (5, '(F14.0)') x

WRITE (6, '(A)') 'How nany significant digits (1 - 9) to the
WRITE (6,' (X, A)', ADVANCE='NO) 'right of the decimal point?

! Don't enter a nunber greater than you input into x
READ (5, '(11)') n
y = roundoff(x, n)
PRINT *, vy
END PROGRAM nmi n

! This function truncates and rounds x to the number of decimal
! places specified by n. The function performs no error

I checking on either argument.

REAL (KI ND=8) FUNCTI ON roundoff(x, n)

INTEGER :: n

194 Chapter 8

I/0 and file handling
Example programs

REAL (KIND=8) :: x
CHARACTER (LEN=14) :: dp_va
CHARACTER :: dec_digits

I Use an edit descriptor to convert the value of n to a
! character; wite the result to the internal file

! dec_digits.

WRI TE (dec_digits, '(11)') n

| Concatenate dec_digits to the string 'F14.'. The conplete
! string forns an edit descriptor that will convert the

! binary value of x to a formatted value of x to a

! fornatted character string that formats the

! value. The character represents the requested |evel of

! precision. The fornatted nunber is stored in the interna
I file dp_val

WRI TE (dp_val, '(F14.'//dec_digits//')"') x

! Re-convert the formatted record in dp_val to a binary
! value that the function will return
READ (dp_val, '(F14.0)') roundoff

END FUNCTI ON r oundof f

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ f90 int_file.f90

$ a.out
Enter a real nunber: 3.1415927

How nany significant digits (1 - 9) to the
right of the decimal point? 3

3.142

Nonadvancing 1/0O

The following program reads a formatted sequential file as a set of records divided into an
arbitrary number of fields. The program uses nonadvancing 1/O to read and process each field.
The comments explain what the program does. Included with the is a listing of the data file,
gr ades, read by the program.

Example 8-2 nonadvance.f90

! This program uses nonadvancing I/Oto read a series of

| sequential-file records, character by character. Each

! record is divided into fields. The first field is the name
! of a student and is 20 characters |log. Each of the

! renmining fields s a nuneric test score and is 3

! i characters long. The nane score fields. The program

! reads the nane field, then reads each score field

Chapter 8 195

I/0 and file handling
Example programs

until it encounters end-of-record. Wen the

program encounters end-of-record, it starts a new record
When it encounters and end-of-file,

the programis done. For the sake of sinplicity, the
program does no error-checking

PROGRAM mai n

99

10
20
99

I NTEGER :: grade, count, sum average
CHARACTER(LEN=20) nane

OPEN(20, FILE='grades')

WRI TE (6, 10) "Name”, "Average”

WRITE (6, *) "-cmmmmmmmmmmmmmmmmcmoam oo ”

DO ! read and process each record
sum= 0
count =0
! Read the first field of each record, using nonadvancing
! 1/O so as not to advance beyond that field. The END=
| specifier causes the programto exit the | oop and branch
! to the statenent at 999 when it detects end-of-file.
READ(20, " (A20)”, ADVANCE=' NO, END=999) nane

! Read each of the score fields of the record, using
! nonadvancing I/O to avoid advancing to the next record
| after each read. The EOR= specifier causes the program
! to break out of the loop and resune
| execution at the statement |abeled 99
DO ! inner loop to read scores
! read a score and convert it to integer
READ(20, "(13)”, ADVANCE=' NO, EOR=99) grade

count = count + 1
sum = sum + grade
END DO

! cal cul ate average

average = suni count

WRI TE(6, 20) nane, average ! wite student name and average
END DO

FORMAT (X, A T21, A

FORMAT (X, A, 13)
9 CLCSE(20)

END PROGRAM nai n

Example 8-3 grades

Sandra Del ford 79 85 81 72100100

Joan Arunsoel ton 8 64 77 79

Her man Pritchard 100 92 87 65 O

Felicity Hol nes 97 78 58 75 88 73

Ani ta Jayson 93 85 90 95 68 72 93

196 Chapter 8

I/0 and file handling
Example programs

Phil Atley 9 27 35 49
Harriet Myrle 84 78 93 95 97 92 84 93
Pete Hartl ey 67 54 58 71 93 58

Here are the command lines to compile and execute the program, along with the output from
a sample run:

$ £90 nonadvance. f 90

$ a.out
Nanme Aver age
Sandra Del ford 86
Joan Arunsoel ton 57
Herman Pritchard 68
Felicity Hol nes 78
Anita Jayson 85
Phil Atley 30
Harriet Myrle 89
Pete Hartl ey 66

File access

The following example, file_access.f90, illustrates both sequential and direct access on
external files. The file opened for direct access is a scratch file. The comments explain what
the program does.

Example 8-4 file_access.f90

! This programuses an external file and a scratch file to
! insert a nunber into a list of nunerically sorted nunbers.
! The sorted list is held in a external file. The program uses
! the scratch file as a tenmporary hol ding place. The program
| uses direct access nethod with the scratch file.
PROGRAM nai n
REAL :: nunber_to_insert, nunber_in_list
INTEGER :: rec_num iosl, ios2, i

I Initialize counter.
rec_num= 0

! iosl nust be initialized to 0 so that the error-handling
| section at the end of the programw ||l work correctly
iosl= 0

! Open the scratch file and the sequential data file

OPEN (18, FILE="list', STATUS=' UNKNOMN , | OSTAT=i osl, ERR=99)
OPEN (17, STATUS=' SCRATCH , ACCESS='DI RECT', FORM=' FORVATTED ,
&

Chapter 8 197

I/0 and file handling
Example programs

| OSTAT=i 0s1, ERR=99, RECL=16)
I Use nonadvancing I/O to suppress newine at the end of output
! record, thus keeping the pronpt on the sane line with the
! i nput .
WRI TE (6, FMI='(A)', ADVANCE='NO) &
" Enter nunber to insert inlist: '
READ *, nunber_to_insert

! Read fromsorted list and wite to scratch file until we find
! where to insert number; then, wite nunber_to_insert, and
! continue witing remaining sorted nunbers to scratch file.
DO WHI LE (iosl >= 0) ! loop only if OPEN didn’t encounter EOF

I The END=15 specifier in the READ statement gets us out of

! the loop, once we're init.

READ (18, *, END=10, |OSTAT=io0s2, ERR=99) nunber_in_|i st

I'F (nunber_to_insert <= nunber_in_list) THEN

rec_num = rec_num+ 1 ! add the new record
WRI TE(17, 100, REC=rec_num) nunber_to_insert
DO

rec_num= rec_num+ 1
WRI TE(17, 100, REC=rec_num) nunber_in_list
READ (18, *, END=15, |OSTAT=i 0s2, ERR=99) nunber_in_list
END DO
ELSE
rec_num= rec_num+ 1
WRI TE (17, 100, REC=rec_num) nunber_in_list
END | F
END DO
! The file is enpty or the itemgoes at the end of file. Add 1
! to rec_numfor the record to be inserted.
10 rec_num = rec_num + 1
WRI TE (17, 100, REC=rec_num) nunber_to_insert

! Copy the scratch file to the data file. But first rew nd
| so that we start witing at beginning of the data file.
15 REWND 18

! Read fromscratch file and wite to data file
DOi =1, rec_num
READ (17, 100, REC=i) nunber_in_list
WRI TE (18, *) nunber_in_list
END DO
CLCSE (18)
CLCSE (17)
STOP 'Inserted!"’

! Error handling section
99 IF (iosl /= 0) THEN

WRI TE (7, 200) "Open error =", iosl
ELSE
WRI TE (7, 200) "Read error =", io0s2
198 Chapter 8

I/0 and file handling
Example programs

END | F

100 FORMAT (F16.6)
200 FORMAT (A, 2I6)
END PROGRAM mai n

Here are the command lines to compile and execute the program, along with the output from
a sample run. Output from the cat command shows the contents of the | i st file before and
after executing the program:

$ f90 file_access.f90
$ cat list

[¢)]

Enter nunber to insert inlist: 4.7
STOP I nserted!
$ cat list

Chapter 8 199

I/0 and file handling
Example programs

200 Chapter 8

O 1/O formatting

1/0 formatting occurs during data transfer operations when data is converted between its
machine-readable binary representation and human-readable character format. Although
unformatted data transfers are faster because they do not incur the overhead of data

conversion, 1/0O formatting is useful for displaying data in a human-readable form and for

Chapter 9 201

/0 formatting

transferring data between machines with different machine representations for a data type.

1/0 formatting can be implicit or explicit. Implicit formatting occurs during list-directed and

namelist-directed 1/O: data is converted without programmer intervention, based on the data
types of the I/O list items; see “List-directed 1/0” on page 178 and “Namelist-directed 1/0” on
page 181. Explicit formatting occurs under the control of the programmer, who specifies how
the data is to be converted.

This chapter describes explicit 1/0 formatting and includes information about the following:

FORMAT statement

Format specification

Edit descriptors

Embedded format specification
Nested format specifications

Format specification and 1/O data list

202

Chapter 9

/0 formatting
FORMAT statement

FORMAT statement

The function of the FORVAT statement is to specify formatting information that can be used by
one or more of the following data transfer statements:

= ACCEPT (extension)

= DECCDE (extension)

= ENCCDE (extension)

 PRINT

< READ

= TYPE (extension)

- VWRTE

The syntax of the FORVAT statement is:

| abel FORMAT (format-spec)

where:

| abel is a statement label.

f or mat - spec is a format specification consisting of a comma-separated list of edit
descriptors. For detailed information about edit descriptors, see the next
section.

The FORMAT statement must include | abel so that the data transfer statements can reference
it. One FORVAT statement can be referenced by many data transfer statements. In the
following example, both the READ and WRI TE statements reference the same FORVAT
statement:

READ(UNI T=22, FMT=10)i var, fvar
WRI TE(17, 10)ivar, fvar

10 FORMAT(17, F14.3)

For additional information about the FORVAT statement and data transfer statements, see
Chapter 10, “HP Fortran statements,” on page 233.

Chapter 9 203

/0 formatting
Format specification

Format specification

A format specification consists of a list of edit descriptors that define the format of data to be
read with a READ statement, or written with a WRI TE or PRI NT statement. A format
specification can appear either in a FORVAT statement or in a character expression in a data
transfer statement.

The syntax of a format specification is:
[descriptorl[, descriptor2...]]
where:

descri ptor is an edit descriptor that is used to convert data between its internal
(binary) format and an external (character) format. Edit descriptors are
described in detail in the following section.

Note that format specifications are not used in list-directed and namelist-directed 1/O.

204 Chapter 9

/0 formatting
Edit descriptors

Edit descriptors

Edit descriptors are encoded characters that describe data conversion between an internal
(binary) format and an external (character) format. There are three types of edit descriptors:

< Data edit descriptors define the format of data to be read or written, such as its type and
width (in characters). All data edit descriptors are repeatable; that is, they can be
preceded by a positive integer that specifies the number of times the edit descriptor is to
be replicated.

= Control edit descriptors specify editing information, such as the number of spaces
between input items, treatment of blanks in input, and scale factors. Of the control edit
descriptors, only the slash (/) is repeatable.

= Character string edit descriptors output text. None of these is repeatable.

All of the edit descriptors supported by HP Fortran are listed in

Table 9-1. As indicated by the syntax descriptions included in the table, the field width
specification (w) is optional for all data edit descriptors in HP Fortran. Note that the Fortran
90 Standard defines the field width specifier to be optional only for the Aedit descriptor. The
table also identifies which edit descriptors are repeatable and which can be used on input,
output, or both.

Table 9-1 Edit descriptors
Descriptor | Type Repeatable? | 1/0 use Function
" or' .. | Character | No Output Output enclosed string.
string

$ Control No Output Suppress newline at end of
output.

/ (slash) Control Yes Input/output | End current record and begin
new record.

: (colon) Control No Input/output | Stop formatting if 1/O list is
exhausted.

AW or Riwj Data Yes Input/output | Convert character data.

B[W.n] Data Yes Input/output | Convert integer data, using
binary base.

Chapter 9 205

/0 formatting
Edit descriptors

Table 9-1 Edit descriptors (Continued)

Descriptor | Type Repeatable? | 1/0 use Function

BN Control No Input/output | Ignore blanks in numeric
input data.

Bz Control No Input/output | Treat blanks as zeroes in
numeric input data.

Djw.d] Data Yes Input/output | Convert real type data with
exponent.

E[w.d[Ee]] Data Yes Input/output | Convert real type data with
exponent.

EN[w.d[Ee]] Data Yes Input/output | Convert real type data, using
engineering notation.

ES[w.d[Ee]] Data Yes Input/output | Convert real type data, using
scientific notation.

Flw.d] Data Yes Input/output | Convert real type data without
exponent.

gwd[Ee]] Data Yes Input/output | Convert numeric data, all
types.

Qw.d] Data Yes Input/output | Convert real type data with
exponent.

nHs Character | No Output Output following n characters.

String

[[w.n] Data Yes Input/output | Convert integer numeric data.

L[w Data Yes Input/output | Convert logical data.

M Data Yes Input/output | Input/Output monetary data
with a comma

N Data Yes Input/output | Input/Output monetary data
with a comma and a dollar
sign

aw.n] Data Yes Input/output | Convert integer data, using
octal base.

206 Chapter 9

/0 formatting
Edit descriptors

Table 9-1 Edit descriptors (Continued)

Descriptor | Type Repeatable? | 1/0 use Function

kP Control No Input/output | Set scale factor to k.

Q Control No Input Return number of bytes
remaining to be read in
current input record.

S or SP Control No Output Print optional plus sign.

SS Control No Output Do not print optional plus sign.

Tc Control No Input/output | Move to column c.

TLc Control No Input/output | Move c columns to the left.

TRc or cX Control No Input/output | Move c columns to the right.

ZIwW. M| Data Yes Input/output | Convert integer data, using
hexadecimal base.

The following sections describe the edit descriptors.

NOTE

There is no single edit descriptor that defines a field for complex data. Instead,
you must use two real edit descriptors—the first for the real part of the number,
and the second for the imaginary part. The two edit descriptors may be
different or the same, and you can insert control and character string edit
descriptors between them.

Likewise, there are no edit descriptors for formatting derived types and
pointers. For derived types, you must specify the appropriate sequence of edit
descriptors that match the data types of the derived type's components. For
pointers, you must specify the edit descriptor that matches the type of the

target object.

Character string (...’ or ”...”) edit descriptor

The character string edit descriptor is used to write a character constant to a formatted
output record. It cannot be used to format input. You can use either apostrophes or quotation
marks to delimit the constant. Whichever you use, they must be balanced. That is, if you begin
with an apostrophe, you must also end with it. If the enclosed character constant includes a

Chapter 9

207

/0 formatting
Edit descriptors

delimiting character, it must be of the other type; or you can escape the delimiter by giving
another of the same type. The width of the field is the number of characters enclosed by the
character string edit descriptors, including any blanks.

Table 9-2 provides examples of the character string edit descriptor on output. Note that b
represents a blank.

Table 9-2 Character string edit descriptor output examples
Descriptor Field width | Output
"Enter data:' 11 Enter data:
"David's turn” 12 David's turn
" bbbSpacesbbb” 12 bbbSpacesbbb
"That''Il do.' 11 That' |1 do.
""" That' Il do!""” 13 "That' |l do!”
Ca 1 "

Newline ($) edit descriptor

The newline edit descriptor is an HP extension that suppresses the generation of the newline
character (that is, the carriage-return/linefeed sequence) during formatted, sequential output.
By default, the cursor moves to a newline after each output statement. The newline edit
descriptor causes the cursor to remain on the same line, immediately to the right of the last
character output.

NOTE Nonadvancing I/O also suppresses the newline at the end of a record. Unlike
the newline ($) edit descriptor, it is a standard feature of Fortran 90, and can be
used on input and output. For more information, see “Nonadvancing 1/0” on
page 184 and the ADVANCE= 1/O specifier in “OPEN” on page 376.

208 Chapter 9

/0 formatting
Edit descriptors

Slash (/) edit descriptor

The slash edit descriptor terminates the current record and begins processing a new record
(such as a new line on a terminal). This edit descriptor has the same result for both input and
output: it terminates the current record and begins a new one. For example, on output a
newline character is printed, and on input a new line is read.

Keep in mind the following considerations when using the slash edit descriptor:
=« Ifaseries of two or more slashes are written at the beginning of a format specification, the
number of records skipped is equal to the number of slashes.

= If n slashes appear other than at the beginning of a format specification (where n is
greater than 1), processing of the current record terminates and n - 1 records are skipped.

= If a format contains only n slashes (and no other format specifiers), n + 1 records are
skipped.

The / edit descriptor does not need to be separated from other descriptors by commas.

Colon () edit descriptor

The colon edit descriptor (:) is used when performing formatted 1/O to terminate format
control when the 1/O list has been exhausted. If all items in an 1/O list have been read or
written, the colon edit descriptor stops any further format processing. If more items remain in
the list, the colon edit descriptor has no effect.

Consider the following example:

WRITE (*, 40) 1, 2

WRITE (*, 50) 1, 2

40 FORMAT(3(' value =, 12))
50 FORMAT(3(:, ' value =, 12))

The first WRI TE statement outputs the line:
value = 1 value = 2 value =

The descriptor 'value ='is repeated a third time because format control is not terminated until
the descriptor | 2 is reached and not satisfied.

The second WR TE statement outputs the line:
value = 1 value = 2

This time, the colon descriptor terminates format control before the string' val ue=" is
output a third time.

Chapter 9 209

/0 formatting
Edit descriptors

A and R (character) edit descriptors

The Aand Redit descriptors define fields for character data. The Aedit descriptor specifies
left-justification, and the Redit descriptor specifies right-justification.

The Redit descriptor is an HP extension.

The syntax for the character edit descriptors is:

[r1AIW

[r1IRwW

where:

r is a positive integer constant, specifying the repeat factor.

w is the field width. If wis not specified, the default is the length in bytes of the

corresponding 1/O list item.
As a portability extension, the list item can be of any data type.

When the Aand Redit descriptors are used for input and output, the results can differ
according to whether the width (w) specified for the edit descriptor is less than, greater than,
or equal to the length of the 1/O list item. The results on input are summarized in Table 9-3;
the results on output are summarized in Table 9-4.

Table 9-3 Contents of character data fields on input
Descriptor Wldth/leng_th Result
relationship
A width < length Data is left-justified in
variable, followed by blanks.
width >= length Data is taken from rightmost
characters in the field.
R width < length Data is right-justified in
variable, preceded by nulls.
width >= length Data is taken from rightmost
characters in the field.

210 Chapter 9

Table 9-4 Contents of character data fields on output
Descriptor Wldth/leng_th Result
relationship
A width <= length Data is taken from leftmost
characters in the field.
width > length Output the value, preceded by
blanks.
R width <= length Data is taken from rightmost

characters in the field.

width > length

Output the value, preceded by

blanks.

/0 formatting
Edit descriptors

Examples of the use of character edit descriptors on input are provided in Table 9-5. In the

table, b represents a blank and z represents a Null.

Table 9-5 A and R edit descriptors: input examples
Descriptor | Input field Variable length Value stored
A3 XYZ 3 XYZ
R3 XYZ 4 zXYZ
A5 ABCbb 10 ABCbbbbbbb
R9 Rl GHTMOST 4 MOST
R8 CHAI Robb 8 CHAI Robb
R4 CHAI R 8 zzzzCGHAl
A ABCD 2 c

Chapter 9

211

/0 formatting
Edit descriptors

Table 9-6 provides examples of character edit descriptors on output. In the table, b represents
a blank and z represents a Null.

Table 9-6 A and R Edit descriptors: output examples

Descriptor ::?];err;ile rs Yeanrgi?r? le Output

A6 ABCDEF 6 ABCDEF

R4 ABCDEFCH 8 EFGH

A ABCDE 5 ABCD

A8 STATUS 6 bbSTATUS

R8 STATUS 6 bbSTATUS

R8 STATUS 8 STATUSbb

B (binary) edit descriptor

The Bedit descriptor defines a field for binary data. It provides for conversion between an
external binary number and its internal representation.

The syntax for the binary edit descriptor is:

[r1B[w.n]

where:

r is a positive integer constant, specifying the repeat factor.

w is a positive integer constant, specifying the field width.

m is an unsigned integer constant, specifying the minimum number of digits
that must be in the field and forcing leading zeroes as necessary up to the
first nonzero digit. The mvalue is ignored on input. If mis not specified, a
default value of 1 is assumed. If mis larger than w, the field is filled with w
asterisks.

Input

Variables to receive binary input must be of type integer. The only legal characters are 0s and
1s. Nonleading blanks are ignored, unless the file is opened with BLANK=' ZERO .

212 Chapter 9

/0 formatting
Edit descriptors

If the file is opened with BLANK="' ZERO , nonleading blanks are treated as zeroes. For more
information about the BLANK= specifier, see “OPEN” on page 376. Plus and minus signs,
commas, or any other symbols are not permitted. If a nonbinary digit appears, an error
occurs. The presence of too many digits for the integer variable (or 1/O list item) is illegal.

Table 9-7 provides examples of the binary edit descriptor on input.

Table 9-7 B Edit descriptor: input examples
Descriptor | Input field (binary) Value stored (binary)
B3 1111 1111
B3 01111 1111
B4 10101 1010
B3 1.1 error: illegal character

Output

Unlike input, list items on output may be of any type, though character values are output only
as the binary equivalent of their ASCII representation (without a length descriptor). If wis
greater than the number of converted binary digits (excluding leading zeroes), the binary
digits are right-justified in the output field.

If wis less than the number of converted binary digits, the field is filled with wasterisks. This
primarily affects the output of negative values. Because negative values are output in twos
complement form, their high-order bits are nonzero and cause the field to be filled with
asterisks when wis less than the number of binary digits in the entire output value.

The field width required to fully represent the binary value of an item is eight times its size in
bytes. For example, an | NTEGER* 4 item could require a field wof up to 32 characters.

Only 1s and Os are printed on output.

Table 9-8 provides examples of the binary edit descriptor on output.

Table 9-8 B Edit descriptor: output examples
Descriptor | Internal value Output
B5 27 11011
B3 27 bbb11011
B3. 6 27 bb011011

Chapter 9 213

/0 formatting
Edit descriptors

Table 9-8 B Edit descriptor: output examples (Continued)
Descriptor | Internal value Output
B8 _27 *kkkkkk k%

BN and BZ (blank) edit descriptors

The BNand BZ edit descriptors control the interpretation of embedded and trailing blanks in
numeric input fields. The syntax of the blank edit descriptors is:

BN
Bz

At the beginning of the execution of an input statement, blank characters within numbers are
ignored except when the unit is connected with BLANK="' ZERO specified in the OPEN
statement. BNand BZ override the BLANK= 1/O specifier for the current READ statement. For
more details about the BLANK= 1/O specifier, see “OPEN” on page 376.

If a BZ edit descriptor is encountered in the format specification, trailing and embedded
blanks in succeeding numeric fields are treated as zeroes. The BZ edit descriptor remains in
effect until a BN edit descriptor or the end of the format specification is encountered. If BN is
specified, all embedded blanks are removed and the input number is right justified within the
field width.

The BNand BZ edit descriptors affect only | , B, O F, D, E, EN, ES, G and Z format descriptors
during the execution of an input statement. The BNand BZ edit descriptors do not affect
character and logical edit descriptors.

Table 9-9 provides examples of the BNand BZ edit descriptors on input.

Table 9-9 BN and BZ edit descriptors: input examples
Descriptor | 7Pt | necttingin | & aitng i
14 1b2b 12 1020
F6. 2 b4b. b2 4.2 40.02
E7.1 Sb. bE1Db 5.0 x 101 5.0 x 10*

5.0 3E4bb 3.0 x 10* 3.0 x 10400
(overflow)

214 Chapter 9

/0 formatting
Edit descriptors

The BNand BZ edit descriptors are ignored during the execution of an output statement.

D, E, EN, ES, F, G, and Q (real) edit descriptors

The D, E, EN ES, F, G and Qedit descriptors define fields for real numbers. The 1/O list item
corresponding to a real descriptor must be a numeric type. (The Standard permits real and
complex types only; as an extension, HP Fortran allows integers.)

The syntax for these edit descriptors is:
[r1D{w.d]

[rTE[w.d[{E| D Qe]]

[r]1EN[w d[Ee]]

[r]ES[w d[Ee]]

[r]1F[wd]

[r1dwd[{E D QGe]l

[r1dwd]

where:

r is a positive integer constant, specifying the repeat factor.

w is a positive integer constant, specifying the field width.

d is a nonnegative integer constant, specifying the number of decimal places
on output.

e is a positive integer constant, specifying the number of digits in the
exponent.

For formatting complex data, you can use two real edit descriptors—the first for the real part
of the number and the second for the imaginary part. The two edit descriptors may be
different or the same, and you can insert control and character string edit descriptors between
them.

Real edit descriptors on input

The input field for the real descriptors consists of an optional plus or minus sign followed by a
string of digits that may contain a decimal point. If the decimal point is omitted in the input
string, then the number of digits equal to d from the right of the string are interpreted to be to
the right of the decimal point. If a decimal point appears in the input string and conflicts with
the edit descriptor, the decimal point in the input string takes precedence. This basic form can
be followed by an exponent in one of the following forms:

= Asigned integer constant

Chapter 9 215

/0 formatting
Edit descriptors

< An Efollowed by an optionally signed integer constant
< A Dfollowed by an optionally signed integer constant
< A Qfollowed by an optionally signed integer constant

All four exponent forms are processed in the same way. Note, however, that e has no effect on
input.

The ENand ES edit descriptors are the same as the F edit descriptor on input. The Qedit
descriptor (an HP Fortran extension) is the same as the E edit descriptor on input.

Table 9-10 provides examples of the real edit descriptors on input. The BZ edit descriptor
listed in the “Descriptor” column treats nonleading blanks in numeric fields as zeroes.

Table 9-10

D, E, F, and G edit descriptors: input examples

Descriptor Input field Value stored
F6.5 4. 51E4 45100

.2 51-3 .00051

E8. 3 7. 1bEb5 710000

D9. 4 bbb45E+35 .0045 x 103°
BZ, F6.1 -54E3b 5.4 x 1030

Real edit descriptors on output

The output field for the real descriptors consists of wcharacter positions, filled with leading
blanks (if necessary) and an optionally signed real constant with a decimal point, rounded to d
digits after the decimal point. The following sections describe the real edit descriptors on
output in detail.

D and E edit descriptors The Dand E edit descriptors define a normalized floating-point
field for real and complex values. The value is rounded to d digits. The exponent part consists
of e digits. If Ee is omitted in a D or E edit descriptor, then the exponent occupies two or three
positions, depending on its magnitude. The field width, w, should follow the general rule: wis
greater than or equal to d+7. If Ee is used, wis greater than or equal to d+e+5. This rule
provides positions for a leading blank, the sign of the value, the decimal point, d digits, the
exponent letter (D, E, or Q), the sign of the exponent, and the exponent. The Ee, De, and Qe
specifications, which are available with the E edit descriptor, control which exponent letter is
output.

216 Chapter 9

/0 formatting
Edit descriptors

Table 9-11 provides examples of the E and Dedit descriptors on output.

Table 9-11 D and E edit descriptors: output examples
Descriptor | Internal value Output
D10. 3 +12.342 b0. 123D+02
E10. 3E3 -12.3454 -. 123E+002
El12.4 +12.34 bb0. 1234E+02
D12.4 -.00456532 b- 0. 4565D- 02
D10. 10 +99.99913 ok ko Kk ko
E11.5 +999.997 0. 10000E+04
E10. 3E4 +.624 x 1030 . 624E- 0030

EN and ES edit descriptors The ENand ES descriptors format floating-point values, using
engineering and scientific notation, respectively. They are similar in form to the E descriptor,
except:

= The field produced by the ENdescriptor has an exponent that is divisible by 3 and a
significand that is in the range 1 to 999.

= The field produced by the ES descriptor has one digit before the decimal point.
Table 9-12 provides examples of the ENand ES edit descriptors on output.

Table 9-12 EN and ES edit descriptors: output examples

Descriptor | Internal value Output

EN12. 3 +3.141 bbb3. 141E+00
ES12. 3 +3.141 bbb3. 141E+00
EN12. 3 +.00123 bbb1. 230E- 03
ES12. 3 +.00123 bbb1. 230E- 03
EN12. 3 -7 - 700. 000E- 03
ES12. 3 -7 bb- 7. 000E- 01
EN12. 3 +1234.5 bbb1l. 235E+03

Chapter 9 217

/0 formatting
Edit descriptors

Table 9-12 EN and ES edit descriptors: output examples (Continued)
Descriptor | Internal value Output
ES12. 3 +1234.5 bbbl. 235E+03

F edit descriptor

The F edit descriptor defines a field for real and complex values. The value is rounded to d
digits to the right of the decimal point. The field width, w, should be four greater than the
expected length of the number to provide positions for a leading blank, the sign, the decimal
point, and a roll-over digit for rounding if needed.

Table 9-13 provides examples of the F edit descriptor on output.

Table 9-13 F edit descriptor: output examples
Descriptor | Internal value Output
F5.2 +10.567 10. 57
F3.1 -254.2 *kx
F6. 3 +5.66791432 b5. 668
F8.2 +999.997 b1000. 00
F8.2 -999.998 -1000. 00
F7.2 -999.997 Rk ko K
F4.1 +23 23.0

G edit descriptor

The Gedit descriptor can be used with any data type but is commonly used to define a field for
real and complex values.

When used to specify 1/O fields for integer, character, and logical data, the Gedit descriptor
has the same syntax and same effect as the integer, character, and logical edit descriptors.
The d and e values (if specified) have no effect.

According to the magnitude of the data, the Gedit descriptor is interpreted as either an Eor F
descriptor. (For more information on these edit descriptors, refer to “D and E edit descriptors”
on page 216 and “F edit descriptor” on page 218.) The Eedit descriptor is used when one of the
following conditions is true:

218 Chapter 9

/0 formatting
Edit descriptors

= The magnitude is less than 0.1 but not zero.
= The magnitude is greater than or equal to 10**d (after rounding to d digits).

If the magnitude does not fit either of these rules, the F edit descriptor is used. When F is
used, the field width is reduced by either 4 when Gw.d is specified, or by e+2 when Gw.dEe is
specified. It is then followed by a number of trailing spaces equal to the number that the field
width was reduced by. Finally, d is modified internally according to the new field width.

For fixed- or floating-point format descriptors, the field width is w. The value is rounded to d
digits, and the exponent consists of e digits. If Ee is omitted, the exponent occupies two
positions. If Ee is omitted and the exponent is greater than 99 (that is, it requires three
digits), the exponent letter is dropped from the output. The field width, w, should follow the
general rule: wis greater than or equal to the sum of d+7; or, if Ee is specified, wis greater
than or equal to the sum of d+e+5. This rule provides positions for a leading blank, the sign of
the value, d digits, the decimal point, and, if needed, the exponent letter (D, E, or Q, the sign of
the exponent, and the exponent. Note that the Ee, De, and Qe specifications control which
exponent letter is output.

Table 9-14 provides examples of the Gedit descriptor on output.

Table 9-14 G edit descriptor: output examples
Descriptor | Internal value | Interpretation | Output
Gl0. 3 +1234.0 E10. 3 b0. 123E+04
Glo. 3 -1234.0 E10. 3 -0. 123E+04
Gl2.4 +12345.0 El12. 4 bb0. 1235E+05
Gl2. 4 +9999.0 F8.0, 4X bbb9999. bbbb
Gl2.4 -999.0 F8.1, 4X bb- 999. Obbbb
Gr. 1 +.09 E7. 1 0. 9E- 01
.1 -.09 E5.1 kok kK
Gll. 1 +9999.0 Ell1.1 bbbb0. 1E+05
. 2 +9999.0 E8. 2 0. 10E+05
Gr. 2 -999.0 E7.2 e
(8.2 .true L8 bbbbbbbT
Gr. 2 -999.0 E7. 2 bbbb1234

Chapter 9

219

/0 formatting
Edit descriptors

Q edit descriptor

The Qedit descriptor (an HP extension) has the same effect as the E edit descriptor on output,
except that it outputs a Qfor the exponent instead of an E.

The Qedit descriptor can also be used to determine the number of bytes remaining to be read
in an input record; see “Q (bytes remaining) edit descriptor” on page 226.

H (Hollerith) edit descriptor

The Hedit descriptor outputs a specified number of characters. The syntax is:
nHchar act er - sequence

where:

n

is a positive integer that specifies the number of characters to output. This
number must exactly match the actual number of characters in
char act er - sequence.

char act er - sequence
is the string of representable characters (including blanks) to output.

Table 9-15 provides examples of the Hollerith edit descriptor on output.

Table 9-15 H edit descriptor: output examples
Descriptor Field width Output
12HbbbSpaceshbbb 12 bbbSpacesbbb
14H' 1t bi sn' t bso.” 14 "Itbisn'tbso.”

I (Integer) edit descriptor

The | edit descriptor defines a field for an integer number. As an HP extension, it can also be
used on real and logical data. The corresponding 1/O list item must be a numeric or logical

type.

The syntax of the integer edit descriptor is:
[ri][w.ni]

where:

r is a positive integer constant, specifying the repeat factor.

220 Chapter 9

/0 formatting
Edit descriptors

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the minimum number of digits
that must be in the field and forcing leading zeroes as necessary up to the
first nonzero digit. The mvalue is ignored on input. If mis not specified, a
default value of 1 is assumed. If mis larger than w, the field is filled with w
asterisks. If m= 0 and the list item is zero, only blanks are output.

Input

The integer edit descriptor causes the interpretation of the next wpositions of the input
record. The number is converted to match the type of the list item currently using the
descriptor. A plus sign is optional for positive values. A decimal point must not appear in the
field.

Table 9-16 provides examples of the integer edit descriptor on input.

Table 9-16 I edit descriptor: input examples

Descriptor Input field Value stored

I 4 blbb 1

5 bbbbb 0

5 bbbbb1 0

|2 -1 -1

14 -123 -123

13 b12 12

13 12b 12

13 12b 120

13 1.1 error: illegal character
Output

The integer edit descriptor outputs a numeric variable as a right-justified integer value
(truncated, if necessary). The field width, w, should be one greater than the expected number
of digits to allow a position for a minus sign for negative values. If mis set to 0, a zero value is
output as all blanks.

Chapter 9 221

/0 formatting
Edit descriptors

Table 9-17 provides examples of the integer edit descriptor on output.

Table 9-17 I edit descriptor: output examples
Descriptor Internal value Output
14 +452.25 b452
|2 +6234 *x
13 -11.92 -11
15 -52 bb- 52
10 123456.5 bbbb123456
16.3 3 bbb003
13.0 0 bbb
13 0 bb0

L (Logical) edit descriptor

The L edit descriptor defines a field for logical data. Its syntax is:

[rl1L[w

where:

r is a positive integer constant, specifying the repeat factor.
w is a positive integer constant, specifying the field width.

The 1/O list item corresponding to an L edit descriptor must be of type logical, short logical, or
byte.

Input

The field width is scanned for optional blanks followed by an optional decimal point, followed
by T (or t) for true or F (or f) for false. The first nonblank character in the input field
(excluding the optional decimal point) determines the value to be stored in the declared logical
variable. It is an error if the first nonblank character isnot T, t, F, f, or a period(.).

222 Chapter 9

/0 formatting
Edit descriptors

Table 9-18 provides examples of the logical edit descriptor on input.

Table 9-18 L edit descriptor: input examples

Descriptor Input field Value dtored

L1 T . TRUE.

L1 f . FALSE.

L6 . TRUE. . TRUE.

L7 .fal se. . FALSE.

L2 .t . TRUE.

L8 bbbbTRUE . TRUE

L3 ABC error: illegal character
Output

The character T or F is right-justified in the output field, depending on whether the value of
the list item is true or false. Table 9-19 provides examples of the logical edit descriptor on
output.

Table 9-19 L edit descriptor: output examples
Descriptor Internal value Output (logical)
L5 false bbbbF
L4 true bbbT
L1 true T

M and N edit descriptors
Edit descriptors M and N are used to output numeric values in formats normally used for
currency.

For example, the N edit descriptor will output a value 1234.5 in the format 1,234.50; the M
edit descriptor will cause this same value to be output at $1,234.50.

Chapter 9 223

/0 formatting
Edit descriptors

O (Octal) edit descriptor

The Oedit descriptor defines a field for octal data. It provides conversion between an external
octal number and its internal representation.

The syntax for the octal edit descriptor is:

[r1dw.ni]

where:

r is a positive integer constant, specifying the repeat factor.

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the minimum number of digits
that must be in the field and forcing leading zeroes as necessary up to the
first nonzero digit. The mvalue is ignored on input. If mis not specified, a
default value of 1 is assumed. If mis larger than w, the field is filled with w
asterisks.

Input

The presence of too many digits for the integer variable (or list item) to receive produces
undefined results. Legal octal digits are 0 through 7. Plus and minus signs are illegal.

Table 9-20 provides examples of the octal edit descriptors on input.

Table 9-20 O edit descriptor: input examples
Descriptor Input field (octal) | Value stored (octal)
(02} 12345670 12345670
0% 77 77
3 064 64
0] 45r error: illegal character

Output

List items may be of any type, though character variables are output only as the octal
equivalent of their ASCII representation (no length descriptor).

If wis greater than the number of converted octal digits (including blanks between words but
excluding leading zeroes), the octal digits are right-justified in the output field. If wis less
than the number of converted octal digits, the field is filled with asterisks. This primarily
affects the output of negative values. Because negative values are output in twos complement

224 Chapter 9

/0 formatting
Edit descriptors

form, their high-order bits are nonzero and cause the field to be filled with asterisks when wis
less than the number of octal digits in the entire output value. If mis set to 0, a zero value is
output as all blanks.

Table 9-21 provides examples of the octal edit descriptors on output.

Table 9-21 O edit descriptor: output examples
Descriptor Internal value Output (Octal)
03 80 bbb120
@ 80 *
a4 -9 bbb37777777767
a1l 32767 bbbbbb77777
. 4 79 bb0117
a2 1.1 bb7743146315
a2 "A b101
a2 " ABC b101b102b103

P (scale factor) edit descriptor

The kP edit descriptor causes a scale factor of k to be applied to all subsequent F, D, E, EN, ES,
and Gedit descriptors in the format specification.

If the P edit descriptor does not precede an F, D, E, EN, ES, or Gedit descriptor, it should be
separated from other edit descriptors by a comma. If the P edit descriptor immediately
precedes an F, D, E, EN ES, or Gedit descriptor, the comma is optional.

For example, the format specification
(3P, 12, F4.1, E5.2)

is equivalent to

(12, 3PF4.1, ES5.2)

When a format specification is interpreted, the scale factor is initially set to 0. When a P edit
descriptor is encountered, the specified scale factor takes effect for the format specification
and remains in effect until another P edit descriptor is encountered.

The effect of the scale factor differs for input and output as follows:

Chapter 9 225

/0 formatting
Edit descriptors

Input

If the value in the input field does not have an exponent, the internal number is equal to the
field value multiplied by 10-k. If the value in the input field has an exponent, the scale factor
has no effect. See Table 9-22 for examples of the scale factor on input.

Output

The scale factor has no effect on the EN, ES, F and G(interpreted as F) edit descriptors. For the
D, E, and G(interpreted as E) edit descriptors, the value of the list item is multiplied by 10k as
it is output but the exponent part is decreased by k.

The value specified for the scale factor (k) must be in the range:
-d <k < (d + 2)

where:
d is the number of digits in the fractional part of the number being written.
k is a signed integer that specifies the scale factor.

Table 9-22 provides examples of the scale factor on output.

Table 9-22 P edit descriptor: input and output examples
stc))er(r:?gf:ation 11|ner|)(l;t Internal value Output
(- 2PGL5. 5) 1.97E-4 | 197 x 104 bbbbb. 00197E- 01
(2P, F15.5) 27.982 .2798199 bbbbbbb27. 98200
(2P, ES15. 5) 3518. 35.18 bbbb3. 51800E+01
(- 2P, EN1L5. 5) 7.91E+5 | 7.91 x 10° bb791. 00000E+03
(- 2PE15. 5) . 17694 17.694 bbbbb. 00177E+04

When part or all of a format specification is repeated, the current scale factor is not changed
until another scale factor is encountered.

Q (bytes remaining) edit descriptor

The Qedit descriptor is an HP extension that returns the number of bytes remaining to be
read in the input record, placing the result into the corresponding integer variable in the 1/0
list. The return value can be used to control the remaining input items.

226 Chapter 9

/0 formatting
Edit descriptors

The Qedit descriptor is valid on input only; it is ignored on output. It can be used for reading
formatted, sequential, and direct-access files. The following program segment reads
variable-length strings from a sequential file:

CHARACTER(LEN=80) :: string
INTEGER :: n, i

ﬁiEAD(ll,'(Q,SOAl)') n, (string (i:i), i=1, n)

For information about the Q. d edit descriptor for editing real data, see “D, E, EN, ES, F, G,
and Q (real) edit descriptors” on page 215.

S, SP, and SS (plus sign) edit descriptors

The S, SP, and SS edit descriptors control printing of the plus sign character in numeric
output. The default behavior of HP Fortran is not to print the plus sign. However, an SP edit
descriptor in the format specification causes the plus sign to appear in any subsequent
numeric output where the value is positive. The SS descriptor suppresses the plus sign in
subsequent numeric output. The Sedit descriptor restores the default behavior.

The sign edit descriptors have no effect on input.

T, TL, TR, and X (tab) edit descriptors

The tab edit descriptors position the cursor on the input or output record. Their syntax is:
Tn

TLn

TRn

nX

where:

n is a positive integer constant, specifying the number of column positions to
skip for positioning within the current output or input record.

The T edit descriptor references an absolute column number, while the descriptors TL and TR
reference a relative number of column positions to the left (TL) or right (TR) of the current
cursor position. Note that the TRdescriptor is identical to the X edit descriptor.

Z (hexadecimal) edit descriptor

The Z edit descriptor defines a field for hexadecimal data. This descriptor provides for
conversion between an external hexadecimal number and its internal representation.

The syntax for the hexadecimal edit descriptor is:

Chapter 9 227

/0 formatting
Edit descriptors

[r1Z[w[.m]]

where:

r is a positive integer constant, specifying the repeat factor.

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the minimum number of digits
that must be in the field and forcing leading zeroes as necessary up to the
first nonzero digit. The mvalue is ignored on input. If mis not specified, a
default value of 1 is assumed. If mis larger than w, the field is filled with w
asterisks.

Input

Variables to receive hexadecimal input must be of type integer. Legal hexadecimal digits are O
through 9, and A through F (or a through f). Nonleading blanks are ignored, unless the file is
opened with BLANK=" ZERO . If the file is opened with BLANK=" ZERO , nonleading blanks are
treated as zeroes. For more information about the BLANK= specifier see “OPEN” on page 376.
Plus and minus signs, commas, or any other symbols are neither permitted on input nor
printed on output. The presence of too many digits for the integer variable (or list item)
produces undefined results.

Table 9-23 provides examples of the hexadecimal edit descriptor on input.

Table 9-23 Z edit descriptor: input examples

Descriptor Input field Value stored

P (hexadecimal) (hexadecimal)

Z4 FF3B FF3B

Z4 fFfF FFFF

Z2 ABCD AB

Z3 1.1 error: illegal character
Output

List items may be of any type, though character variables are output only as the hexadecimal
equivalent of their ASCII representation (without a length descriptor). If wis greater than the
number of converted hexadecimal digits (excluding leading zeroes), the hexadecimal digits are
right-justified in the output field. If wis less than the number of converted hexadecimal digits,
the field is filled with asterisks. This primarily affects the output of negative values. Because

228 Chapter 9

/0 formatting
Edit descriptors

negative values are output in twos complement form, their high-order bits are nonzero and
cause the field to be filled with asterisks when wis less than the number of hexadecimal digits
in the entire output value. If mis set to 0, a zero value is output as all blanks.

The field width required to fully represent the hexadecimal value of an item is twice its size in
bytes. For example, a CHARACTER* 12 item would require a field width of 24 characters.

Table 9-24 provides examples of the hexadecimal edit descriptor on output.

Table 9-24 Z edit descriptor: output examples
Descriptor Internal value Output
Z2 27 1B
6.4 27 bb001B
Z ‘A b41
Z8 'ABCD’ 41424344
Z8 11 3F8CCCCD

Chapter 9 229

/0 formatting
Embedded format specification

Embedded format specification

A format specification can be embedded in a data transfer statement as a character
expression. Parentheses are included in the expression, and the first nonblank character must
be a left parenthesis. The matching right parenthesis must also be in the expression. A list of
edit descriptors appears between the parentheses. Any characters appearing after the
matching right parenthesis are ignored.

If the character expression is a character constant, it must be delimited by either apostrophes
or quotation marks. If the character constant contains another character constant, the nested
character constant must also be delimited. If the inner set of delimiters is the same as the
outer set they must be doubled. Each of the following statements is correct and will produce
the same results:

PRINT "('i ="', i2)", i
PRINT "(”"i ="", i2)", i
PRINT " (i =", i2)", i
PRINT "("'i ="', i2)", i
VWRITE (6, "('i ="', i2)") i

If the character expression is an array element, the entire specification must be within that
element. If the expression is a whole character array, the format specification is the
concatenation of the array elements in array element order. (As an extension, HP Fortran
allows the use of an integer array to contain a format specification.)

The following illustrates the use of a character array to hold the format specification:

CHARACTER(LEN=6), DI MENSI ON(2) :: fspec
fspec(l) = '(F8.3,"'

fspec(2) ="' I5)'

PRI NT fspec, fvar, ivar

If the value of f var is 12.34567 and i var is 123, the output would be:
bb12. 346bb123

230 Chapter 9

/0 formatting
Nested format specifications

Nested format specifications

A format specification can include a nested format specification (another set of edit
descriptors, enclosed in parentheses). You can also precede the nested format specification
with a repeat factor, as in the following example:

(1H, 2(15, F10.5))
This is equivalent to:
(1H, 15, F10.5, 15, F10.5)

Each nested specification is known as a group at nested level n. The value of n begins at 1. For
each successive level of nesting, n is incremented by 1. Each group at nested level 1 can
contain one or more groups at nested level 2, and so on.

For example:

(E9.3,186,(2X,14))

contains one group at nested level 1.

(L2, A3/ (E10. 3, 4(A2, L4)))

has one group at nested level 1 and one at nested level 2.

(A (3% (12,(A3)),13), A

contains one group at nested level 1, one at level 2, and one at level 3.

A nested format specification can be preceded by a repeat specification. For example, the
following input record

b26b6. 4336b373. 86b39bb49. 79bb4abbb4395. 4972

could be accessed with the following FORVAT statement:

10 FORMAT (13, F7.4,2(F7.2,13),F12. 4)

The list of variables following READ statement corresponds to the preceding FORVAT statement:
READ 10,i,a,b,j,d, k, f

The READ statement would read values for i and a; repeat the nested format specification
F7. 2,1 3 twice to read values for b, j , d, and k; and, finally, read a value for f.

Chapter 9 231

/0 formatting

Format specification and 1/0 data list

Format specification and 1/O data list

A formatted 1/O statement references each item in an 1/O list, and the corresponding format
specification is scanned to find a format descriptor for each item. As long as an item is
matched to an edit descriptor, normal execution continues.

If there are more edit descriptors than list items, format control terminates with the last list
item. If there are fewer edit descriptors than list items, the following three steps are

performed:

1. The current record is terminated.

2. A new record is started.

3. Format control is returned to the format specification based upon the following hierarchy:

a. Control returns to the repeat specification for the rightmost group at nested level 1.
For information about nested levels, see “Nested format specifications” on page 231.

b. If no repeat specification exists in the rightmost group at nested level 1, control
returns to the group itself.

c. If there is no group at nested level 1, control returns to the first descriptor in the
format specification.

Table 9-25 provides examples showing how control is returned to the format specification in

different circumstances.

Table 9-25 Format control and nested format specifications

Format specification Control . Explanation

returns to:

(15,2(3X12,(14))) 2(3X12,(14)) The rightmost group at nested level 1 is
3X, 12, (14). Control returns to the repeat
specifier for this group.

(F4.1,12) (F4.1,12) There is no group at nested level 1. Control

returns to the first descriptor in the format
specification.

(A3, (3X,12), 4X 14)

(3X,12), 4%, 14

Control returns to the group at nested level 1.

232

Chapter 9

10 HP Fortran statements

This chapter describes the HP Fortran statements and attributes, arranged in alphabetical
order. The descriptions provide syntax information, applicable rules and restrictions, and

examples.

Chapter 10 233

HP Fortran statements

The following descriptions for specific type declarations are located in this chapter. Generic
type declaration information is described in “Type declaration for intrinsic types” on page 27:

= BYTE
= CHARACTER
= COWLEX

= DQUBLE COWPLEX
= DQUBLE PREC Sl ON

= | NTEGER
- LO3d CAL
= REAL

= RECCRD

< TYPE(t ype- nane)

This chapter does not describe the following:

= Assignment statements (instead, see “Assignment” on page 95)

= Statement functions (instead, see “Statement functions” on page 137)

= Constructs (instead, see “Data types and data objects” on page 23)

234 Chapter 10

HP Fortran statements
Attributes

Attributes

Table 10-1 lists all the attributes that an HP Fortran entity can have and indicates their
compatibility. If the box at the intersection of two attributes contains a check mark, the
attributes are mutually compatible and can be held simultaneously by an entity. The
attributes are referred to throughout this chapter as well as in the rest of the book.

Table 10-1 Attribute compatibility

F 3 - R
THHHEREEHEEEREEE
%d—gﬁgﬁgméﬁaﬁa -
i 2 g' ¢} Py m
ALLOCATABLE v |/ A v |/
AUTQVATI C v v v |/
DI MENSI ON v |/ v |/ v |/ A NEa
EXTERNAL v v v |/
Initialization v v v N A A A A
| NTENT v v v v |/
I NTRINSI C v v |/
CPTI ONAL v |/ v v v v |/
PARAMETER v v v v
PO NTER v |/ v | v
PRI VATE v v |/ v A A NEa
PUBLI C v |/ v v |/ |
SAVE v v v A AN A A B A A
STATIC v v A AN A A B A A
TARGET v |/ v |/ v N A A A A

Chapter 10 235

HP Fortran statements
Attributes

Table 10-1 Attribute compatibility (Continued)
Zl>|o > - R
=y <
S 1El21212212/8/31838|2 ,al7E
e & MERE =S e - =
Z |3 215 |0 DIH o o -
Elo|28 o o) o m
m 5
VCLATI LE |V v |V v A A A A I 4
NOTE AUTQVATI C, STATI C, and VOLATI LE may be specified in a statement of the same
name but not as attributes in a type declaration statement.
236 Chapter 10

HP Fortran statements
Statements and attributes

Statements and attributes

The remainder of this chapter describes all of the statements and attributes that you can use
in an HP Fortran program. The statement and attribute descriptions are listed in
alphabetical order. For general information about statements—including the order in which
statements must appear in a legal program—see “Statements” on page 14.

Chapter 10 237

HP Fortran statements
ACCEPT (extension)

ACCEPT (extension)

Reads from standard input.

Syntax
The syntax of the ACCEPT statement can take one of two forms:

= Formatted and list-directed syntax:
ACCEPT format [, input-list]

= Namelist-directed syntax:
ACCEPT name

f or mat is one of the following:

< An asterisk (*), specifying list-directed 1/0.
= The label of a FORVAT statement containing the format specification.

= An integer variable that has been assigned the label of a FORVAT
statement.

< An embedded format specification.

i nput-1ist is a comma-separated list of data items. The data items can include
variables and implied-DOlists.

nane is the name of a namelist group, as previously defined by a NAMELI ST
statement. Using this syntax, the ACCEPT statement accepts data from
standard input and transfers it to the namelist group. To perform
namelist-directed 1/O with a connected file, you must use the READ
statement and include the NM_= specifier.

Description

The ACCEPT statement is an HP Fortran extension and is provided for compatibility with
other versions of Fortran. The standard READ statement performs the same function, and
standard-conforming programs should use it.

The ACCEPT statement transfers data from standard input to internal storage. (Unit5 is
preconnected to the HP-UX standard input.) The ACCEPT statement can be used to perform
formatted, list-directed, and namelist-directed 1/O only.

To read data from a connected file, use the READ statement.

238 Chapter 10

Examples

HP Fortran statements
ACCEPT (extension)

The following example of the ACCEPT statement reads an integer and a floating-point value

from standard input, using list-directed formatting:

I NTEGER :: i
REAL :: x
ACCEPT *, i, X

Related statements

FORVAT, NAVELI ST, PRI NT and READ

Related concepts

For related information, see the following:
< ‘“List-directed 1/0” on page 178

= “Implied-DO loop” on page 191

< “Embedded format specification” on page 230

Chapter 10

239

HP Fortran statements
ALLOCATABLE (statement and attribute)

ALLOCATABLE (statement and attribute)

Declares an allocatable array with deferred shape.

Syntax

The syntax of a type declaration statement with the ALLOCATABLE attribute is:
type, attrib-list :: entity-1list
type

is a valid type specification (I NTEGER REAL, LOd CAL, CHARACTER
TYPE(t ype- nane), etc.), as described in Chapter 3, “Data types and data
objects,” on page 23.

attrib-list
is a comma-separated list of attributes including ALLOCATABLE and
optionally those attributes compatible with it, namely:
Table 10-2
DI MENSI ON PUBLI C TARCGET
PRI VATE SAVE
entity-1ist
is a comma-separated list of entities. Each entity is of the form:
array-nanme [(deferred-shape-spec-list)]
If (def erred- shape-spec-1i st) is omitted, it must be specified in
another declaration statement.
arr ay- name

is the name of an array being given the attribute ALLOCATABLE.
def err ed- shape- spec-1i st

is a comma-separated list of colons, each colon representing one dimension.
Thus the rank of the array is equal to the number of colons specified.

The syntax of the ALLOCATABLE statement is:
ALLOCATABLE [::] array-nane [(deferred-shape-spec-list)]

[,array-nanme [(deferred-shape-spec-list)]]...

240 Chapter 10

HP Fortran statements
ALLOCATABLE (statement and attribute)

If (def erred-shape-spec-1ist) is omitted from the ALLOCATABLE statement, it must be
specified in another declaration statement, such as a type or DI MENSI ON statement.

The ALLOCATED intrinsic inquiry function is described in “ALLOCATED(ARRAY)” on
page 486. It can be used to determine whether an allocatable array is currently allocated.

Description

The ALLOCATABLE attribute or statement is used to declare an array whose extents in all its
dimensions will be specified when an ALLOCATE statement is executed at run-time; for this
reason it is known as “deferred-shape”. When an allocatable array is declared, only its name
and rank are given.

Examples

The following statements declare a rank-one deferred-shape array and illustrate its use with
different extents.

I ms is deferred shape.
| NTEGER, ALLOCATABLE :: ms(:)

ALLCCATE (m's (3)) I Allocate 3 el enments.
DEALLOCATE (n s) ! mMms is no |longer allocated
ALLCCATE (m's (-n:n)) ! Allocate with different extent

Related statements

ALLOCATE and DEALLOCATE

Related concepts

See “Allocatable arrays” on page 62 for more information about allocatable arrays and the
conditions applying to their use.

Array pointers provide a more general mechanism for the manipulation of deferred-shape
arrays; see “Array pointers” on page 61.

Chapter 10 241

HP Fortran statements
ALLOCATE

ALLOCATE

Provides storage space for allocatable arrays and pointer targets.

Syntax
ALLOCATE (al | ocation-list[, STAT= scal ar-integer-variable])
al l ocation-1list
is a comma-separated list of al | ocat i on.
al l ocation
is al | ocat e- obj ect [(al | ocat e-shape-spec-1list)].
al | ocat e- obj ect

is vari abl e- narre or deri ved-t ype- conponent . Each al | ocat e- obj ect
must be an allocatable array or a pointer.

al | ocat e- shape- spec-1i st
is a comma-separated list of allocate-shape-spec.
al | ocat e- shape- spec

is [| ower-bound:] upper - bound. The bounds in an al | ocat e- shape- spec
must be scalar integer expressions.

STAT=scal ar-i nt eger-vari abl e

returns the error status after the statement executes. If given, it is set to
zero if the statement successfully executed, and to one of the following
nonzero values if an error occurred:

1 Error occurred after the array was allocated; for example,
an attempt to allocate a previously allocated array.

2 Dynamic memory allocation failure (memory not
available) or invalid size (array too large).

3 Errors of both types 1 and 2 have occurred. This kind of an
error can only occur if the same ALLOCATE statement is
used to allocate more than one array, and both kinds of
errors occur.

If there is no scal ar-i nt eger - var i abl e, the occurrence of an error causes
the program to terminate.

242 Chapter 10

HP Fortran statements
ALLOCATE

Description

The ALLOCATE statement creates space for allocatable arrays and targets for variables (scalars
or arrays) with the PO NTER attribute. The ALLOCATE and DEALLOCATE statements give the
user the ability to manage space dynamically at execution time.

For allocatable arrays, an error occurs when an attempt is made to allocate an already
allocated array or to deallocate an array that is not allocated. The ALLOCATED intrinsic
function may be used to determine whether an allocatable array is allocated.

A pointer can be associated with a target, either with the pointer assignment statement or by
use of the ALLOCATE statement. It is not an error to allocate an already associated pointer; its
old target connection is replaced by a connection to the newly allocated space. However, if the
previous target was allocated and no other pointer became associated with it, the space is no
longer accessible.

Examples

In the following example, a complex array with the PO NTER attribute is declared. Target
space is allocated to it at run-time, the amount being determined by two integer values read
in. Later in the program, the space is recovered by use of the DEALLOCATE statement.

COWPLEX, PO NTER :: hermitian (:, :)
READ *, m n

ALLCCATE (hermitian (m n))
DEALLOCATE (hermitian, STAT = ierr)

In the next example, a real allocatable array is declared. The amount of space allocated to it
depends on how much is available.

! Rank-2 allocatable array
REAL, ALLOCATABLE :: intense(:,:)

CALL init_i_j(i, j)
DO
ALLCCATE (intense(i, j), STAT = ierr4)
! ierrd will be positive if there is not enough space to
! al locate this array
IF (ierrd == 0) EXIT
i =il2; o =j/2
END DO
The derived type node in the next example is the basis of a binary tree structure. It consists of
a real value component (val) and two pointer components, | eft and ri ght , both of type node.

The variable t op (of type node) is declared, and space is allocated for targets for the pointers
top%eft andtop%i ght.

Chapter 10 243

HP Fortran statements
ALLOCATE

The ALLOCATE and DEALLOCATE statements and pointer variables of type node make it
possible to allocate space for nodes in such a tree structure, traverse it as required, and then
recover the space when it is no longer needed.
TYPE node
REAL val
TYPE(node), PO NTER :: left, right ! Poi nter conponents
END TYPE node
TYPE(node) top
ALLCCATE (top % left, top %right)

In the final example, two CHARACTER arrays, par a and key, are declared with the PO NTER
attribute. par a is allocated space; key is made to point at a section of par a.

! Pointers to char arrays
CHARACTER, PO NTER :: para(:), key(:)

CALL init_k_mk, m

ALLOCATE (para(1000))
key => para (k : k + m

Related statements

ALLCOCATABLE (statement and attribute), DEALLOCATE, NULLI FY, and PA NTER (statement and
attribute)

Related concepts
For related information, see the following:

= The descriptions of the ALLOCATED and ASSOC ATED intrinsics in Chapter 11, “Intrinsic
procedures,” on page 467

< “Pointers” on page 49

244 Chapter 10

HP Fortran statements

ASSIGN
ASS| GN
Assigns statement label to integer variable.
Syntax
ASSI GN stnt-|abel TO integer-variable
st nt - | abel is the statement label for an executable statement or a FORVAT statement in

the same scoping unit as the ASSI G\ statement.
i nt eger-vari abl e is a scalar variable of the default integer type. It cannot be a field of a
derived type or record, or an array element.

Description

Once a variable is defined by an ASSI GNstatement, it can be used in an assigned GO TO
statement or as a format specifier in an input/output statement. It should not be used in any
other way.

A variable that has been assigned a statement label can be reassigned another label or an
integer value. If i nt eger - vari abl e is subsequently assigned an integer value, it no longer
refers to a label.

Examples

ASSIGN 20 TO last1
G TO last1l

I ASSI GN used with FORMAT st at ement
ASSI GN 10 TO forml
10 FORMAT(F6.1, 2X,15/F6.1

READ(5, f or nl) sum k1, avel
20 ...

Related statements

@0 TO(assigned)

Related concepts
For related information, see the following:

= “Statement labels” on page 13

< “Assigned GO TO statement” on page 115

Chapter 10 245

HP Fortran statements
AUTOMATIC (extension)

AUTQVATI C (extension)

Makes procedure variables and arrays automatic.

Syntax
AUTOMATI C var - nane- 1| i st

var - name- | i st is a comma-separated list of names of variables and arrays to be declared as
automatic. Array names may be followed by an optional
expl i ci t - shape- spec.

Description

The AUTQVATI Cstatement is provided as an HP extension.

If a variable or array declared within a procedure is declared as automatic, then there is one
copy of it for each invocation of the procedure. Space is allocated on entry to the procedure and
deallocated on exit. This is also the default for variables that do not have the SAVE or STATI C
attribute, unless the +save option has been specified.

If it is required to have the sane copy of a variable available to each invocation of the routine
(for example, to keep a record of the depth of recursion), then the variable should have the
SAVE attribute.

Note the following:

= The AUTOVATI Cstatement may only be used within a procedure.

« Local variables are AUTQVATI Cby default.

= Arguments and function values are AUTOVATI C.

= Automatic variables may not appear in EQU VALENCE, DATA or SAVE statements.

= The AUTOMATI Cattribute is not the same as automatic arrays and automatic character
strings.

Examples

AUTOMATIC r, s, u, v, W10)

Related statements

SAVE and STATI C

246 Chapter 10

HP Fortran statements
AUTOMATIC (extension)

Related concepts

For information about automatic and static variables, refer to the HP Fortran Programmer’s
Guide.

Chapter 10 247

HP Fortran statements
BACKSPACE

BACKSPACE

Positions file at preceding record.

Syntax
The syntax of the BACKSPACE statement can take one of two forms:

= Short form:
BACKSPACE i nt eger - expr essi on
= Long form:
BACKSPACE (io-specifier-list)
i nt eger - expr essi on
is the number of the unit connected to a sequential file.
i o-specifier-list
is a list of the following comma-separated 1/O specifiers:
[UNIT=] unit

specifies the unit connected to an external file opened for sequential access.
uni t must be an integer expression that evaluates to a number greater than
0. If the optional keyword UNI T= is omitted, uni t must be the first item in

i o-specifier-list.

ERR=st t - | abel

specifies the label of an executable statement to which control passes if an
error occurs during statement execution.

| STAT=i nt eger-vari abl e

returns the 1/O status after the statement executes. If the statement
executes successfully, i nt eger -vari abl e is set to zero. If an error occurs, it
is set to a positive integer that indicates which error occurred.

Description

The BACKSPACE statement causes the external file connected to uni t to be positioned just
before the preceding record of the file. The file must be connected for sequential access.

248 Chapter 10

HP Fortran statements
BACKSPACE

Examples

The following statement causes the file connected to unit 10 to be positioned just before the
preceding record:

BACKSPACE 10

The following statement causes the file connected to unit 17 to be positioned just before the
preceding record. If an error occurs during the execution of the statement, control passes to
the statement at label 99, and the error code is returned in i os:

BACKSPACE (17, ERR=99, | OSTAT=i 0s)
Related statements

ENDFI LE, GPEN, and REW ND

Related concepts

For information about 1/O concepts, see Chapter 8, “I/O and file handling,” on page 169, which
lists example programs that use 1/0O. For information about 1/O formatting, see Chapter 11,
“Intrinsic procedures,” on page 467.

Chapter 10 249

HP Fortran statements
BLOCK DATA

BLOCK DATA

Introduces a block data program unit.

Syntax

BLOCK DATA [bl ock- dat a- nane]

bl ock- dat a- nare is an optional name. If a name is given in the END BLOCK DATA statement
terminating a block data program unit, it must be the same as the
bl ock- dat a- name given in the BLOCK DATA statement introducing the
program unit.

Description

A block data program unit is used to give initial values to variables in a named common
blocks by means of DATA statements and must start with a BLOCK DATA statement. The block
data program unit is an obsolescent feature of Fortran 90 and is effectively superseded by the
module, as described in “Modules” on page 158.

As an extension, HP Fortran allows blank—or unnamed—common blocks to be initialized.

Examples

The following block data program unit gives initial values to variables in the common blocks
cbl and cb2. All variables in each common block are specified completely.

BLOCK DATA

REAL b(4) DOUBLE PRECI SI ON z(3)

COWLEX ¢

COWMON /cbl/c,a,b /cbh2/z,y

DATA b, z, ¢ /1.0, 1.2 ,2%1.3, 3*7.654321D0, (2.4,3.76)/
END

Related statements

COMMON, DATA, and END

Related concepts

The structure and syntax of the block data program unit is described in “Block data program
unit” on page 166.

250 Chapter 10

HP Fortran statements
BUFFER IN (extension)

BUFFER | N (extension)

Provided for compatibility with the BUFFER IN Cray statement.

NOTE Asynchronous 1/0 with the BUFFER IN statements is not supported. HP
Fortran 90 Draft supports these statements for synchronous 1/0 only.

Syntax

BUFFER I N (unit, node) (begin-loc, end-Ioc)

uni t is a unit identifier (integer expression).
node is ignored.

begi n-1 oc, end-1oc are symbolic names of the variables, arrays, or array elements that
mark the beginning and end locations of the BUFFER IN operation.
begin-loc and end-loc must be either elements of a single array (or
equivalenced to an array) or members of the same common block.

Description

The BUFFER IN statement is an HP Fortran extension that provides compatibility with the
Cray BUFFER IN feature. The statement causes data to be transferred while allowing any
subsequent statements to execute concurrently.

The BUFFER IN statement is provided as a porting aid for existing Cray code; it typically will
not produce superior performance compared to conventional Fortran 90 1/0O methods.

= Other Fortran 1/O statements (i.e., READ, WRITE, PRINT, ACCEPT, and TYPE) cannot
be used on the same unit as the BUFFER IN statement. Mixing the standard Fortran 90
1/0 operations with BUFFER IN on the same logical unit number can confuse the input
stream (READ) or corrupt the data file (WRITE).

< The BACKSPACE statement cannot be used with files that are capable of being
transferred by the BUFFER IN statement. Such files are referred to as pure-data
(unblocked) files.

Examples

The following program shows how to use the BUFFER IN and BUFFER OUT statements. The
program must be compiled with the +autodbl option.

Chapter 10 251

HP Fortran statements
BUFFER IN (extension)

PROGRAM buf f er edl oTest
! buffered i/o exanple: conpile wth +autodbl

I NTEGER a(10)

OPEN (UNIT = 7, NAME = "test.dat’, FORM = ' UNFORMATTED)

a = (/ (i,i=1,10) /) ! initialize the array A
BUFFER QUT (7, 0) (a, a(10)) I wite out Atwce

CALL unit (7))
BUFFER QUT (7, 0) (a, a(10))
CALL unit (7))
! now position the file 40 bytes (5 integer values) into the file
CALL setpos (7, 5)
! read the renminder of the 1st record, and half of the second
BUFFER IN (7, 0) (a, a(10))
VRI TE(6, *) a
CLCSE (7)
END PROGRAM buf f er edl oTest

Related statements

BUFFER QUT

252 Chapter 10

HP Fortran statements
BUFFER OUT (extension)

BUFFER QUT (extension)

Provided for compatibility with Cray BUFFER OUT statement.

NOTE Asynchronous 1/0 with the BUFFER OUT statements is not supported. HP
Fortran 90 Draft supports these statements for synchronous 1/0 only.

Syntax

BUFFER OQUT (unit, node) (begin-loc, end-loc)

uni t is a unit identifier (integer expression).
node is ignored.

begi n-1 oc, end-1oc are symbolic names of the variables, arrays, or array elements that
mark the beginning and end locations of the BUFFER IN operation.
begin-loc and end-loc must be either elements of a single array (or
equivalenced to an array) or members of the same common block.

Description

The BUFFER OUT statement is an HP Fortran extension that provides compatibility with
the Cray BUFFER OUT feature. The statement causes data to be transferred while allowing
any subsequent statements to execute concurrently.

The BUFFER OUT statement is provided as a porting aid for existing Cray code; it typically
will not produce noticeably superior performance compared to conventional Fortran 90 1/0
methods. In fact, the BUFFER OUT statement will always be slightly slower than
unformatted fixed record length 1/0.

= Other Fortran 1/O statements (for example, READ, WRITE, PRINT, ACCEPT, and TYPE)
cannot be used on the same unit as the BUFFER OUT statement. Mixing the standard
Fortran 90 1/O operations with BUFFER OUT on the same logical unit number can
confuse the input stream (READ) or corrupt the data file (WRITE).

< The BACKSPACE statement cannot be used with files that are capable of being
transferred by the BUFFER OUT statement. Such files are referred to as pure-data
(unblocked) files.

Examples

For an example of BUFFER IN, see “BUFFER IN (extension)” on page 251.

Chapter 10 253

HP Fortran statements
BUFFER OUT (extension)

Related statements

BUFFER I N

254 Chapter 10

HP Fortran statements
BYTE (extension)

BYTE (extension)

Declares entities of type integer.

Syntax

BYTE [[, attrib-list] ::] entity-list

attrib-list is a comma-separated list of one or more of the following attributes:

Table 10-3
ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON CPTI ONAL PUBLI C
EXTERNAL PARAMVETER SAVE
| NTENT PO NTER TARGET

Ifattrib-1ist is present, it must be followed by the double colon. For
information about individual attributes, see the corresponding statement in
this chapter.

entity-list is a list of entities, separated by commas. Each entity takes the form:
nane [(array-spec)] [= initialization-expr]
where:
name
is the name of a variable or function
array-spec
is a comma-separated list of dimension bounds
initialization-expr
is a integer constant integer expression. If i niti al i zati on-expr is

present, entity-1ist must be preceded by the double colon.

Description

The BYTE statement is an HP extension that is used to declare the properties of entities. The
entities can take values that are whole numbers and can be represented in one byte. It is
equivalent to the | NTEGER(Kl ND=1) statement.

Chapter 10 255

HP Fortran statements
BYTE (extension)

The BYTE statement is constrained by the rules for all type declaration statements, including
the requirement that it precede all executable statements. Note, however, that the BYTE
statement does not have a kind parameter.

Example

The following are valid declarations:

BYTE i, |
BYTE :: k
BYTE, PARAMETER :: |imt=120

| use an array constructor to initialize an array

BYTE, DI MENSION(4) :: bvec=(/1,2,3,4/)

! use slashes as initialization deliniters, an HP extension
BYTE b/ 12/, bb/27/ ! note, no double colon

Related statements

| NTEGER

Related concepts

For related information, see the following:

“Type declaration for intrinsic types” on page 27
= “Implicit typing” on page 31

= “Array declarations” on page 57

= “Array constructors” on page 73

< “Expressions” on page 83

256 Chapter 10

HP Fortran statements
CALL

CALL

Invokes a subroutine.

Syntax
CALL subr-nane[([subr-act-arg-spec-list])]
subr - name
is the name of the subroutine being invoked.
act ual -argurent -1 i st
is a comma-separated list of entities of the form:
[keywor d =] act ual - ar gunent
act ual - ar gunent
is one of the following:
e expression
e variable
e procedur e- namre
= *|abel or & abel
keywor d
is one of the dummy argument names of the subroutine being invoked. If

any keywor d is specified, the subroutine interface must be explicit.

Description

A CALL statement is used to invoke (call) a subroutine, and to specify actual arguments, if
any. Execution of the subroutine begins with the first executable statement. The following
sequence of events occurs when a CALL statement executes:

1. Actual arguments that are expressions are evaluated.
2. The actual arguments are associated with the corresponding dummy arguments.

3. Control transfers to the subroutine being called, and the subroutine executes.

Chapter 10 257

HP Fortran statements
CALL

4. Control returns from the subroutine, normally to the statement following the CALL
statement, or to a statement label indicated by an alternate return argument—*| abel or
& abel . (The & | abel form is provided as a compatibility extension and can be used in
fixed source form only.)

A subroutine can call itself, directly or indirectly; in this case the keyword RECURS| VE must be
specified in the SUBRQUTI NE statement of the subroutine definition.

The %W/AL and %REF built-in functions are provided as HP extensions. They can be used to
change argument-passing conventions calling a routine written in another language.

The only subroutine invocation other than by the CALL statement in Fortran 90 is through
“defined assignment”, where a defined type assignment operator that has been defined by
means of a subroutine is used.

Examples

! Interface for subroutine draw
| NTERFACE
SUBROUTI NE draw (x_start, y_start, x_end, y_end, form scale)
REAL x_start, y_start, x_end, y_end
CHARACTER (LEN = 6), OPTIONAL :: form
REAL, OPTIONAL :: scale
END SUBROUTI NE dr aw
END | NTERFACE

I References to draw

! argunents given by position; optional argument scale omtted
CALL draw (5., -4., 2., .6, "DASHED")

! argunents given by keyword; optional argument formomtted
CALL draw (scal e=.4, x_end=0., y_end=0., x_start=.5, y_start=.3)

Related statements

| NTERFACE and SUBRCUTI NE

Related concepts

For related information, see the following:

= “Recursive reference” on page 132

= “Referencing a subroutine” on page 130

< “Arguments” on page 139

e “%VAL and %REF built-in functions” on page 146

= “Defined assignment” on page 155

258 Chapter 10

HP Fortran statements
CASE

CASE

Marks start of statement block in a CASE construct.

Syntax
CASE (case-selector) [construct-nane]

case-sel ector is a comma-separated list of ranges of values that are candidates for
matching against the case index specified by the SELECT CASE statement.
Each item in the list can take one of the following forms:

e case-val ue

 |low

< :high

< | owhigh
 DEFAULT
where:

case-val ue, | ow, and hi gh
are scalar initialization expressions of type integer, character, or logical
DEFAULT

indicates the statement block to execute if none of the other CASE
statements in the CASE construct produces a match.

const r uct - nane is the name given to the CASE construct.

Description

The CASE statement is used in a CASE construct to mark the start of a statement block. The
CASE construct can consist of multiple blocks; at most, one is selected for execution. Selection
is determined by comparing the case index produced by the SELECT CASE statement to the
case-sel ect or in each CASE statement. If a match is found, the statement block under the
matching case- sel ect or executes. A match between the case index (c) and case- sel ect or
is determined for each form of case- sel ect or, as follows:

case-val ue For integer and character types, a match occurs if ¢ . EQ case-val ue.

For logical types, a match occurs if ¢ . EQV. case-val ue.

Chapter 10 259

HP Fortran statements

CASE

| ow: For integer and character types, a match occurs if ¢ . GE. | ow.

:hi gh For integer and character types, a match occurs if ¢ . LE. hi gh.

| ow: hi gh For integer and character types, a match occursifc . GE. | ow. AND. ¢ . LE
hi gh.

DEFAULT For integer, character, and logical types, a match occurs if no match is found

with any other case- sel ect or and DEFAULT is specified as a
case-sel ector.

If CASE DEFAULT is not present and no match is found with any of the other CASE statements,
none of the statement blocks within the CASE construct executes and execution resumes with
the first executable statement following the END SELECT statement.

At most only one DEFAULT selector can appear within a CASE construct.

Each CASE statement must specify a unique value or range of values within a particular CASE
construct. Only one match can occur, and only one statement block can execute.

All case-sel ect or s and the case index within a particular CASE construct must be of the
same type: integer, character, or logical. However, the lengths of character types can differ.

The colon forms—I ow: , : hi gh, or | ow hi gh—are not permitted for a logical type.

Although putting the CASE statements in order according to range may improve readability, it
is not necessary for correct or optimal execution of the CASE construct. In particular, DEFAULT
can appear anywhere among the CASE statements and need not be the last.

CASE statements inside a named CASE construct need not specify const r uct - nane; but if they
do, the name they specify must match that of the SELECT CASE.

A CASE statement can have an empty statement block.

Examples

The following example considers a person’s credits and debits and prints a message indicating
whether a resulting account balance will be overdrawn, empty, uncomfortably small, or
sufficient:

INTEGER :: credits, debits

SELECT CASE (credits - debits)
CASE (:-1)

PRI NT *, ' OVERDRAVWN

CALL TRANSFERFUNDS
CASE (0)

PRI NT *, ' NO MONEY LEFT'
CASE (1:50)

PRI NT *, ' BALANCE LOW

260 Chapter 10

HP Fortran statements
CASE

CASE (51:)
PRI NT *, ' BALANCE OKAY'
END SELECT

Related statements

SELECT CASE and END (construct)

Related concepts

The CASE construct is described in “CASE construct” on page 105.

Chapter 10 261

HP Fortran statements

CHARACTER

CHARACTER

Declares entities of type character.

Syntax

CHARACTER [char-selector] [[, attrib-list] ::] entity-list

char-sel ect or

specifies the length and kind of the character variable. It takes one of the
following forms:

e ([LEN-] Il en-spec[, KI ND=ki nd-paranj)
e (len-spec, [KI ND=]kind-paran

e (KI ND=ki nd- paranif, LEN-=l en-spec])

e *len-const [,]

e *(len-spec[) ,]

where ki nd- par am(if specified) must be 1, the default; | en- spec is either
an asterisk (*) or a specification expression; and | en- const is an integer
constant. In the last form, | en- par amis enclosed in parentheses, and the
optional comma may be included only if the double colon does not appear in
the type declaration statement. If | en- spec evaluates to a negative value, a
zero-length string is declared. If | en- spec is unspecified, the default is 1.

attrib-list is a list of one or more of the following attributes, separated by commas:
Table 10-4
ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON CPTI ONAL PUBLI C
EXTERNAL PARAVETER SAVE
| NTENT PO NTER TARGET
Ifattrib-1ist is present, it must be followed by the double colon. For
information about individual attributes, see the corresponding statement in
this chapter.
entity-list is a list of entities, separated by commas. Each entity takes the form:
nane[(ar r ay- spec)][*l en-spec][= initializati on-expr]
262 Chapter 10

HP Fortran statements
CHARACTER

where nane is the name of a variable or function, arr ay- spec is a
comma-separated list of dimension bounds, | en- spec is either an asterisk
(*) or a specification expression, and i ni ti al i zat i on- expr is a character
constant expression. If i ni tial i zati on- expr is present, entity-1i st
must be preceded by the double colon.

Description

The CHARACTER statement is used to declare the length and properties of character data. It is
constrained by the rules for all type declaration statements, including the requirement that it
precede all executable statements.

To indicate that the length of a character can vary, you may use an assumed character length
parameter by specifying an asterisk (*) for | en- par am The asterisk may be used only when
doing the following:

= Declaring the type of a function. The function must not be an internal or module function,
nor must it be array-valued, pointer-valued, or recursive.
= Declaring a dummy argument of a procedure.

< Declaring a named constant (see the PARAMETER statement).

Examples

The following are valid declarations:

CHARACTER c1, c2

CHARACTER(LEN=80) :: text(0:25)

CHARACTER(2, 1), PARAMETER :: limt=' 22

! initialize an array, using an array constructor
CHARACTER(4) :: response(3) = (/"Yes.", "No!!", "Huh?"/)

! use slashes as initialization deliniters, an HP extension
CHARACTER*10 c1/' Tom /,c2/'Jones'/ ! note, no double colon

The following are valid uses of the assumed length parameter:

CHARACTER(*) dummry_ar g_nane
CHARACTER(*), PARAMETER :: hello="H Sanf
CHARACTER(LEN=*), PARAMETER :: hello="H Sant

Assuming that c is an ordinary variable and not the dummy argument to a procedure, the
following declaration is an illegal use of the assumed length parameter:

CHARACTER*(*) ¢ ! illegal

Related concepts

For related information, see the following:

Chapter 10 263

HP Fortran statements

CHA

RACTER

“Type declaration for intrinsic types” on page 27
“Implicit typing” on page 31

“Character strings as automatic data objects” on page 39
“Array declarations” on page 57

“Array constructors” on page 73

“Expressions” on page 83

“LEN(STRING)” on page 544

264

Chapter 10

CLCSE

HP Fortran statements
CLOSE

Terminates file connection.

Syntax

CLCSE (io-specifier-list)

i o-specifier-list

[UNI T=]uni t

ERR=st nt - | abel

is a list of the following comma-separated 1/O specifiers:

specifies the unit connected to an external file. uni t must be a positive
integer-valued expression. If the optional keyword UN T= is omitted, uni t
must be the first item ini o-specifier-1list.

specifies the label of the executable statement to which control passes if an
error occurs during statement execution. If neither | OSTAT=or ERR=is
specified and an error occurs, the program aborts and a system error
message is issued. st nt - | abel must be in the same scoping unit as the
CLCBE statement with the ERR= specifier.

| OSTAT=i nteger-vari abl e

returns the 1/0O status after the statement executes. If the statement
executes successfully, i nt eger -vari abl e is set to zero. If an error occurs, it
is set to a positive integer that indicates which error occurred. If neither

| OSTAT= or ERR=is specified and an error occurs, the program aborts and a
system error message is issued.

STATUS=char act er - expr essi on

specifies the state of the file after it is closed. char act er - expr essi on can
be one of the following arguments:

' KEEP Preserve the file after it is closed (default).
' DELETE' Do not preserve the file after it is closed.

The STATUS= specifier is ignored if the file was opened as a scratch file. See
“OPEN” on page 376 for a description of the OPEN statement.

Chapter 10

265

HP Fortran statements
CLOSE

Description

The CLCSE statement closes the file whose unit number was obtained from an CPENstatement.
A CLCSE statement must contain a unit number and at most one each of the other 1/0
specifiers.

A CLCSE statement need not be in the same program unit as the OPEN statement that
connected the file to the specified unit. If a CLCSE statement specifies a unit that does not
exist or has no file connected to it, no action occurs.

Examples

The following examples illustrate different uses of the CLCSE statement. In the first example,
the CLCBE statement closes the file connected to unit 10; after it is closed, the file will continue
to exist, unless it was opened with the STATUS=' SCRATCH specifier:

CLCSE (10)

In the next example, after the file connected to unit 6 is closed, it will cease to exist:
CLOSE(UNI T=6, STATUS=' DELETE')

The following code produces the same results as the previous example:

CHARACTER(LEN=6) cst at
cstat="delete'
CLOSE(UNI T=6, STATUS=cst at)

The following example closes the file connected to unit 5. If an error occurs, control is
transferred to the executable statement labeled 100, and the error code is stored in the
variable i os:

CLOSE(5, | OSTAT=i os, ERR=100)
Related statements

CPEN

Related concepts

For information about 1/O concepts, see Chapter 8, “I/O and file handling,” on page 169, which
also lists example programs that use 1/0O.

266 Chapter 10

HP Fortran statements
COMMON

COMMON

Specifies common blocks.

Syntax
COMMON [/ [[commDn- bl ock-nane]]/] object-1ist
[,]1/[common-bl ock-nanme]/ object-list]...
conmmon- bl ock- name

is the name of a labeled common block.
obj ect-11i st

is a comma-separated list of scalar variables, arrays, records, and
derived-type objects. If an array is specified, it may be followed by an
explicit-shape specification expression.

Description

The COMMON statement defines one or more storage areas to be shared by different program
units. It also identifies the objects—that is, variables, arrays, records, and derived-type
objects—to be stored in those areas. Objects in common that are shared by different program
units are made accessible by storage association.

Each object following a common-block name is declared to be in that common block. If
/common- bl ock- name/ is omitted, all objects in the corresponding obj ect -1 i st are specified
to be in blank common. It is also possible to declare variables in blank common by specifying
two slashes without conmon- bl ock- name. Consider the following examples:

I Declare variables a, b, c¢c in blank comon.
COMWON a, b, c

! Declare pay and tine in blank conmon,
! and red in the naned common bl ock col or
COMWON pay, tinme, /color/red

! Variables al and a2 are in conmmon block a; array x and variable
! are in blank common; and variable d is in comon bl ock ¢
COWDON a/ al, a2,//x(10),y,/c/d

Any common block name or blank common specification can appear more than once in one or
more COMMON statements within the same program unit. The variable list following each
successive appearance of the same common block name is treated as a continuation of the list
for that common block name. For example, the following COMON statements:

Chapter 10 267

HP Fortran statements
COMMON

COMWON a, b,c /x/y,x,d [/wr
COWDON / cap/ hat, visor, //tax, /x/o,t

are equivalent to:

COMWON a, b, c,w, r, tax
COMWON / x/y,x,d, o,t
COWON / cap/ hat, vi sor

Unlike named common blocks, blank common can differ in size in different scoping units.
However, blank common cannot be initialized.

As an extension, HP Fortran saves all common blocks in static memory.

The following restrictions apply to the use of common blocks:

All common block names must be distinct from subprogram names.

The size of a named common block must be the same in all program units where it is
declared. Note, however, that the size of blank common can differ.

The following data items must not appear in a COWDON statement:
Dummy arguments in a subprogram

Functions, subroutines, or intrinsic functions

Pointees declared by Cray-style pointers

Variables accessible by use association

Automatic entities, including automatic character strings

I T WA N SR A

Allocatable arrays

Derived-type objects may appear in common if they have been defined with the SEQUENCE
attribute.

A variable can only appear in one COMWDON statement within a program unit.

Zero-sized common blocks are allowed. Zero-sized common blocks with the same name are
storage associated.

Array bounds in a COMDON statement must be constant specification expressions.

A pointer may appear in common if it has the same type, type parameter, and rank in
every instance of that common block.

Initializing common blocks

As an extension to the Standard, HP Fortran allows common blocks to be initialized outside of
a block data program unit; for example, in a subroutine. However, note that all data
initialization for a given common block must occur in the same compilation unit.

268

Chapter 10

HP Fortran statements
COMMON

HP Fortran also allows blank—or unnamed—common to be initialized.
Common block size

The size of a common block is determined by the number and type of the variables it contains.
In the following example, the common block ny_bl ock takes 20 bytes of storage: b uses 8 (2
bytes per element) and arr uses 12 (4 bytes per element):

| NTEGER(2) b(4)

| NTEGER(4) arr(3)

COMMON / cb/ b, arr

Data space within the common area for arrays b and ar r shown in this example is allocated as
follows:

Table 10-5
Bytes Common block variables
0,123 b(1), b(2)
4,5,6,7 b(3), b(4)
8,9, 10, 11 arr(1)
12,13, 14, 15 arr(2)
16,17, 18, 19 arr(3)

Allocation common block storage
Common block storage is allocated at link time. It is not local to any one program unit.

Each program unit that uses the common block must include a COMMON statement that
contains the block name, if a name was specified. Variables assigned to the common block by
the program unit need not correspond by name, type, or number of elements with those of any
other program unit. The only consideration is the size of the common blocks referenced by the
different program units. Correspondence between objects in different instances of the same
common block is established by storage association.

Note the following for HP Fortran: when types with different alignment restrictions are mixed
in a common block, the compiler may insert padding bytes as necessary.

Examples

The following example illustrates how the same common block can be declared in different
program units with different variables but the same size:

Chapter 10 269

HP Fortran statements
COMMON

! common declaration for programunit 1
INTEGER i, j, k
COWDN /my_bl ock/ i, j, k

! common declaration for programunit 2
I NTEGER n(3)
COMMON / my_bl ock/ n(3)

The variables i, j, and k in program unit 1 share the same storage with the array n in
program unit 2: i in program unit 1 matches up with n(1) in program unit 2, j with n(2),
and k with n(3).

Related statements

EQUI VALENCE

Related concepts

For information about data alignment, see Table 3-1 and “Alignment of derived-type objects”
on page 45.

270 Chapter 10

COVPLEX

HP Fortran statements
COMPLEX

Declares entities of type complex.

Syntax

COWPLEX [ki nd-spec] [[, attrib-list] ::] entity-1list

ki nd- spec is the kind type parameter that specifies the range and precision of the
entitiesinentity-1ist. ki nd- spec takes the form:
([KI'ND=] ki nd- par am
where ki nd- par amrepresents the kind of both the real and imaginary parts
of the complex number. It can be a named constant or a constant expression
that has the integer value of 4 or 8. The size of the default type is 4.
As an extension, ki nd- spec can take the form:
*| en- par am
where | en- par amis the integer 8 or 16 (default = 8), which represents the
size of the whole complex entity.
attrib-list is a list of one or more of the following attributes, separated by commas:
Table 10-6
ALLOCATABLE INTRINSI C PRI VATE
DI MENSI ON CPTI ONAL PUBLI C
EXTERNAL PARAMVETER SAVE
| NTENT PO NTER TARGET
Ifattrib-I1ist is present, it must be followed by the double colon. For
information about individual attributes, see the corresponding statement in
this chapter.
entity-list is a list of entities, separated by commas. Each entity takes the form:

nane [(array-spec)] [=initialization-expr]

Chapter 10

271

HP Fortran statements

COMPLEX
where nane is the name of a variable or function, arr ay- spec is a
comma-separated list of dimension bounds, and i ni ti al i zati on-expr is a
complex constant expression. If i niti al i zati on- expr is present,
entity-1ist mustbe preceded by the double colon.

Description

The COWLEX statement is used to declare the length and properties of data that are
approximations to the mathematical complex numbers. A complex number consists of a real
part and an imaginary part. A kind parameter (if specified) indicates the representation
method.

The COMPLEX statement is constrained by the rules for type declaration statements, including
the requirement that it precede all executable statements.

As a portability extension, HP Fortran allows the following syntax for specifying the length of
an entity:

nane [*len] [(array-spec)] [= initialization-expr]

If array- spec is specified, *| en may appear on either side of arr ay- spec. If nane appears
with *| en, it overrides the length specified by ki nd- spec.

Examples

The following are valid declarations:

COWLEX x, y
COVPLEX(KI ND=8) :: z
COVPLEX, PARAMETER :: t1(2)=(/(3.2, 0), (.04, -1.1)/)
! initialize an array, using an array constructor
COWLEX, DIMENSION(2) :: &
cvec=(/(2.294, 6.288E-2), (-1.0096E7, 0)/)
! use slashes as initialization delimters, an HP extension
COWVPLEX cx/ (2.294, 6.288E-2)/ ! note, no double colon
! the followi ng declarations are equival ent; the second uses the
I HP I ength specification extension
COMPLEX(KI ND = 8) x
COVPLEX(8) x*16

Related statements

DOUBLE COMPLEX

Related concepts
For related information, see the following:

= “Type declaration for intrinsic types” on page 27

272 Chapter 10

HP Fortran statements
COMPLEX

= “Implicit typing” on page 31

< “Array declarations” on page 57
= “Array constructors” on page 73
< “Expressions” on page 83

= “KIND(X)” on page 542

Chapter 10 273

HP Fortran statements
CONTAINS

CONTAI NS

Introduces an internal procedure or a module procedure.

Syntax

CONTAI NS

Description

The CONTAI NS statement introduces an internal procedure or a module procedure, separating
it from the program unit that contains it. The statement can be used in:

< A main program, external subprogram, or module subprogram; in each case, it precedes
one or more internal procedures.

< A module, where it precedes any module procedures.

When a CONTAI NS statement is present, at least one subprogram must follow it.

Examples

The first example illustrates CONTAI NS introducing an internal subroutine. It also illustrates
how the internal subroutine mechanism can provide an alternative to the FORTRAN 77
statement function mechanism.

PRI NT *, doubl e_real (6.6)

CONTAI NS
FUNCTI ON doubl e_real (x); REAL x
double_real = 2.0 * x
END FUNCTI ON
END

The next example illustrates a main program with an internal procedure part.

PROGRAM el ectric ! Program header
REAL current I Specification part
current = 100.5 | Execution part begins
CALL conpute_resistance(voltage, current, resistance)
CONTAI NS ! Internal procedure part
SUBROUTI NE conpute_resistance(v, i, r)
REAL i

r=v /i
END SUBROUTI NE
END PROGRAM el ectric

274 Chapter 10

HP Fortran statements
CONTAINS

The third example is of a module that contains a module subprogram, which in turn contains

an internal subprogram.

MODULE one
CONTAI NS
SUBROUTI NE t wo(x) I Modul e subprogram
CONTAI NS
LOG CAL FUNCTI ON t hree(y) Il nternal subprogram

END FUNCTI ON t hree
END SUBROUTI NE t wo
END MODULE one

Related statements

SUBRQUTI NE and FUNCTI ON

Related concepts
For related information, see the following:

< “Program units” on page 123
= ‘“Internal procedures” on page 135

= “Module program unit” on page 158

Chapter 10

275

HP Fortran statements
CONTINUE

GONTI NUE

Establishes reference point within a program unit.

Syntax

CONTI NUE

Description

The CONTI NUE statement has no effect on program execution. Control passes to the next
executable statement. The CONTI NUE statement is generally used to mark a place for a
statement label, especially when it occurs as the terminal statement of a FORTRAN 77-style

DO loop.

Examples

count =0

DO 20 i =1, 10
count = count +

20 CONTI NUE
PRI NT *, count

Related statements

DO

Related concepts
For related information, see the following:

< “DO construct” on page 107

< “Flow control statements” on page 113

276

Chapter 10

HP Fortran statements
CYCLE

CYCLE

Interrupts current iteration of a DO loop.

Syntax

CYCLE [do-construct-nane]
do- const r uct - nane

is the name of a DOconstruct that must contain this CYCLE statement.

Description

The CYCLE statement is used to control the execution of a DOloop. When it executes, it
interrupts a currently executing loop iteration and passes control to the next iteration,
making the appropriate adjustments to the loop index. It may be used with either the DO
construct or the FORTRAN 77-style DOloop.

A CYCLE statement belongs to a particular DOloop. If do- const r uct - name is not given, the
CYCLE statement resumes the immediately enclosing DOloop. If do- const r uct - nane is given,
the CYCLE statement resumes an enclosing named DO loop with the same name.

Examples

The following example uses the CYCLE statement to control a bubble sort:

LOG CAL :: swap
I NTEGER :: i, j
outer: DOi =1, n-1
swap = . FALSE.
inner: DOj =n, i+1, -1
IF (a(j) >= a(j-1)) CYCLE inner
swap . TRUE.
atmp = a(j)
a(j) = a(j-1)
a(j-1) = atnp
END DO i nner
I'F (.NOT. swap) EXIT outer
END DO out er

Related statements

DOand EXIT

Chapter 10 277

HP Fortran statements
CYCLE

Related concepts
For related information, see the following:

< “DO construct” on page 107

< “Flow control statements” on page 113

278

Chapter 10

DATA

HP Fortran statements
DATA

Initializes program variables.

Syntax

DATA var-listl / val-listl / [[,]var-list2 / val-list2/]...

var-1|i st is a comma-separated list of entities, including the following:

A variable name

An array name

An array triplet section; for example:
poi nts(1:10: 2)

An array element reference; for example:
scores(0)

A substring name; for example:
nanme(1: 10)

An implied-DOloop; for example:
((matrix(i,j),i=0,5),j=5,10)

An object of a derived type

A component of a derived-type object

The following cannot appear invar -1 i st:

Pointer-based variables

Records and record field references. However, you can initialize a
record’s fields in the record’s structure definition. See “RECORD
(extension)” on page 414.

Automatic objects, including automatic character strings
Dummy arguments

Allocatable arrays: that is, arrays declared with a specified rank, but no
specified bounds within each dimension

The result variable of a function

Objects made available by use or host association

Chapter 10

279

HP Fortran statements
DATA

e Procedure names

val -11i st is a list of constant values, separated by commas. Each constant in the list
represents a value to be assigned to the corresponding variable invar-1i st .
A constant value can be optionally repeated by preceding the constant with
a repetition factor. The syntax of a repeated constant is:

r *val

where r is a positive integer specifying the number of times that val , the
constant value, is to be specified.

Description

The DATA statement initializes variables local to a program unit before the program unit
begins execution. Initialization occurs as follows:

The var-list is expanded to form a sequence of scalar variables, and the val-list is expanded to
form a sequence of scalar constants. The number of items in each expanded sequence must be
the same, and there must be a one-to-one correspondence between the items in the two
expanded lists. The variables in the expanded sequence of var-list are initialized on the basis
of the correspondence.

If var-1i st contains an array name, the expanded sequence of constants must contain a
constant for every element in the array.

A zero-sized array or an implied-DOlist with an iteration count of zero in var-1i st
contributes no variables to the expanded sequence of variables. However, a zero-length
character variable does contribute a variable to the list.

If a constant is of any numeric or logical type, the corresponding variable can be of any
numeric type. If an object is of derived type, the corresponding constant must be of the same
type. If the type of the constant does not agree with the type of the variable, type conversion is
performed, as described in Table 5-5.

Variables can be initialized with binary, octal, or hexadecimal constants.

A variable or array element must not appear in a DATA statement more than once. If two
variables share the same storage space through an EQUI VALENCE statement, only one can
appear in a DATA statement. If a substring of a character variable or other array element
appears in a DATA statement, no overlapping substring (including the entire variable or array
element) can appear in any DATA statement.

The length of a character constant and the declared length of its corresponding character
variable need not be the same. If the constant is shorter than the variable, blank characters
are placed in the remaining positions. If the constant is longer than the variable, the constant
is truncated from the right until it is the same length as the variable

280 Chapter 10

HP Fortran statements
DATA

If a subscripted array element appears in var - 1 i st, then the subscript must be a
specification expression.

DATA statements can be interspersed among executable statements. However, they initialize
prior to runtime and, therefore, cannot be used as executable assignment statements.

Fortran 90 extensions

A variable of type other than integer may be initialized with a binary, octal, or hexadecimal
constant. The data type for a constant is determined from the type of the corresponding
variable. The size (in bytes) of the variable determines how many digits of the octal or
hexadecimal constant are used. If the constant lacks enough digits, the value is padded on the
left with zeros. If the constant has too many digits, it is truncated on the left.

An integer, binary, octal, or hexadecimal constant can initialize a character variable of length
one, as long as the value of the constant is in the range 0 to 255.

Examples

The following DATA statement initializes integer, logical, and character variables:

| NTEGER i

LOG CAL done

CHARACTER(LEN=5) pronpt

DATA i, done, pronpt/10, .FALSE., 'Next?'/

The next DATA statement specifies a repetition factor of 3 to assign the value of 2 to all three
elements of array i :

I NTEGER, DI MENSION(3) :: i
DATA i /3*2/

The next DATA statement uses two nested implied-DOloops to assign the literal value X to each
element of an array of 50 elements, k(10, 5) :

CHARACTER, DI MENSI ON(10,5) :: k
DATA ((k(i,j),i=1,10),]j=1,5)/50% X /

Related statements

BYTE, CHARACTER, COMPLEX, DOUBLE COVPLEX, DOUBLE PRECI S| ON, | NTEGER, LOd CAL, and
REAL

Related concepts
For related information, see the following:

= ‘“Initialization expressions” on page 91

= “Assignment statement” on page 95

Chapter 10 281

HP Fortran statements
DATA

< “Implied-DO loop” on page 191

282 Chapter 10

HP Fortran statements
DEALLOCATE

DEALLCCATE

Deallocates allocatable arrays and pointer targets.

Syntax
DEALLOCATE (al I oc-obj-list[, STAT=scalar-int-var])
al l oc-obj -11i st
is a comma-separated list of pointers or allocatable arrays.
STAT=scal ar-i nt -var

returns the error status after the statement executes. If given, it is set to a
positive value if an error is detected, and to zero otherwise. If there is no
status variable, the occurrence of an error causes the program to terminate.

Description

The DEALLOCATE statement deallocates allocatable arrays and pointer targets, making the
memory available for reuse. A specified allocatable array then becomes not allocated (as
reported by the ALLOCATED intrinsic), while a specified pointer becomes disassociated (as
reported by the ASSOCI ATED intrinsic).

An error occurs if an attempt is made to deallocate an allocatable array that is not currently
allocated or a pointer that is not associated. Errors in the operation of DEALLOCATE can be
reported by means of the optional STAT= specifier.

You can deallocate an allocatable array by specifying the name of the array with the
DEALLCOCATE statement. You cannot deallocate a pointer that points to an object that was not
allocated.

Some or all of a target associated with a pointer by means of the ALLOCATE statement can also
be associated subsequently with other pointers. However, it is not permitted to deallocate a
pointer that is not currently associated with the whole of an allocated target object.

Deallocation of a pointer target causes the association status of any other pointer associated
with all or part of the target to become undefined. When a pointer is deallocated, its
association status becomes disassociated, as if a NULLI FY statement had been executed.

Chapter 10 283

HP Fortran statements
DEALLOCATE

Examples

The following example declares a complex array with the PO NTER attribute. The ALLOCATE
statement allocates target space to the array at run-time; the amount is determined by the
input values to the READ statement. Later in the program, the DEALLOCATE statement will
recover the space.

COWPLEX, PO NTER :: hermitian (:, :)
READ *, m n
ALLCCATE (hermitian (m n))

DEALLOCATE (hermitian, STAT = ierr)

Related statements

ALLOCATABLE, ALLOCATE, NULLI FY, and PO NTER

Related concepts

For related information, see the following:
< “Pointers” on page 49

< ‘“Allocatable arrays” on page 62

= The descriptions of the ALLOCATED and ASSOO ATED intrinsics are described in
Chapter 11, “Intrinsic procedures,” on page 467.

284 Chapter 10

HP Fortran statements
DECODE (extension)

DECCDE (extension)

Inputs formatted data from internal storage.

Syntax
DECODE (count, format, unit, io-specifier-list) [in-list]
count

is an integer expression that specifies the number of characters (bytes) to
translate from character format to internal (binary) format. cnt must
precede f or mat .

f or mat

specifies the format specification for formatting the data. f or nat can be one
of the following:

= The label of a FORVAT statement containing the format specification.

= Aninteger variable that has been assigned the label of a FORVAT
statement.

< An embedded format specification.

f or mat must be the second of the parenthesized items, immediately
following count . Note that the keyword FMI= is not used.
uni t

is the internal storage designator. It must be a scalar variable or array
name. Assumed-size and adjustable-size arrays are not permitted. Note that
char - var - nane is not a unit number and that the keyword UNl T=is not
used.

uni t must be the third of the parenthesized items, immediately following
format.

i o-specifier-list

is a comma-separated list of 1/O specifiers. Note that the unit and format
specifiers are required; the other 1/O specifiers are optional. The following
1/0 specifiers can appear in i o-specifier-1ist:

ERR=st t - | abel

Chapter 10 285

HP Fortran statements
DECODE (extension)

specifies the label of the executable statement to which control passes if an
error occurs during statement execution.

| OSTAT=i nteger-vari abl e

returns the 1/O status after the statement executes. If the statement
successfully executes, i nt eger - var i abl e is set to zero. If an end-of-file
record is encountered without an error condition, it is set to a negative
integer. If an error occurs, i nt eger - vari abl e is set to a positive integer
that indicates which error occurred.

in-list

is a comma-separated list of data items for input. The data items can
include expressions and implied-DOlists.

Description

The DECCDE statement is an HP extension that is provided for compatibility with other
versions of Fortran. The internal-1/O capabilities of the standard READ statement provide
similar functionality and should be used to ensure portability.

The DECCDE statement translates formatted character data into its binary (internal)
representation.

Examples

The following example program illustrates the DECODE statement:

PROGRAM decode_exanpl e
CHARACTER(LEN=20) :: buf
INTEGER i, j, k
buf = 'XX1234 45 - 12XXXXXX'
DECODE (15,'(2X,314,1X)', buf) i, j, k
! The equival ent READ statement is:
I READ (buf, '(2X,314,1X') i, j, k
PRINT *, i, j, k
END PROGRAM decode_exanpl e

When compiled and executed, this program produces the following output:
1234 45 -12

Related statements

ENCCDE and READ

286 Chapter 10

Related concepts

For related information, see the following:

< ‘“Internal files” on page 172

= “Performing I/O on internal files” on page 175
< “Implied-DO loop” on page 191

< “Embedded format specification” on page 230

HP Fortran statements
DECODE (extension)

Chapter 10

287

HP Fortran statements
DIMENSION (statement and attribute)

D MENSI ON (statement and attribute)

Declares a variable to be an array.

Syntax

A type declaration statement with the DI MENSI ON attribute is:
type, DI MENSION (array-spec) [[, attrib-list]::] entity-list
type

is a valid type specification (I NTEGER REAL, LOd CAL, CHARACTER, TYPE(
t ype- nanme), etc.).

array- spec
is one of the following:
< explicit-shape-spec-1ist
< assuned-shape- spec-1i st
e deferred-shape-spec-1i st
= assuned-si ze-spec
explicit-shape- spec
is
[l ower - bound :] upper-bound
| ower - bound, upper - bound
are specification expressions.
assuned- shape- spec
is
[l ower-bound] :
def er r ed- shape- spec

is

assuned- si ze- spec

is

288 Chapter 10

HP Fortran statements
DIMENSION (statement and attribute)

[explicit-shape-spec-list ,] [|lower-bound :] *

That is, assuned- si ze- spec is expl i ci t - shape- spec-1i st with the final
upper bound specified as *.

attrib-list
is a comma-separated list of attributes including DI MENSI ON and optionally
those attributes compatible with it, namely:
Table 10-7
ALLOCATABLE PARAMVETER PUBLI C
I NTENT PO NTER SAVE
CPTI ONAL PRI VATE TARGET
entity-list

is
obj ect - nane[(array- spec)]

If (array-spec) is present, it overrides the (array- spec) given with the
DI MENSI ONkeyword inattri but e-1i st; see the example below.

The syntax of the DI MENSI ON statement is:

DIMENSION [::] array-nanme (array-spec)
[, array-nane (array-spec)]...

Description

An array consists of a set of objects called the array elements, all of the same type and type
parameters, arranged in a pattern involving columns, and possibly rows, planes, and higher
dimensioned configurations. The type of the array elements may be intrinsic or user-defined.
In HP Fortran, an array may have up to seven dimensions. The number of dimensions is
called the rank of the array and is fixed when the array is declared. Each dimension has an
extent that is the size in that dimension (upper bound minus lower bound plus one). The size
of an array is the product of its extents. The shape of an array is the vector of its extents in
each dimension. Two arrays that have the same shape are said to be conformable.

It is not necessary for the keyword DI MENSI ON to appear in the declaration of a variable to
give it the DI MENSI ONattribute. This attribute, as well as the rank, and possibly the extents
and the bounds of an array, may be specified in the entity declaration part of any of the
following statements:

= type declaration

Chapter 10 289

HP Fortran statements
DIMENSION (statement and attribute)

= DI MENSION

= ALLOCATABLE
- COWN

= PANIER

= TARCGET

The ar r ay- spec (see Syntax, above) determines the category of the array being declared.
“Array declarations” on page 57, describes these categories as:

= Explicit-shape array
= Assumed-shape array
= Assumed-size array

= Deferred-shape array

Examples

! These 2 declaration statenents are equival ent.
REAL a (20,2), b (20,2), c (20,2)

REAL, DI MENSION (20,2) :: a, b, ¢

DI MENSI ON x(100), y(100) ! x and y are 1-di mensional

! |l ower bounds specified for jj (if not given, they default to 1)
INTEGER jj (0:100, -1:1)

' | is a 4-dinensional, allocatable, deferred shape |ogical array

LOG CAL |

ALLOCATABLE | (:,:,:,:)

COWPLEX s ! s has explicit shape and
TARGET :: s(10,2) ! the target attribute

DOUBLE PRECI SI ON d
I d has 5 dinensions and is declared in conmon
COMMON /stuff/ d(2,3,5,9,8)

! arrl is an adjustable array, arr2 an automatic array
SUBROUTI NE cal c(arrl, ibl, ib2)
REAL, DI MENSION (ibl, ib2) :: arrl, arr2

! arr3 is a deferred-shape array with the pointer attribute
REAL, PO NTER, DIMENSION(:,:) :: arr3

! all three arrays have explicit shape; array specifier (10, 10)

290 Chapter 10

HP Fortran statements
DIMENSION (statement and attribute)

! overrides specifier (10,20) for tb declaration only
LOG CAL, DI MENSI ON(10,20) :: ta, tb(10,10), tc

Related statements

ALLCOCATABLE, COWDN, PO NTER, TARGET, TYPE, and the type declaration statements

Related concepts
For related information, see the following:

= “Type declaration for intrinsic types” on page 27

= Chapter 11, “Intrinsic procedures,” on page 467

= The following array-inquiry intrinsics described in Chapter 11:
a LBOUND

RESHAPE

SHAPE

Sl ZE

a
a
a
0 UBCQUND

Chapter 10 291

HP Fortran statements

DO

DO

Controls execution of DO loop.

Syntax

[construct-nanme :] DO [label] [I|oop-control]

const r uct - name is the name given to the DOconstruct. If constr uct - nane is specified, an

| abel

| oop-control

Description

END DOstatement must appear at the end of the DOconstruct and have the
same const r uct - nare.

is the label of an executable statement that terminates the DOloop. If you
specify | abel , you can terminate the DOloop either with an END DO
statement or with an executable statement; the terminating statement must
include | abel . If you do not specify | abel , you must terminate the DOloop
with the END DOstatement.

is information used by the DOstatement to control the loop. It can take one
of the following forms:

e index =init, limt][, step]
e \VWH LE (! ogi cal - expressi on)
< | oop-control isomitted

In the first form, i ndex is a scalar variable of type integer or real;init,

i mt,and step are scalar expressions of type integer or real. In the second
form, | ogi cal - expressi on is a scalar logical expression. In the third form,
| oop-control is omitted. If you use the second or third form, you must
terminate the DOloop with the END DOstatement.

The syntax of the DOstatement allows for the following types of DOloops:

= Counter-controlled loop: a loop count is calculated that controls the number of times the
block is executed, unless a prior exit occurs. A loop variable is incremented or
decremented after each execution.

< While loop: a condition (I ogi cal - expr essi on) is tested before each execution of the block;
when it is false, execution ceases. An exit may occur at any time.

= Infinite loop: there is no | oop- cont r ol ; repeated execution of the block ceases only when
an exit from the loop occurs.

292

Chapter 10

HP Fortran statements
DO

When | abel is present in the DOstatement, it specifies the label of the terminating statement
of the DOloop. The terminating statement cannot be any of the following statements:

e (O TO(unconditional)

e (@ TO(assigned)

e | F (arithmetic)

= | F (block)

e ELSEOrELSE IF

e END END | F, END SELECT, or END WHERE

= RETURN
- SICP
- DO

= Any nonexecutable statement
Note, however, that the terminating statement can be an | F (logical) or an END DOstatement.

To maintain compatibility with some older versions of Fortran, you can use the +onetrip
compile-line option to ensure that every counter-controlled DOloop in the program executes at
least once.

Extended-range DO loops

Extended-range DO loops—a compatibility extension—allow a program to transfer control
outside the DOloop’s range and then back into the DOloop. Extended-range DOloops work as
follows: if a control statement inside a DOloop transfers control to a statement outside the DO
loop, then any subsequent statement can transfer control back into the body of the DOloop.

For example, in the following code, the range of the DOloop is extended to include the
statement GOTO 20, which transfers control back to the body of the DOloop:
DOS50 i =1, 10

20 n=n+1
IF (n > 10) GOTO 60

50 CONTI NUE ! nornally, the range ends here
60 n =n + 100 ! this is the extended range,

GOTO 20 I which extends down to this line
Examples

The following DOconstruct displays the integers 1 through 10:

Chapter 10 293

HP Fortran statements
DO

DOi =1, 10
WRITE (*, *) i
END DO
The next example is a FORTRAN 77-style DOloop that does the same as the preceding
example:

DO50 i =1, 10
VWRITE (*, *) i
50 CONTI NUE

The following DOconstruct iterates 5 times, decrementing the loop index from 10 to 2:

DOi =10, 1, -2
END DO

The following is an example of a DO WH LE loop:

DO WHI LE (sum < 100. 0)
sum = sum + get _num(unit)
END DO

The following example illustrates the use of the EXI T statement to exit from a nested DOloop.
The loops are named to control which loop is exited. Note that | oop- cont r ol is missing from
both the inner and outer loops, which therefore can be exited only by means of one of the EXI T
statements:

out er: DO
READ *, val
new val =0
i nner: DO
new val = new_val + proc_val (val)
IF (new_val >= nax_val) EXIT inner
IF (new_val == 0) EXIT outer
END DO i nner
END DO out er

The next DOconstruct never executes:

DOi =10, 1
END DO

Related statements

QONTI NUE, CYCLE, END (construct), and EXI T

Related concepts
For related information, see the following:

< “DO construct” on page 107

294 Chapter 10

HP Fortran statements
DO

= “EXIT statement” on page 115

Chapter 10 295

HP Fortran statements
DOUBLE COMPLEX (extension)

DOUBLE COMPLEX (extension)

Declares entities of type double complex.

Syntax
DOUBLE COWPLEX [[, attrib-list] ::] entity-Ilist
attrib-list is a list of one or more of the following attributes, separated by commas:
Table 10-8
ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON CPTI ONAL PUBLI C
EXTERNAL PARAVETER SAVE
| NTENT PO NTER TARGET

Ifattrib-1ist is present, it must be followed by the double colon. For
information about individual attributes, see the corresponding statement in
this chapter.

entity-list is a list of entities, separated by commas. Each entity takes the form:
nane [(array-spec)] [= initialization-expr]
where:
name
is the name of a variable or function
array- spec
is a comma-separated list of dimension bounds
initialization-expr
is a complex constant expression. If i ni tialization-expr is present,

entity-1list mustbe preceded by the double colon.

Description

The DOUBLE COVPLEX statement is an HP Fortran extension that declares the properties of
complex data that has greater precision than data of default type complex. The two parts of a
double complex value are each a double precision value.

296 Chapter 10

HP Fortran statements
DOUBLE COMPLEX (extension)

The DOUBLE COVPLEX statement is constrained by the rules for type declaration statements,
including the requirement that it precede all executable statements. Note however, that the
DOUBLE COWPLEX statement does not have a kind parameter.

Examples

The following are valid declarations:

DOUBLE COWPLEX x, vy
DOUBLE COMPLEX, PARAMETER :: t1(2)=(/(1.2, 0), (-1.01, 0.0009)/)
! use an array constructor to initialize a double conmplex array
DOUBLE COMPLEX, DI MENSION(2) :: dc_vec = &

(/(2.294D-8, 6.288D-4), (-4.817D4, 0)/)
! use slashes as initialization deliniters, an HP extension
DOUBLE COWMPLEX dcx/(2.294D-8, 6.288D-4)/ ! note, no double colon

Related statements

COVPLEX

Related concepts

For related information, see the following:

“Type declaration for intrinsic types” on page 27
= “Implicit typing” on page 31

= “Array declarations” on page 57

= “Array constructors” on page 73

= “Expressions” on page 83

Chapter 10 297

HP Fortran statements
DOUBLE PRECISION

DOUBLE PREC SI ON

Declares entities of type double precision.

Syntax
DOUBLE PRECISION [[, attrib-list] ::] entity-list
attrib-list
is a list of one or more of the following attributes, separated by commas:
Table 10-9
ALLOCATABLE INTRINSI C PRI VATE
D MENSI ON CPTI ONAL PUBLI C
EXTERNAL PARAMVETER SAVE
| NTENT PO NTER TARGET
Ifattrib-1ist is present, it must be followed by the double colon. For
information about individual attributes, see the corresponding statement in
this chapter.
entity-list
is a list of entities, separated by commas. Each entity takes the form:
nane [(array-spec)] [= initialization-expr]
where:
name
is the name of a variable or function
array-spec
is a comma-separated list of dimension bounds
initialization-expr
is a real constant expression that can be evaluated at compile time. If
initialization-expr ispresent,entity-I|ist mustbe preceded by the
double colon.
298 Chapter 10

HP Fortran statements
DOUBLE PRECISION

Description

The DOUBLE PREC SI ON statement is used to declare the properties of real data that has
greater precision than data of default type real. By default, the DOUBLE PRECI SI ON statement
is equivalent to the REAL(KI ND=8) statement.

The DOUBLE PREQ Sl ONstatement is constrained by the rules for type declaration statements,
including the requirement that it precede all executable statements. Note, however, that the
DOUBLE PRECQ S| ONstatement does not have a kind parameter.

Examples

The following are valid declarations:

DOUBLE PRECI SI ON x, Yy
DOUBLE PRECI SI ON, PARAMETER :: pi =3.1415927D0
| use an array constructor to initialize a double precision array
DOUBLE PRECI SI ON, DI MENSION(4) :: dp_vec= &
(/4.7D0, 5.2D0, 3.3D0, 2.9D0/)
! use slashes as initialization delimters, an HP extension
DOUBLE PRECI SI ON dpl/5.28D0/, dp2/72.3D0/ ! note, no double colon

Related statements

REAL

Related concepts

For related information, see the following:

“Type declaration for intrinsic types” on page 27
= “Implicit typing” on page 31

= “Array declarations” on page 57

= “Array constructors” on page 73

= “Expressions” on page 83

Chapter 10 299

HP Fortran statements
ELSE

ELSE

Provides a default path of execution for IF construct.

Syntax

ELSE [construct-nane]

const r uct - name is the name given to the | F construct. If constr uct - nane is specified, the
same name must also appear in the | F statement and in the END | F

statement.

Description

The ELSE statement is used in an | F construct to provide a statement block for execution if
none of the logical expressions in the | Fand ELSE | F statements in the | F construct

evaluates to true.

An | F construct may contain (at most) one ELSE statement. If present, it must follow all ELSE

| F statements within the | F construct.

Examples

IF (a > b) THEN
mx = a

ELSE | F (b > max) THEN
max = b

ELSE

PRI NT *, 'The two nunbers are equal .

STOP ' Done
END | F

Related statements

ELSE | F, END | F, and | F (construct)

Related concepts

See “IF construct” on page 111.

300

Chapter 10

HP Fortran statements
ELSE IF

ELSE | F

Provides alternate path of execution for IF construct.

Syntax
ELSE I F (I ogical -expression) THEN [construct-nang]
| ogi cal - expressi on

is a scalar logical expression.
const r uct - name

is the name given to the | F construct. If const r uct - nane is specified, the
same name must also appear in the | F statement and in the END | F
statement.

Description

The ELSE | F statement executes the immediately following statement block, if the following
conditions are met:

= None of the logical expressions in the | F statement and any previous ELSE | F statements
evaluates to true.

= | ogi cal - expr essi on evaluates to true.

Branching to an ELSE | F statement is illegal.

Examples

I NTEGER t enperature
| NTEGER, PARAMETER :: hot=1, col d=2
IF (tenperature == hot) THEN

PRINT *, 'Turn down your thernostat.'
ELSE | F (tenperature == col d) THEN

PRINT *, 'Turn up your thernostat.'
ELSE

PRI NT *, 'Your thernostat is working OK.'
END | F

Related statements

ELSE, END | F, and | F (construct)

Chapter 10 301

HP Fortran statements
ELSE IF

Related concepts

See “IF construct” on page 111.

302 Chapter 10

HP Fortran statements
ELSEWHERE

EL SEWHERE

Introduces optional ELSEWHERE block within a WHERE construct.

Syntax

EL SEWHERE

Description

The ELSEWHERE statement introduces an ELSEWHERE block, which is an optional component of
the WHERE construct. The ELSEWHERE statement executes on the complement of the WHERE
condition. For additional information, see “WHERE (statement and construct)” on page 458.

Examples

WHERE(b .GE. 0.0)
! Assign to sqrt_b only where logical array b is 0 or positive
sqrt_b = SQRT(b)

EL SEWHERE
sqrt_b = 0.0 I Assign sqrt_b where b is negative

END WHERE

Related statements

WHERE and END (construct)

Related concepts

For information about the WHERE construct, see “Masked array assignment” on page 99.

Chapter 10 303

HP Fortran statements
ENCODE (extension)

ENCCDE (extension)

Outputs formatted data to internal storage.

Syntax
ENCODE (count, format, unit, io-specifier-list) [out-list]
count

is an integer expression that specifies the number of characters (bytes) to
translate from character format to internal (binary) format. count must
precede f or mat .

f or mat

specifies the format specification for formatting the data. f or nat can be one
of the following:

= The label of a FORVAT statement containing the format specification.

= An integer variable that has been assigned the label of a FORVAT
statement.

= An embedded format specification. For information about embedded
format specifications, see “Embedded format specification” on page 230.

f or mat must be the second of the parenthesized items, immediately
following count . Note that the keyword FMI= is not used.
uni t

is the internal storage designator. It must be a scalar variable or array
name. Assumed-size and adjustable-size arrays are not permitted. Note that
char - var - nane is not a unit number and that the keyword UNl T=is not
used.

uni t must be the third of the parenthesized items, immediately following
format.

i o-specifier-list

is a comma-separated list of 1/0O specifiers. Note that the unit and format
specifiers are required; the other 1/O specifiers are optional. The following
1/0O specifiers can appear in i o-speci fier-1ist:

ERR=st t - | abel

304 Chapter 10

HP Fortran statements
ENCODE (extension)

specifies the label of the executable statement to which control passes if an
error occurs during statement execution.

| OSTAT=i nteger-vari abl e

returns the 1/O status after the statement executes. If the statement
successfully executes, i nt eger - var i abl e is set to zero. If an end-of-file
record is encountered without an error condition, it is set to a negative
integer. If an error occurs, i nt eger - vari abl e is set to a positive integer
that indicates which error occurred.

out-1ist
is a comma-separated list of data items for output. The data items can
include expressions and implied-DOlists (see “Implied-DO loop” on
page 191).

Description

The ENCCDE statement is a nonstandard feature of HP Fortran and is provided for
compatibility with other versions of Fortran. The

internal-1/O capabilities of the standard WR TE statement provide similar functionality and
should be used to ensure portability.

The ENCCDE statement translates data from its internal (binary) representation into
formatted character data.

Examples

The following example program uses the ENOCCDE statement to write to an internal file:

PROGRAM encode_exanpl e
CHARACTER(LEN=20) :: buf
ENCODE (LEN(buf), '(2X, 314, 1X)', buf) 1234, 45, -12
PRI NT *, buf

END PROGRAM encode_exanpl e

When compiled and executed, this program outputs the following (where b represents a blank
character):

bb1234bb45b- 12bbbbb

Related statements

DECCDE and VR TE

Related concepts

For related information, see the following:

Chapter 10 305

HP Fortran statements
ENCODE (extension)

< ‘“Internal files” on page 172
= “Performing I/O on internal files” on page 175
< “Implied-DO loop” on page 191

< “Embedded format specification” on page 230

306 Chapter 10

HP Fortran statements
END

END

Marks the end of a program unit or procedure.

Syntax
END [keyword [nane]]

keywor d is one of the keywords BLOCK DATA, FUNCTI ON, MCDULE, PROGRAM or
SUBRQUTI NE. When the END statement is used for an internal procedure or
module procedure, the FUNCTI ON or SUBRCUTI NE keyword is required.

nane is the name given to the program unit. If nane is specified, keywor d must
also be specified.

Description

The END statement is the last statement of a program unit (that is, a main program, function,
subroutine, module, or block data subprogram), an internal procedure, or a module procedure.
It is the only statement that is required within a program unit.

Examples

The following example illustrates the use of the END statement to indicate the end of a main
program. Notice that, even though the main program unit is given a name, the END PROGRAM
statement does not require it:

PROGRAM nwi n_pr og
END PROGRAM
In the next example, the END statement marks the end of an internal function and must

therefore specify the keyword FUNCTI ON However, it is not required that the name, get _ar gs,
be also specified:

FUNCTI ON get _args (argl, arg2)
END FUNCTI ON get _args

The following example uses the ENDstatement to indicate the end of a block data subprogram.
Because the END statement specifies the program unit name, it must also specify the keyword
BLOCK DATA:

BLOCK DATA i n_dat a

END BLOCK DATA mai n_dat a

Chapter 10 307

HP Fortran statements
END

Related statements

BLOCK DATA, FUNCTI ON, MCDULE, PROGRAM and SUBROUTI NE

Related concepts

For information about program units, see “Program units” on page 123.

308 Chapter 10

HP Fortran statements
END (construct)

END (construct)

Terminates a CASE, DO, IF, or WHERE construct.

Syntax
END construct-keyword [construct-nane]
const r uct - keywor d
is one of the keywords DQ | F, SELECT CASE, or WHERE.
const r uct - namre

is the name given to the construct terminated by this statement.

Description

The END (construct) statement terminates a CASE, DO, | F, or WHERE construct. If

const r uct - nane appears in the statement that introduces the construct, the same name
must also appear in the END statement. If no const r uct - narre is given in the introducing
statement, none must appear in the END statement.

Examples

For examples of the END (construct) statement, see the descriptions of the DO, | F, SELECT, or
WHERE statements throughout this chapter.

Related statements

DO | F, SELECT CASE, and WHERE

Related concepts
For related information, see the following:

= “Masked array assignment” on page 99

« “Control constructs and statement blocks” on page 105

Chapter 10 309

HP Fortran statements
END (structure definition, extension)

END (structure definition, extension)

Terminates the definition of a structure or union.

Syntax

END r ecor d- keywor d

recor d- keywor d is one of the keywords MAP, STRUCTURE, or UNI ON.
Description

The END (record definition) statement is an HP Fortran extension that is used to delimit the
definition of a structure (END STRUCTURE) or a union within a structure (END UNl ONand END
MAP). For more information, refer to “STRUCTURE (extension)” on page 431.

Related statements

| NTERFACE, STRUCTURE, and UNI ON

310 Chapter 10

HP Fortran statements
END INTERFACE

END | NTERFACE

Terminates a procedure interface block.

Syntax

END | NTERFACE

Description

In Fortran 90, external procedures may be given explicit interfaces by means of procedure
interface blocks. Such a block is always terminated by the END | NTERFACE statement.

Examples

The following makes the interface of function r _ave explicit, giving it the generic name
g_ave.

I NTERFACE g_ave
FUNCTI ON r _ave(x)
! get the size of array x fromnodul e ave_stuff
USE ave_stuff, ONLY: n
REAL r_ave, x(n)
END FUNCTI ON r _ave
END | NTERFACE

Related statements

| NTERFACE

Related concepts

Interface blocks are described in “Interface blocks” on page 150.

Chapter 10 311

HP Fortran statements
END TYPE

END TYPE

Terminates a derived type definition.

Syntax
END TYPE [type- nane]

t ype- nane is the name of the derived type being defined. t ype- nane is optional. If
given, it must be the same as the t ype- nanme specified in the TYPE statement
introducing the derived type definition.

Description

The END TYPE statement terminates the definition of a derived type.

Examples

The following is a simple example of a derived type with two components, hi gh and | ow.

TYPE t enp_range
I NTEGER hi gh, | ow
END TYPE tenp_range

Related statements

TYPE (definition)

Related concepts

Derived types are described in “Derived types” on page 41.

312 Chapter 10

HP Fortran statements
ENDFILE

ENDFI LE

Werites end-of-file record to file.

Syntax
The syntax of the ENDFI LE statement can take one of the following forms:
= Short form:
ENDFI LE i nt eger - expr essi on
= Long form:
ENDFI LE (i o-specifier-list)
i nt eger - expr essi on
is the number of the unit connected to a sequential file.
i o-specifier-list
is a list of the following comma-separated 1/O specifiers:
[UNIT=] uni t

specifies the unit connected to a device or external file opened for sequential
access. uni t must be an integer expression that evaluates to a nonnegative
number. If the optional keyword UNI T=is omitted, uni t must be the first
iteminio-specifier-list.

ERR=st nt - | abel

specifies the label of the executable statement to which control passes if an
error occurs during statement execution.

| STAT=i nteger-vari abl e

returns the 1/O status after the statement executes. If the statement
executes successfully, i nt eger -vari abl e is set to zero. If an error occurs, it
is set to a positive integer that indicates which error occurred.

Description

The ENDFI LE statement writes an end-of-file record to the file or device connected to the
specified unit at the current position and positions the file after the end-of-file record.

Chapter 10 313

HP Fortran statements
ENDFILE

An end-of-file record can occur only as the last record of a disk file. After execution of an
ENDFI LE statement, the file is positioned beyond the end-of-file record; any records beyond the
current position are lost—that is, the file is truncated.

Some devices (for example, magnetic tape units) can have multiple end-of-file records, with or
without intervening data records.

An end-of-file record can be written to a sequential file only.

Examples
The following statement writes an end-of-file record to the file connected to unit 10:
ENDFI LE 10

The following statement writes an end-of-file record to the file connected to unit 17. If an error
occurs during the execution of the statement, control passes to the statement at label 99, and
the error code is returned in i os:

I NTEGER :: ios
ENDFI LE (17, ERR=99, | OSTAT=i os)
Related statements

BACKSPACE, CPEN, and REW ND

Related concepts

For information about 1/O concepts, see Chapter 8, “I/O and file handling,” on page 169, which
also lists example programs that use 1/0O. For information about 1/0O formatting, see
Chapter 9, “I/O formatting,” on page 201.

314 Chapter 10

HP Fortran statements

ENTRY
ENTRY
Provides an additional external or module subprogram entry point.
Syntax
ENTRY entry-nane [([dumy-arg-list])
[RESULT (result-nane)]]
ent ry- nane is the name of the entry point (subroutine or function) defined by the ENTRY

statement. It must differ from the original subroutine or function name, and
from other ENTRY statement ent r y- nanes specified in the subprogram in
which it appears.

dummy-ar g-1i st is a comma-separated list of dummy arguments for the subroutine or
function defined by the ENTRY statement. The same rules and restrictions
apply as for subroutine dummy arguments or function dummy arguments,
as appropriate.

resul t - name is the result variable for a function defined by an ENTRY statement.
resul t - narre is optional; if not specified, the result variable is ent ry- nane.

The RESULT (resul t - nane) clause can only be specified when the ENTRY
statement is included in a function subprogram.

Description

When an ENTRY statement appears in a function subprogram, it effectively provides an
additional FUNCTI ONstatement in the subprogram: execution starts from the ENTRY statement
when the ent r y- nane is invoked (by being used). Similarly, an ENTRY statement in a
subroutine subprogram effectively provides an additional SUBRQUTI NE statement in the
subprogram, and execution starts from the ENTRY statement when the ent ry- nane is called.

The following restrictions apply to the ENTRY statement:

= The ENTRY statement can appear in an external subprogram or a module subprogram; it
may not appear in an internal subprogram. If the ENTRY statement appears in a function
subprogram, it defines an additional function; if it appears in a subroutine subprogram, it
defines an additional subroutine. The entry points thus defined can be referenced in the
same way as for a normal function name or subroutine name, as appropriate. Execution
starts at the ENTRY statement, and continues in the normal manner, ignoring any ENTRY
statements subsequently encountered, until a RETURN statement or the end of the
procedure is reached.

Chapter 10 315

HP Fortran statements
ENTRY

The RESULT (resul t - name) clause can only be specified when the ENTRY statement is
included in a function subprogram. If specified, r esul t - nane must differ from

ent ry- nane, and ent r y- nane must not appear in any specification statement in the
scoping unit of the function subprogram; ent r y- name assumes all the attributes of
resul t - name. The RESULT clause in an ENTRY statement has the same syntax and
semantics as in a FUNCTI ON statement.

If the ENTRY statement appears in a function, the result variable is that specified in the
FUNCTI ON statement; if none is specified, the result variable is ent ry- nane.

If the characteristics of the result variable specified in the ENTRY statement are the same
as those of the result variable specified in the FUNCTI ON statement, then the result
variable is the same, even though the names are different. If the characteristics are
different, then the result variables must be:

— Nonpointer scalars of intrinsic type
— Storage associated

— Ifany is of character type, they must all be of character type and must all have the
same length. If any is of noncharacter type, they must all be of noncharacter type.

The result variable may not appear in a COWDON, DATA, or EQU VALENCE statement. Also,
the result variable may not have the ALLOCATABLE, | NTENT, OPTI ONAL, PARAMETER, or
SAVE attribute.

If RECURSI VE is specified on the FUNCTI ONstatement at the start of a function
subprogram, and RESULT is specified on an ENTRY statement within the subprogram, then
the interface of the function defined by the ENTRY statement is explicit within the function
subprogram; the function can thus be invoked recursively. (Note that the keyword
RECURSI VE is not given on the ENTRY statement, but only on the FUNCTI ON statement.)

If RECURSI VE is specified on the SUBRQUTI NE statement at the start of a subroutine
subprogram, the interface of the subroutine defined by an ENTRY statement within the
subprogram is explicit within the subprogram; the subroutine can thus be called
recursively.

A dummy argument in an ENTRY statement must not appear in an executable statement
preceding the ENTRY statement, unless it also appears in a FUNCTI QN, SUBROUTI NE, or
ENTRY statement preceding the executable statement.

If a dummy argument in a subprogram—that is, as specified in a FUNCTI ONor

SUBRCUTI NE statement at the start of the subprogram or in any ENTRY statements within
the subprogram—is used in an executable statement, then the statement may only be
executed if the dummy argument appears in the dummy argument list of the procedure

316

Chapter 10

HP Fortran statements
ENTRY

name actually referenced in the current call. The same restrictions apply when you use a
dummy argument in a specification expression to specify an array bound or character
length.

= A procedure defined by an ENTRY statement may be given an explicit interface by use of an
| NTERFACE block. The procedure header in the interface body must be a FUNCTI ON
statement for an entry to a function subprogram, and a SUBROUTI NE statement for an
entry to a subroutine subprogram.

The ENTRY statement was often used in FORTRAN 77 programs in situations where a set of
subroutines or functions had slightly different dummy argument lists but entailed
computations involving identical data and code. In Fortran 90 the use of the ENTRY statement
in such situations can be replaced by the use of optional arguments.

Examples

The following example defines a subroutine subprogram with two dummy arguments. The
subprogram also contains an ENTRY statement that takes only the first dummy argument
specified in the SUBRQUTI NE statement.

SUBROUTI NE Ful | _Nane (first_name, surnane)
CHARACTER(20) :: first_nane, surnane

ENTRY Part_Nane (first_name)

The following example creates a stack. It shows the use of ENTRY to group the definition of a
data structure together with the code that accesses it, a technique known as encapsulation.
(This example could alternatively be programmed as a module, which would be preferable in
that it does not rely on storage association.)

SUBROUTI NE mani pul at e_st ack
I MPLI CI' T NONE
| NTEGER si ze, top /0/, value
PARAMETER (size = 100)
I NTEGER, DI MENSI O\(si ze) :: stack
SAVE st ack, top

ENTRY push(val ue) ! Push value onto the stack
IF (top == size) STOP 'Stack Overflow

top =top + 1

stack(top) = val ue

RETURN

ENTRY pop(val ue) ! Pop top of stack and place in val ue
IF (top == 0) STOP ' Stack Underfl ow
val ue = stack(top)
top =top - 1
RETURN
END SUBROUTI NE nani pul at e_st ack

Chapter 10 317

HP Fortran statements
ENTRY

Here are examples of CALL statements associated with the preceding example:

CALL push(10)
CALL push(15)
CALL pop(l)
CALL pop(J)

Related statements

FUNCTI ON, SUBRQUTI NE, and CALL

Related concepts

For information about external procedures, see “External procedures” on page 129.

318 Chapter 10

HP Fortran statements
EQUIVALENCE

EQU VALENCE

Associates different objects with same storage area.

Syntax

EQUI VALENCE (equi val ence-list1) [, (equivalence-list2)]...

equi val ence- | i st is a comma-separated list of two or more object names to be storage
associated. Objects can include simple variables, array elements, array
names, and character substrings.

Description

All objects in each equi val ence- | i st share the same storage area. Such objects become
storage associated and are equivalenced to each other. Equivalencing may also cause other
objects to become storage associated.

The following items must not appear in equi val ence- i st :

= Automatic objects, including character variables whose length is specified with a
nonconstant

= Allocatable arrays

= Function names, result names, or entry names

e Dummy arguments

= Records or record field references

< Nonsequenced derived-type objects

= Derived-type components

= Pointers or derived-type objects containing pointers
= Named constants

Derived-type objects may appear in an EQU VALENCE statement if they have been defined with
the SEQUENCE attribute.

The following restrictions apply to objects that can appear in an EQJ VALENCE statement:

= Objects in the same equi val ence- | i st must be explicitly or implicitly declared in the
same scoping unit.

< The name of an equivalenced object must not be made available by use association.

Chapter 10 319

HP Fortran statements
EQUIVALENCE

The Fortran 90 standard imposes the following type restrictions on equivalenced objects:

= If one of the objects in equi val ence- | i st is of type default integer, default real, double
precision real, default complex, double complex, default logical, or numeric sequence type,
then all objects in equi val ence-1i st must be one of these types.

HP Fortran relaxes this restriction and allows character and noncharacter items to be
equivalenced. Note, however, that use of this extension can impact portability.

= If one of the objects in equi val ence- | i st is of derived type that is not a numeric
sequence or character sequence type, then all objects in equi val ence- | i st must be of the
same type.

= If one of the objects in equi val ence- | i st is of intrinsic type other than default integer,
default real, double precision real, default complex, double complex, default logical, or
default character, then all objects in equi val ence- 1| i st must be of the same type with
the same kind type parameter value.

HP Fortran relaxes this restriction.

The EQU VALENCE statement does not cause type conversion or imply mathematical
equivalence. If an array and a scalar share the same storage space through the EQUI VALENCE
statement, the array does not have the characteristics of a scalar and the scalar does not have
the characteristics of an array. They only share the same storage space.

Care should be taken when data types of different sizes share the same storage space, because
the EQUI VALENCE statement specifies that each data item in equi val ence- | i st has the same
first storage unit. For example, if a 4-byte integer variable and a double-precision variable are
equivalenced, the integer variable shares the same space as the 4 most significant bytes of the
8-byte double-precision variable.

Proper alignment of data types is always enforced. The compiler will issue a diagnostic if
incorrect alignment is forced through an EQU VALENCE statement. For data type alignment
rules, see “Intrinsic data types” on page 25.

The lengths of the equivalenced objects need not be the same.
Equivalencing character data

An EQUI VALENCE statement specifies that the storage sequences of character data items
whose names are specified in equi val ence- 1 i st have the same first character storage unit.
This causes the association of the data items in equi val ence- i st and can cause association
of other data items as well. Consider the following example:

CHARACTER(LEN=4) :: a, b
CHARACTER(LEN=3) :: c¢(2)
EQUI VALENCE (a, c(1)), (b, ¢(2))

320 Chapter 10

HP Fortran statements
EQUIVALENCE

As a result of this EQU VALENCE statement, the fourth character in a, the first character in b,
and the first character in c(2) share the same storage.

Strings of the same or different lengths can be equivalenced to start on the first element, and
you can use substring notation to specify other associations, as in the following:

CHARACTER (10) :: s1, s2
EQUI VALENCE (s1(2:2), s2(3:3)

Substring subscripts must be integer initialization expressions, and the substring length
must be nonzero.

Equivalencing arrays

To determine equivalence between arrays with different dimensions, HP Fortran views all
elements of an array in linear sequence. Each array is stored as if it were a one-dimensional
array. Array elements are stored in ascending sequential, column-major order; for
information about how arrays are laid out in memory, see “Array fundamentals” on page 55.

Array elements can be equivalenced with elements of a different array or with scalars. No
equivalence occurs outside the bounds of any of the equivalenced arrays.

If equivalenced arrays are not of the same type, they may not line up element by element.

If an array name appears without subscripts in an EQU VALENCE statement, it has the same
effect as specifying an array name with the subscript of its first element.

Itis illegal to equivalence different elements of the same array to the same storage area. For
example, the following is illegal:

INTEGER :: a(2), b
EQUI VALENCE (a(1), b), (a(2), b)

Likewise, itis illegal to use the EQUI VALENCE statement to force consecutive array elements to
be noncontiguous, as in the following example:

REAL :: a(2), r(3)
EQUI VALENCE (a(1), r(1)), (a(2), r(3))

Array subscripts must be integer initialization expressions.
Equivalence in common blocks

An EQUI VALENCE statement must not cause two common blocks to be associated. However,
you can use the EQUI VALENCE statement to place objects in common by equivalencing them to
objects already in common. If one element of an array is equivalenced to an object in common,
the whole array is placed in common with equivalence maintained for storage units preceding
and following the data element in common. The common block is always extended when it is
necessary to fit an array that shares storage space in the common block. It may be extended
after the last entry, but not before the first.

Chapter 10 321

HP Fortran statements
EQUIVALENCE

Consider the following example, which puts array i in blank common and equivalences array
elementj (2) toi (3):

INTEGER :: i(6), j(6)

COVMON i

EQUI VALENCE (i (3), j(2))

The effect of the EQU VALENCE statement is to extend blank common to include element j (6) .
This is entirely legal because the extension occurs at the end of the common block.

But if the EQUI VALENCE statement were changed as follows:

EQUI VALENCE (i (1), j(2)) ! illegal

it would result in an illegal equivalence, because storage would have to be inserted in front of
the block in order to accommodate elementj (1) .

Examples

In the following example, the variables a, b, and ¢ share the same storage space; array
elements d(2) and e(5) share the same storage space; variables f, g, and h share the same
storage:

INTEGER :: a, b, ¢, d(20), e(30), f, g, h
EQUI VALENCE (a, b, ¢), (d(2), e(5)), (f, g, h)

Related statements

COVMON

Related concepts

For information about data alignment, see Table 3-1 and “Alignment of derived-type objects”
on page 45.

322 Chapter 10

HP Fortran statements
EXIT

EXIT

Terminates a DOloop.

Syntax
EXI T [do-construct-nang]
do- const r uct - nane

is the name given to the DOconstruct. If do- const r uct - narre is specified, it
must be the name of a DOconstruct that contains the EXI T statement.

Description

If you do not specify do- const r uct - nane, the EXI T statement terminates the immediately
enclosing DOloop. If you do specify it, the EXI T statement terminates the enclosing DOloop
with the same name.
Examples
DOi =1, 20

n(i) =0

READ *, |

IF (] <0) EXIT

n(i) =j
END DO

Related statements

CYCLE and DO

Related concepts
For related information, see the following:

< “DO construct” on page 107

< “Flow control statements” on page 113

Chapter 10 323

HP Fortran statements
EXTERNAL (statement and attribute)

EXTERNAL (statement and attribute)

Declares a name to be external.

Syntax

A type declaration statement with the EXTERNAL attribute is:

type , attrib-list :: function-nanme-1|ist

type
is a valid type specification (I NTEGER REAL, LOd CAL, CHARACTER, TYPE
(nane), etc.).

attrib-list
is a comma-separated list of attributes including EXTERNAL and optionally
those attributes compatible with it, namely:

Table 10-10

CPTI ONAL PRI VATE PUBLI C

functi on- nare-1 i st
is a comma-separated list of function names to be designated EXTERNAL.
The syntax of the EXTERNAL statement is:

EXTERNAL ext ernal - nane-1i st

Note that the syntax of the EXTERNAL statement does not permit optional colons.

Description

An EXTERNAL attribute or statement specifies that a name may be used as an actual argument
in subroutine calls and function references. The name is either an external procedure, a
dummy procedure, or a block data program unit.

A name that appears in a type statement specifying the EXTERNAL attribute must be the name
of an external procedure or of a dummy argument that is a procedure.

The following rules and restrictions apply:

= A name can appear once in an EXTERNAL statement, in a declaration statement with an
EXTERNAL attribute, or in an interface body, but not in more than one of these.

324 Chapter 10

HP Fortran statements
EXTERNAL (statement and attribute)

e The EXTERNAL attribute cannot be used with subroutines. To declare a subroutine as
EXTERNAL, use the statement form.

= If the name is a dummy argument, an EXTERNAL statement declares it to be a dummy
procedure.

= If a user-defined procedure or library routine has the same name as an intrinsic
procedure, then it must either be declared to have the EXTERNAL attribute or have an
explicit interface. The intrinsic procedure is then no longer available in such program
units.

e The | NTRI NSI Cand EXTERNAL attributes are mutually exclusive.

Examples

SUBROUTI NE sub (fourier)
! fourier is a dumy procedure; actual argunent corresponding to

! to fourier can be external, intrinsic, or nodul e procedure
REAL fourier
EXTERNAL fouri er | statenent form

REAL, EXTERNAL :: SIN, COS, TAN ! attribute form
I SIN, COS, and TAN are no |longer intrinsic procedures; functions
! with these names nust be defined in the program

END SUBROUTI NE sub

SUBROUTI NE gratx (X, V)

! Specify init_block_a as the block data

| subprogramthat initializes common bl ock a
EXTERNAL i nit_bl ock_a

! Conmon bl ock available in subroutine gratx
COWDON /al/ tenp, pressure

END SUBROUTI NE gr at x

BLOCK DATA init_block_a
! init_block_a initializes the objects in common bl ock a
COWDON /a/ tenp, pressure

DATA tenp, pressure/ 98.6, 15.5 /
END BLOCK DATA init_bl ock_a

Related statements

I NTRINSI C

Related concepts
For related information, see the following:

= “Type declaration for intrinsic types” on page 27

Chapter 10 325

HP Fortran statements
EXTERNAL (statement and attribute)

= “Procedures” on page 124

= “Declaring library routines as EXTERNAL” on page 609

326 Chapter 10

HP Fortran statements

FORMAT
|
FORVAT
Describes how 1/0O data is to be formatted.
Syntax
| abel FORMAT (format-1list)
| abel is a statement label.
format-1ist is a comma-separated list of format items, where each item in the list can be

either one of the edit descriptors described in Table 9-1 or (format -1 i st). If
format-1ist isa listitem, it may be optionally preceded by a repeat
specification—a positive integer that specifies how may times f ormat - | i st
is to be repeated.

Description

The FCRVAT statement holds the format specification that indicates how data in formatted 1/0
is to be translated between internal (binary) representation and formatted (ASCII)
representation. The translation makes it possible to represent data in a humanly readable
format.

Although a format specification can be embedded within a data transfer statement, the point
to using a FORVAT statement is to make it available to any number of data transfer
statements. Several data transfer statements can use the same format specification contained
in a FORMAT statement by referencing | abel .

Another advantage of the FORVAT statement over the use of embedded format specifications is
that it is "pre-compiled”, reducing the runtime overhead of processing the format specification
and providing compile-time error checking of the FMI= specifier.

Examples

PROGRAM f or mat _exanpl e

WRI TE (15, FMI=20) 1234, 45, -12
20 FORMAT (16, 214)

END PROGRAM f or mat _exanpl e

When compiled and executed, this program outputs the following (where b represents the
blank character):

bb1234bb45b- 12

Chapter 10 327

HP Fortran statements
FORMAT

Related statements

READ and VWRI TE

Related concepts

For information about 1/O formatting, see Chapter 9, “I/O formatting,” on page 201.

328

Chapter 10

HP Fortran statements
FUNCTION

FUNCTI ON

Introduces a function subprogram.

Syntax

[RECURSI VE] [type-spec] FUNCTI ON
function-name ([dumy-arg-nane-list])
[RESULT (result-nane)]

RECURSI VE

is a keyword that must be specified in the FUNCTI ON statement if the
function is either directly or indirectly recursive. The RECURS| VE clause can
appear at most once, either before or after t ype- spec. It is not an error to
specify RECURSI VE for a nonrecursive function.

A recursive function that calls itself directly must also have the RESULT
clause specified (see below).
t ype- spec

is a valid type specification (I NTEGER REAL, LOd CAL, CHARACTER, TYPE
(nan®), etc.). The type and type parameters of the function result can be
specified by t ype- spec or by declaring the result variable within the
function subprogram, but not by both. The implicit typing rules apply if the
function is not typed explicitly.

If the function result is array-valued or a pointer, the appropriate attributes
for the result variable (which is f unct i on- nane, or r esul t - nane if
specified) must be specified within the function subprogram.

functi on- name

is the name of the function subprogram being defined.
dummy- ar g- nane- | i st

is a comma-separated list of dummy argument names for the function.
resul t - name

is the result variable. If the RESULT clause is not specified, f unct i on- name
becomes the result variable. If r esul t - nane is given, it must differ from
functi on- name, and f unct i on- name must not then be declared within the
function subprogram.

Chapter 10 329

HP Fortran statements
FUNCTION

As noted above, a recursive function that calls itself directly must have the
RESULT clause specified. For other functions, the RESULT clause is optional.

Description

A FUNCTI ONstatement introduces an external, module, or internal function subprogram.

Examples
PROGRAM nai n

CONTAI NS
! f is an internal function
FUNCTI ON f (x)
f =2*x + 3
END FUNCTI ON f
! recursive function, which nust specify RESULT cl ause
RECURSI VE | NTEGER FUNCTI ON factorial (n) &
RESULT (factorial _val ue)
I MPLICI T | NTEGER (a-2)
IF (n <= 0) THEN
factorial _value =1
ELSE
factorial _value = n * factorial (n-1)
END | F
END FUNCTI ON factori al
END PROGRAM nai n

Related statements

CONTAI NS, END, | NTENT, | NTERFACE, CPTI ONAL, and the type declaration statements

Related concepts

For related information, see the following:

“Type declaration for intrinsic types” on page 27

“External procedures” on page 129

“Arguments” on page 139

“Defined operators” on page 153

330 Chapter 10

HP Fortran statements
GO TO (assigned)

QO TO(assigned)

Transfers control to a variable that was assigned a label.

Syntax
GO TO integer-variable [[,] (label-list)]
i nt eger-vari abl e is a scalar variable of default type integer.

| abel -1i st is a list of statement labels, separated by commas.

Description

The assigned GO TOstatement transfers control to the statement whose label was most
recently assigned to a variable with the ASSI G\ statement.

i nt eger - vari abl e must be given a label value of an executable statement through an

ASS| G\ statement prior to execution of the GO TOstatement. When the assigned GO TO
statement is executed, control is transferred to the statement whose label matches the label
value of i nt eger - vari abl e.

| abel - 1i st is alist of labels that i nt eger - vari abl e might assume.
i nt eger - vari abl e must not be an array element or an integer component of a derived type.

The use of this statement can hinder the ability of the compiler to optimize the program in
which it occurs.

Examples

ASSI GN 10 TO out
GO TO out

Related statements

ASSI G\, GO TO(computed), and GO TO(unconditional)

Related concepts

For information about flow control statements, see “Flow control statements” on page 113.

Chapter 10 331

HP Fortran statements
GO TO (computed)

QO TO(computed)

Transfers control to one of several labels.

Syntax

GO TO (label-list) [,] arithmetic-expression

| abel -1i st
is a list of statement labels, separated by commas.

arithneti c- expression
is a scalar integer expression. As an extension, HP Fortran also allows the
expression to be of type real or double precision.

Description

The computed GO TOstatement transfers control to one of several labeled statements,
depending on the value of ari t hmet i c- expr essi on. After ari t hneti c- expressi on is
evaluated (and, if necessary, truncated to an integer value), control transfers to the statement
label whose position in | abel -1 i st corresponds to the truncated value of

ari thmeti c- expression.

If the value of ari t hmet i c- expr essi on is less than 1 or greater than the total number of
labelsin | abel - 1 i st, control transfers to the executable statement immediately following the
computed GO TOstatement.

Examples
index = 3

I Branch made to the statenent |abeled 30
GO TO (10, 20, 30, 40) index

Related statements

SELECT CASE, GO TO(assigned), and GO TO(unconditional)

Related concepts

For information about flow control statements, see “Flow control statements” on page 113.

332 Chapter 10

HP Fortran statements
GO TO (unconditional)

Q0 TO(unconditional)

Transfers control to a specified label.

Syntax

GO TO | abel

| abel is the label of an executable statement.
Description

The unconditional GO TOstatement transfers control directly to the statement at the specified
label. The executable statement with | abel can occur before or after the GO TOstatement, but
it must be within the same scoping unit.

Examples

GO TO 30
30 CONTI NUE

Related statements

@0 TO(assigned) and GO TO (computed)

Related concepts

For information about flow control statements, see “Flow control statements” on page 113.

Chapter 10 333

HP Fortran statements
IF (arithmetic)

| F (arithmetic)

Transfers control to one of three labels.

Syntax
I'F (arithnetic-expression) |abelN, |abelZz IabelP
ari thmeti c-expression

is an arithmetic expression of any numeric type except complex and double
complex.

| abel

is a label of an executable statement.

Description

The arithmetic | F statement transfers control to the statement whose label is determined by
arithnetic-expression. Ifarithnetic-expressi on evaluates to a negative value, control
transfers to | abel N if it evaluates to O, control transfers to | abel Z; and if it evaluates to a
positive value, control transfers to | abel P.

The same label may appear more than once in the same arithmetic | F statement.

Each label must be that of an executable statement in the same scoping unit as the arithmetic
I F.

Examples
i =-1
! Branch to statement |abeled 10

IF (i) 10, 20, 30

Related statements

| F (construct) and | F (logical)

Related concepts

For information about flow control statements, see “Flow control statements” on page 113.

334 Chapter 10

HP Fortran statements
IF (block)

| F (block)

Begins an IF construct.

Syntax
[construct-nane :] |F (logical-expression) THEN
construct - nane

is the name given to the | F construct. If const r uct - nane is specified, the
same name must also appear in the END | F statement.

| ogi cal - expressi on

is a scalar logical expression.

Description

The | F statement executes the immediately following statement block if
| ogi cal - expr essi on evaluates to true.

The | F construct, which the | F statement begins, may include ELSE | F statements and an
EL SE statement to provide alternate statement blocks for execution.

The block following the | F statement may be empty.

As an extension, HP Fortran allows the transfer of control into an | F construct from outside
the construct.

Examples
IF (x <= 0.0 .AND. y > 1.0) THEN

CALL fix_coord(x, Y)
END | F

Related statements

ELSE, ELSE | F, | F (arithmetic), | F (logical), and END (construct)

Related concepts

For information about the | F construct, see “IF construct” on page 111.

Chapter 10 335

HP Fortran statements
IF (logical)

|
| F (logical)
Conditionally executes a statement.

Syntax
I'F (I ogical-expression) statenent
| ogi cal - expressi on

is a logical expression.

st at enent
is any executable statement other than the following:
< A statement used to begin a construct
= Any END statement
= Any IF statement
Description

The logical | F statement is a two-way decision maker. If | ogi cal - expr essi on evaluates to is
true, st at ement executes and control passes to the next statement. If | ogi cal - expr essi on
evaluates to false, st at enent does not execute and control passes to the next statement in the
program.

Examples
IF (a .EQ b) PRINT *, 'They are equal.'
Related statements

| F (arithmetic) and | F (construct)

Related concepts

For information about flow control statements, see “Flow control statements” on page 113.

336 Chapter 10

HP Fortran statements

IMPLICIT

IMPLICT
Changes or voids default typing rules.
Syntax
The | MPLI O T statement can take either of the following forms:
« First form:

IMPLICIT type (range-list)[, type (range-list) ,]...
= Second form:

| MPLI CI' T NONE
type is the data type to be associated with the corresponding letters in

range-1list.

range-1|i st is a comma-separated list of letters or ranges of letters (for example, A-Z or

I - N) to be associated with t ype. Writing a range of letters has the same
effect as writing a list of single letters.

Description

The | MPLI O T statement can be used either to change or void the default typing rules within
the program unit in which it appears, depending on which of the two forms the statement
takes.

First form

This form of the | MPLI A T statement specifies t ype as the data type for all variables, arrays,
named constants, function subprograms, ENTRY names in function subprograms, and
statement functions that begin with any letter inr ange- | i st and that are not explicitly given
a type.

Within the specification statements of a program unit, | MPLI A T statements must precede all
other specification statements, except possibly the DATA and PARAVETER statements.

The same letter must not appear as a single letter or be included in a range of letters, more
than once in all of the | MPLI O T statements in a scoping unit.

For information on how the | MPLI O T and PARAMETER statements interact, refer to
“PARAMETER (statement and attribute)” on page 386.

Second form

Chapter 10 337

HP Fortran statements
IMPLICIT

The | MPLI O T NONE statement disables the default typing rules for all variables, arrays,
named constants, function subprograms, ENTRY names, and statement functions (but not
intrinsic functions). All such objects must be explicitly typed. The | MPLI O T NONE statement
must be the only | MPLI A T statement in the scoping unit, and it must precede any PARAMETER
statement. Types of intrinsic functions are not affected.

You can also use the +i npl i ci t _none compile-line option to void the default typing rules. A
program compiled with this option may include | MPLI A T statements, which the compiler will
honor.

Examples

The following statement causes all variables and function names beginning with |, J, or Kto
be of type complex, and all data items beginning with A, B, or Cto be of type integer:

I MPLICI T COWPLEX (I, J, K), |NTEGER (A-C)
Related concepts
For related information, see the following:

= “Implicit typing” on page 31

338 Chapter 10

HP Fortran statements
INCLUDE

I NCLUDE

Imports text from a specified file.

Syntax
| NCLUDE character-1Iiteral-constant
character-literal-constant

is the name of the file to include.

Description

The keyword | NOLUDE and char act er-1iteral - const ant form an | NCLUDE line, which is
used to insert text into a program prior to compilation. The inserted text replaces the | NCLUDE
line; the | NCLUDE line should therefore appear in your program where you want the inserted
text. When the end of an included file is reached, the compiler continues processing with the
line following the | NCLUDE line.

character-literal -constant can be either afile name or a device name. It must not have a
kind parameter that is a named constant.

The | NCLUDE line must appear on one line with no other text except possibly a trailing

comment. It should not have a statement label. Thus, you cannot branch to it, and it cannot be
an action statement that is part of a Fortran 90 | F statement. You cannot use the “; ” operator
to add a second | NCLUDE line, nor can you use the “&” operator to continue it over another line.

The compiler searches directories for the named include files in the following order:

1. The current source directory

2. Directories specified by the - I compile-line option, in the order specified
3. The current working directory

4. The directory / usr/i ncl ude

I NCLUDE lines can be nested to a maximum of ten levels. However, they must be nested
nonrecursively. That is, inserted text must not specify an | NCLUDE line that was encountered
at an earlier level of nesting.

Line numbering within the listing of an included file begins at 1. When the included file
listing ends, the include level decreases appropriately, and the previous line numbering
resumes.

Chapter 10 339

HP Fortran statements
INCLUDE

Examples

I NCLUDE ' my_conmon_bl ocks'
I NCLUDE "/ ny_stuff/declarations.h”

Related concepts

For related information, see the following:

e “INCLUDE line” on page 21

340

Chapter 10

HP Fortran statements
INQUIRE

| NQU RE

Returns information about file properties.

Syntax
The syntax of the | NQUI RE statement has two forms:

< Inquiry by output list:

I NQUI RE (| OLENGTH= i nteger-variable) output-list
= Inquiry by unit or file:

I NQUI RE (i o-specifier-list)
i nt eger-vari abl e

is the length of the unformatted record that would result from writing
out put -l i st to a direct-access file. The value returned in

i nt eger -vari abl e can be used with the RECL= specifier in an CPEN
statement to specify the length of each record in an unformatted
direct-access file that will hold the data in out put -1 i st.

out put -1i st

is a comma-separated list of data items, similar to what would be included
with the WRI TE or PRI NT statement. The data items can include variables
and implied-DOlists (see “Implied-DO loop” on page 191).

i o-specifier-list

is a list of comma-separated 1/O specifiers. As noted in the following
descriptions, most of the specifiers return information about the specified
unit or file. i o- speci fier-1ist mustinclude either the UNI T= or FI LE=
specifier, but not both. The following paragraphs describe all the 1/0
specifiers that can appear ini o-specifier-list:

[UNI T=] uni t

specifies the unit connected to an external file. uni t must be an integer
expression that evaluates to a number greater than 0. If the optional
keyword UNl T=is omitted, uni t must be the first item in

i o-specifier-list.Ifunit appearsinio-specifier-list,theFlLE=
specifier must not be used.

ACCESS=char act er

Chapter 10 341

HP Fortran statements

INQUIRE
returns the following values, indicating the method of access:
Table 10-11
" SEQUENTI AL’ File is connected for sequential
access.
' Dl RECT' File is connected for direct
access.
" UNDEFI NED File is not connected.

ACTI ON=char acter-vari abl e
returns the following values, indicating the direction of the transfer:

Table 10-12
' READ File is connected for reading
only.
"WRI TE File is connected for writing
only.

' READVRI TE File is connected for reading
and writing.

" UNDEFI NED File is not connected.

BLANK=char act er -vari abl e

returns the type of blank control that is in effect. For information about
blank control, see the BLANK= specifier for the OPEN statement. The values
returned by the BLANK= specifier are:

Table 10-13
" NULL' Null blank control is in effect.
' ZERO Zero blank control is in effect.

" UNDEFI NED File is not connected for
formatted 1/0.

DELI Mechar act er -vari abl e

342 Chapter 10

HP Fortran statements
INQUIRE

returns the following values, indicating the character to use (if any) to
delimit character values in list-directed and namelist formatting:

Table 10-14

" APCBTROPHE An apostrophe is used as the
delimiter.

' QUOTE' The double quotation mark is
used as the delimiter.

" NONE There is no delimiting
character.

" UNDEFI NED File is not connected for

formatted 1/O.

Dl RECT=char act er-vari abl e

returns the following values, indicating whether or not the file is connected
for direct access:

Table 10-15
" YES File is connected for direct
access.
'NO File is not connected for direct
access.
" UNKNOWN It cannot be determined

whether or not file is connected
for direct access.

ERR=st t - | abel

specifies the label of the executable statement to which control passes if an
error occurs during statement execution.

EXl ST=l ogi cal -vari abl e

returns the following values, indicating whether or not the file or unit
exists:

Table 10-16

' TRUE File exists or unit is connected.

Chapter 10 343

HP Fortran statements

INQUIRE
Table 10-16 (Continued)
' FALSE' File does not exist or unit is not

connected.

FI LE=char act er - expr essi on

specifies the name of a file for inquiry. The file does not have to be connected
or even exist. If the FI LE= specifier appears in i o- speci fier-1ist, the
UN T= specifier must not be used.

FORM=char act er - vari abl e

returns the following values, indicating whether the file is connected for
formatted or unformatted 1/O:

Table 10-17

' FORVATTED File is connected for
formatted 1/0.

" UNFORVATTED File is connected for
unformatted 1/0.

" UNDEFI NED File is not connected.

FORMATTED=char act er -vari abl e

returns the following values, indicating whether or not the file is connected
for formatted 1/O:

Table 10-18
" YES File is connected for formatted
1/0.
"'NO File is not connected for
formatted 1/O.
" UNKNOWN It cannot be determined

whether or not file is connected
for formatted 1/0.

| OSTAT=i nteger-vari abl e

344 Chapter 10

HP Fortran statements
INQUIRE

returns the 1/0O status after the statement executes. If the statement
successfully executes, i nt eger - vari abl e is set to zero. If an error occurs, it
is set to a positive integer that indicates which error occurred..

NAVE=char act er - var i abl e

returns the name of file connected to the specified unit. If the file has no
name or is not connected, NAME= returns the string UNDEFI NED.

NAVED=| ogi cal -vari abl e

returns the following values, indicating whether or not the file has a name:

Table 10-19
' TRUE File has a name.
' FALSE' File does not have a name.

NEXTREC=i nt eger - vari abl e

returns the number of the next record to be read or written in afile
connected for direct access. The value is the last record read or written +1. A
value of 1 indicates that no records have been processed. If the file is not
connected or it is a device file or its status cannot be determined,
integer-variable is undefined.

NUVBER=I nt eger - var i abl e

returns the unit number that is connected to the specified file. If no unit is
connected to the named file, i nt eger - var i abl e is undefined.

CPENED=I ogi cal -vari abl e

returns the following values, indicating whether or not the file has been
opened (that is, is connected):

Table 10-20
' TRUE File is connected.
' FALSE' File is not connected.

PAD=char act er-vari abl e

Chapter 10 345

HP Fortran statements

INQUIRE
returns a value indicating whether or not input records are padded with
blanks. For more information about padding, see the PAD= specifier for the
OPEN statement. The return values are:
Table 10-21
' YES File or unit is connected with
PAD=' YES in OPENstatement.
" NO File or unit is connected with

PAD='" NO in CPEN statement.

PCSI TI ON=char act er -vari abl e

returns the following values, indicating the file position:

Table 10-22

" REW ND File is connected with its
position at the start of the first
record.

" APPEND File is connected with its
position at the end-of-file
record.

"AS| S File is connected without
changing its position.

" UNDEFI NED File is not connected or is

connected for direct access.

READ=char act er - vari abl e

returns the following values, indicating whether or not reading is an
allowed action for the file:

Table 10-23
' YES Reading is allowed for file.
"'NO Reading is not allowed for file.
" UNKNOVWN It cannot be determined

whether or not reading is
allowed for file.

346 Chapter 10

HP Fortran statements
INQUIRE

READWRI TE=char act er-vari abl e

returns the following values, indicating whether or not reading and writing
are allowed actions for the file:

Table 10-24
' YES Both reading and writing are
allowed for file.
"'NO Reading and writing are not
both allowed for file.
" UNKNOVW It cannot be determined

whether or not reading and
writing are both allowed for file.

RECL=i nt eger -vari abl e
returns the record length of the specified unit or file, measured in bytes. The
file must be a direct-access file. If the file is not a direct-access file or does
not exist, i nt eger - vari abl e is undefined.

SEQUENTI AL=char act er-vari abl e

returns the following values, indicating whether or not the file is connected
for direct access:

Table 10-25
' YES File is connected for sequential
access.
' NO File is not connected for
sequential access.
" UNKNOWN It cannot be determined

whether or not file is connected
for sequential access.

UNFCRVATTED=char act er - var i abl e

Chapter 10 347

HP Fortran statements

INQUIRE
returns the following values, indicating whether or not the file is connected
for formatted 1/0O:
Table 10-26
" YES File is connected for
unformatted 1/0.
"' NO File is not connected for
unformatted 1/0.
" UNKNOWN It cannot be determined

whether or not file is connected
for unformatted 1/0.

WR TE=char act er -vari abl e

returns the following values, indicating whether or not writing is an allowed
action for the file:

Table 10-27
" YES Writing is allowed for file.
' NO Writing is not allowed for file.
" UNKNOVW It cannot be determined
whether or not writing is
allowed for file.
Description

The | NQUI RE statement returns selected properties of a specified file or unit number. (It is
illegal to include both the UNI T= specifier and the FI LE= specifier in the same | NQU RE
statement.) Inquiring by unit number should be used on connected files; inquiring by filename
is typically used on unconnected files.

In addition, the | NQUI RE statement can also be used to determine the record length of a new
or existing file. That is, you can use | NQU RE to obtain the record length before creating the
file and then use the return value as the argument to the RECL= specifier in an OPEN
statement.

Examples

The following examples illustrate different uses of the | NQUI RE statement.

Inquiry by file

348 Chapter 10

HP Fortran statements
INQUIRE

The | NQUI RE statement in this example returns the following information about the file
named ny_fil e:

= The EXl ST= specifier determines if the file is connected.
= The DI RECT= specifier determines if it is connected for direct access.
= The READWR TE= specifier determines if it can be read and written.

LOG CAL :: exist
CHARACTER(LEN=9) :: dir_acc, rw_sts
INQUIRE (FILE="nmy_file', EXlI ST=exist, &

Dl RECT=di r _acc, READWRI TE=rw_sts)

Inquiry by unit

The following | NQUI RE statement returns the following information about the file connected
to the unit in u_num

= The OPENED= specifier determines if the file is connected to u_num
= The NAMED= specifier determines if it is a named file or a scratch file.
= The NAME= specifier returns its name.

LOG CAL :: opened, naned
INTEGER :: u_num
CHARACTER(LEN=80) :: fname

I NQUI RE (UNI T=u_num NAMED=nanmed, OPENED=opened, NAME=fnane)
Inquiry by output list

When using the OPEN statement to create a direct-access file, you must specify the record
length for the file with the RECL= specifier. Previous to Fortran 90, you had to resort to a
nonportable strategy to determine record length. The Fortran 90 | NQU RE statement provides
a portable solution: use the | NQUI RE statement to inquire by output list, and specify the
return value from the | NQU RE statement as the argument to the OPEN statement. The
following is an example:

I NTEGER :: rec_len, ios
INQUI RE (I OLENGTH=rec_len) x, vy, i, j

OPEN (UNI T=32, FILE="new file', |OSTAT=ios, &
ACCESS=' DI RECT', RECL=rec_| en)

Related statements

CPEN

Chapter 10 349

HP Fortran statements
INQUIRE

Related concepts

For information about 1/0O concepts, see Chapter 8, “1/O and file handling,” on page 169.

350 Chapter 10

| NTEGER

HP Fortran statements
INTEGER

Declares entities of type integer.

Syntax

I NTEGER [ki nd-spec] [[, attrib-list] ::] entity-Ilist

ki nd- spec is the kind type parameter that specifies the range of the entities in
entity-1ist.Kkind-spec takes the form:
([KIND=] ki nd- param
where ki nd- par amcan be a named constant or a constant expression that
has the integer value of 1, 2, 4, or 8. The size of the default type is 4.
As an extension, ki nd- spec can take the form:
*| en- par am
where | en- par amis the integer 1, 2, 4, or 8
(default = 4).
attrib-list is a list of one or more of the following attributes, separated by commas:
Table 10-28
ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON CPTI ONAL PUBLI C
EXTERNAL PARAVETER SAVE
| NTENT PO NTER TARGET
Ifattrib-1ist is present, it must be followed by the double colon. For
information about individual attributes, see the corresponding statement in
this chapter.
entity-list is a list of entities, separated by commas. Each entity takes the form:

nane [(array-spec)] [= initialization-expr]
where:
name

is the name of a variable or function

Chapter 10

351

HP Fortran statements

INTEGER
array-spec
is a comma-separated list of dimension bounds
initialization-expr
is an integer constant expression. If i ni tial i zati on- expr is present,
entity-1ist mustbe preceded by the double colon.
Description

The | NTEGER statement is used to declare the length and properties of data that are whole
numbers. A kind parameter (if present) indicates the representation method.

The | NTEGER statement is constrained by the rules for all type declaration statements,
including the requirement that it precede all executable statements.

As a portability extension, HP Fortran allows the following syntax for specifying the length of
an entity:

nane [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *| en may appear on either side of (array- spec) . If nane
appears with *| en, it overrides the length specified by | NTEGER* si ze.

Examples

The following are valid declarations:

INTEGER i, j

I NTEGER(KI ND=2) :: k

| NTEGER(2), PARAMETER :: |imt=420

! initialize an array, using an array constructor

I NTEGER, DI MENSION(4) :: ivec = (/1, 2, 3, 41)

! use the slash notation (an HP extension) to initialize
INTEGER i/-1/, j/-2/, k/I-7/ ! note, no double colon

! the followi ng declarations are equival ent; the second uses the
I HP I ength specification extension

INTEGER (KIND = 8) int1

| NTEGER*4 int1*8

Related statements

BYTE

Related concepts
For related information, see the following:

= “Type declaration for intrinsic types” on page 27

352 Chapter 10

HP Fortran statements
INTEGER

= “Implicit typing” on page 31

< “Array declarations” on page 57
= “Array constructors” on page 73
< “Expressions” on page 83

= “KIND(X)” on page 542

Chapter 10 353

HP Fortran statements
INTENT (statement and attribute)

| NTENT (statement and attribute)

Specifies the intended use of dummy arguments.

Syntax

A type declaration statement with the | NTENT attribute is:7

type , attrib-list :: dummy-arg-nane-|ist

type
is a valid type specification (I NTEGER REAL, LOd CAL, CHARACTER, TYPE
(nane), etc.).

attrib-list
is a comma-separated list of attributes including | NTENT(i nt ent - spec)
and the optional attributes compatible with it, shown below:

Table 10-29

DI MENSI ON CPTI ONAL TARGET
i ntent - spec

is one of I N, QUT, or | NOUT. (The form I N QUT is valid.)
dummy- ar g- nane- | i st

is a comma-separated list of subprogram dummy arguments to which
i nt ent - spec is to apply.

The syntax of the | NTENT statement is:

I NTENT (intent-spec) [::] dummy-arg-nane-|i st

Description

The | NTENT attribute declares whether a dummy argument is intended for transferring a
value into a procedure, or out of it, or both. The | NTENT attribute helps detect the use of
arguments inconsistent with their intended use, and may also assist the compiler in
generating more efficient code.

If a dummy argument has intent | N, the procedure must not change it or cause it to become
undefined. If the actual argument is defined, this value is passed in as the value of the
dummy argument.

354 Chapter 10

HP Fortran statements
INTENT (statement and attribute)

If a dummy argument has intent QUT, the corresponding actual argument must be definable;
that is, it cannot be a constant. When execution of the procedure begins, the dummy
argument is undefined; thus it must be given a value before it is referenced. The dummy
argument need not be given a value by the procedure.

If a dummy argument has intent | NOQUT, the corresponding actual argument must be
definable. If the actual argument is defined, this value is passed in as the value of the dummy
argument. The dummy argument need not be given a value by the procedure.

The following points should also be noted:

= Intent specifications apply only to dummy arguments and may only appear in the
specification part of a subprogram or interface body.

= If there is no intent specified for an argument in a subprogram, the limitations imposed
by the actual argument apply to the dummy argument. For example, if the actual
argument is an expression that is not a variable, the dummy argument must not redefine
its value.

= The intent of a pointer dummy argument must not be specified.

Examples

! X, y, and z are dummy argunents

SUBROUTI NE el ectric (x, Yy, z)
REAL, INTENT (IN) :: x, y ! x and y are used only for input
! z is used for input and out put
COWPLEX, | NTENT (1 NOUT), TARGET :: z(1000)

SUBROUTI NE pressure (true, tape, a, b)
USE a_nodul e
TYPE(ace), INTENT(IN) :: a, b ! aand b are only for input
I NTENT (QOUT) true, tape ! true and tape are for output

SUBROUTI NE | ab_ten (degrees, X, y, z)
COWPLEX, | NTENT(INOUT) :: degrees
REAL, INTENT(IN), OPTIONAL :: Xx, y
I NTENT(IN) z

PROGRAM pxx
CALL electric (a+l, h*c, d) ! First subroutine defined above

CALL lab_ten (dg, e, f, g+1.0)
END PROGRAM pxx

Related statements

FUNCTI ON and SUBRQUTI NE

Chapter 10 355

HP Fortran statements
INTENT (statement and attribute)

Related concepts
For related information, see the following:

= “Type declaration for intrinsic types” on page 27
e “INTENT attribute” on page 146

356 Chapter 10

HP Fortran statements
INTERFACE

| NTERFACE

Introduces an interface block.

Syntax

| NTERFACE [generi c- spec]

generi c-spec is one of:
e generic-name
e OPERATOR(def i ned- oper at or)
- ASS| GNVENT(=)

generi c-nane is the name of a generic procedure.

def i ned- oper at or is one of:

< An intrinsic operator

e .operator.,whereoperator is a user-defined name

Description

The | NTERFACE statement is the first statement of an interface block. Interface blocks
constitute the mechanism by which external procedures may be given explicit interfaces and
also provide additional functionality, as described below.

The | NTERFACE generi ¢c- name form defines a generic interface for the procedures in the
interface block.

The | NTERFACE CPERATCR(def i ned- oper at or) form is used to define a new operator or to
extend the meaning of an existing operator.

The | NTERFACE ASSI GNMENT(=) form is used to extend the assignment operator so that it can
be used (for example) with derived-type objects.

Examples

The following examples illustrate different forms of the interface block:

I nake explicit the interfaces of external function spline
! and external subroutine sp2
| NTERFACE

REAL FUNCTI ON spline(x,y, z)

END FUNCTI ON spli ne

Chapter 10 357

HP Fortran statements
INTERFACE

SUBROUTI NE sp2(x, z)
END SUBROUTI NE sp2
END | NTERFACE

! Make the interface of function r_ave explicit and give
! it the generic nane g_ave
| NTERFACE g_ave
FUNCTI ON r _ave(x)
| Get the size of x fromthe nodul e ave_stuff
USE ave_stuff, ONLY: n
REAL r_ave, x(n)
END FUNCTI ON r _ave
END | NTERFACE

! Make the interface of external function b_or explicit, and usel it to extend the +
oper at or
| NTERFACE OPERATOR (+)
FUNCTION b_or(p, q)
LOG CAL b_or, p, q
INTENT (IN) p, g
END FUNCTI ON b_or
END | NTERFACE

Related statements

END | NTERFACE, FUNCTI QN, and SUBROUTI NE

Related concepts
For related information, see the following:

< “Derived types” on page 41

=« ‘“Interface blocks” on page 150

358 Chapter 10

HP Fortran statements
INTRINSIC (statement and attribute)

| NTR NSI C (statement and attribute)

Identifies an intrinsic procedure.

Syntax

The syntax of the type declaration statement with the | NTRI NSI C attribute is:
type , attrib-list :: intrinsic-function-nanme-|ist
type

is a valid type specification (I NTEGER REAL, LOd CAL, CHARACTER,
TYPE(nane) , etc.).

attrib-list
is a comma-separated list of attributes including | NTR NSI Cand optionally
those attributes compatible with it, namely:
Table 10-30
PR VATE PUBLI C

intrinsic-function-nanme-|i st

is a comma-separated list of i ntri nsi c-f uncti on- names. (Note that
subroutine names cannot appear in type statements, so that intrinsic
subroutine names can only be identified as such by use of the | NTRI NSI C
statement, described below.)

The syntax of the | NTRI NSI Cstatement is:
INTRINSI C intrinsic-procedure-name-|ist
where i ntrinsi c- procedure- nane- 1| i st is a comma-separated list of procedure names.

Note that, like the EXTERNAL statement, the | NTRI NSI C statement does not have optional
colons.

Description

The | NTRI NSI Cstatement and attribute identifies a specific or generic name as that of an
intrinsic procedure, enabling it to be used as an actual argument. (Only a specific function
name—or a generic name that is the same as the specific name—can be used as an actual
argument; see “Procedure dummy argument” on page 142.) The | NTRI NSI Cstatement is
necessary to inform the compiler that a name is intrinsic and is not the name of a variable.

Chapter 10 359

HP Fortran statements
INTRINSIC (statement and attribute)

Whenever an intrinsic name is passed as an actual argument and no other appearance of the
name in the same scoping unit indicates that it is a procedure, it must be specified by the
calling program in an | NTRI NSI Cstatement, or (if a function name) in a type declaration
statement that includes the | NTRI NSI Cattribute.

Each name can appear only once in an | NTRI NSI Cstatement and in at most one | NTRI NSI C
statement within the same scoping unit. Also, a name cannot appear in both an EXTERNAL and
an | NTR NSI Cstatement within the same scoping unit.

Examples

SUBROUTI NE subr ! caller
DOUBLE PRECI SION :: dsin,x,y, func
I NTRINSI C dsin
y = func(dsin,x)

END SUBROUTI NE subr

DOUBLE PRECI SI ON FUNCTI ON func(proc,y) ! callee
DOUBLE PRECISION :: vy, proc

func = proc(y)
END FUNCTI ON f unc
Related statements

EXTERNAL

Related concepts

For additional information about passing user-defined and intrinsic procedures as arguments,
see “Procedure dummy argument” on page 142. Intrinsic procedures are described in
“Intrinsic procedure specifications” on page 479.

360 Chapter 10

LOGE CAL

HP Fortran statements
LOGICAL

Declares entities of type logical.

Syntax

LOGd CAL [kind-spec] [[, attrib-list] ::] entity-Ilist

ki nd- spec specifies the size of the logical entity in bytes. ki nd- spec takes the form:
([KIND=] ki nd- param
where ki nd- par amcan be a named constant or a constant expression that
has the integer value of 1, 2, 4, or 8. The size of the default type is 4.
As an extension, ki nd- spec can take the form:
*| en- par am
where | en- par amis the integer 1, 2, 4, or 8 (default = 4).
attrib-list is a list of one or more of the following attributes, separated by commas:
Table 10-31
ALLOCATABLE INTRINSI C PRI VATE
D MENSI ON CPTI ONAL PUBLI C
EXTERNAL PARAMVETER SAVE
| NTENT PO NTER TARGET
Ifattrib-I1ist is present, it must be followed by the double colon. For
information about individual attributes, see the corresponding statement in
this chapter.
entity-1ist is a list of entities, separated by commas. Each entity takes the form:

nane [(array-spec)] [= initialization-expr]
where:

name

is the name of a variable or function

array- spec

Chapter 10

361

HP Fortran statements

LOGICAL
is a comma-separated list of dimension bounds
initialization-expr
is a logical constant expression. Ifi nitial i zati on-expr is present,
entity-1ist mustbe preceded by the double colon.

Description

The LOA CAL statement is constrained by the rules for type declaration statements, including
the requirement that it precede all executable statements.

As a portability extension, HP Fortran allows the following syntax for specifying the length of
an entity:

nane [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *| en may appear on either side of (array- spec) . If nane
appears with *| en, it overrides the length specified by LOG CAL*si ze.

Examples

The following are valid declarations:

LOd CAL | ogl, |og2

LOG CAL(KIND=2) :: |og3

LOG CAL(2), PARAMETER :: test=. TRUE

! initialize an array, using an array constructor

LOG CAL, DI MENSION(2) :: lvec=(/.TRUE.,.FALSE./)

! use the slash notation (an HP extension) to initialize
LOG CAL | ogl/.TRUE./, log2/.FALSE./ ! note, no double colon
! the followi ng declarations are equival ent; the second uses the
I HP I ength specification extension

LOG CAL (KIND = 8) |og8

LOG CAL*4 | 0g8*8

Related statements

| NTEGER

Related concepts
For related information, see the following:

= “Type declaration for intrinsic types” on page 27
= “Implicit typing” on page 31

< “Array declarations” on page 57

362 Chapter 10

HP Fortran statements
LOGICAL

= “Array constructors” on page 73
< “Expressions” on page 83
= “KIND(X)” on page 542

Chapter 10 363

HP Fortran statements
MAP (extension)

VAP (extension)

Defines a union within a structure.

Syntax
MAP
fiel d-def
END MAP
fiel d- def is one of the following:
= A type declaration statement
= Another nested structure
= A nested record
= A union definition
Description

The MAP statement is an HP compatibility extension that is used with the UNI ONstatement to
define a union within a structure. For detailed information about the MAP and UNI ON
statements, see “STRUCTURE (extension)” on page 431.

364 Chapter 10

HP Fortran statements
MODULE

MODULE

Introduces a module.

Syntax

MODULE nodul e- nane

nodul e- narre is a unique module name.
Description

Modules are nonexecutable program units that can contain type definitions, object
declarations, procedure definitions (module procedures), external procedure interfaces,
user-defined generic names, and user-defined operators and assignments. Any such
definitions not specified to be private to the module containing them are available to those
program units that specify the module in a USE statement. Modules provide a convenient
sharing and encapsulation mechanism for data, types, procedures, and procedure interfaces.

Examples

! Make data objects and a data type sharable via a nodul e
MODULE shar ed
COWPLEX gtx (100, 6)
REAL, ALLOCATABLE :: y(:), z(:,:)
TYPE peak_item
REAL peak_val, energy
TYPE(peak_item), PO NTER :: next
END TYPE peak_item
END MODULE shar ed

| Define a data abstraction for rational arithnmetic via a nodule
MODULE rational _arithnetic
TYPE rati onal

PRI VATE
| NTEGER nuner at or, denoni nat or
END TYPE rati onal I Generic extension of =

| NTERFACE ASSI GNMENT (=)
MODULE PROCEDURE eqrr, eqri, eqir

END | NTERFACE

| NTERFACE OPERATOR (+) I Ceneric extension of +
MODULE PROCEDURE addrr, addri, addir

END | NTERFACE

CONTAI NS
FUNCTION eqrr (. . .) ! A specific definition of =

Chapter 10 365

HP Fortran statements
MODULE

FUNCTI ON addrr (. . .) I A specific definition of +

END MODULE rational _arithnetic

Related statements

GONTAI NS, END, PRI VATE, PUBLI C, and USE

Related concepts

For more information about modules, see “Modules” on page 158.

366 Chapter 10

HP Fortran statements
MODULE PROCEDURE

MODULE PROCEDURE

Specifies module procedures in a generic interface.

Syntax

MODULE PROCEDURE nodul e- procedur e- nane-1i st
nodul e- pr ocedur e- name- | i st

is a comma-separated list of modul e- pr ocedur e- nanes.

Description

A MCDULE PROCEDURE statement appears within an interface block. It is used when the
specification is generic and a specific procedure is defined within the module rather than as
an external procedure. The MODULE PROCEDURE statement only names the subprograms; it
does not contain the definition of the interface. The named subprograms must be defined
within the current module or within another module that is accessible by use association.

Examples

MODULE pat h
I nodul e data environnent; nodul e procedures contained in this
! nodul e have access to this data environnment
REAL x, vy, z
! Generic nane substance for procedures air and water
| NTERFACE subst ance
MODULE PROCEDURE air, water
END | NTERFACE
| NTERFACE OPERATOR (*)
MODULE PROCEDURE rational _rmul tiply
END | NTERFACE

! Modul e procedures are preceded by CONTAI NS
CONTAI NS
SUBROUTI NE air (contents)

END SUBROUTI NE ai r

SUBROUTI NE water (x, a, z)
! X is a dutmmy argunent, y is fromthe nodul e data
! envi ronnent
a=x+y

END SUBROUTI NE wat er
FUNCTI ON rational _multiply (x, y)
TYPE (rational) :: rational _nmultiply

Chapter 10 367

HP Fortran statements
MODULE PROCEDURE

TYPE (rational), INTENT (IN) :: X, y
rational _multiply = ...

END FUNCTI ON rational _nultiply
END MODULE pat h

Related statements

FUNCTI ON, SUBRQUTI NE, and | NTERFACE

Related concepts

For information about module procedures, see “Module program unit” on page 158.

368 Chapter 10

HP Fortran statements
NAMELIST

NAMEL| ST

Names a group of variables for 1/0 processing.

Syntax

NAMELI ST / group-nane/var-list [[,]/group-nane/var-list]...

gr oup- nane is a unique namelist group name.
var-1i st is a comma-separated list of scalar and array variable names.
Description

The NAMELI ST statement declares var -1 i st as a namelist group and associates the group
with gr oup- nane.

Variables appearing in var - | i st may be of any type, including objects of derived types or
their components, saved variables, variables on the local stack, and subroutine parameters.
The following, however, are not allowed:

= Record or composite references

= Pointers or their targets

< Automatic objects

= Allocatable array

= Character substrings

< Assumed-size array parameters

= Adjustable-size array parameters

= Assumed-size character parameters

< Individual components of a derived type object

The var -1 i st explicitly defines which items may be read or written in a namelist-directed 1/0
statement. It is not necessary for every item in var - | i st to be defined in namelist-directed
input, but every input item must belong to the namelist group. The order of items in

var -1 i st determines the order of the values written in namelist-directed output.

More than one NAMELI ST statement with the same gr oup- nane may appear within the same
scoping unit. Each successive var -1 i st in multiple NAVELI ST statements with the same
gr oup- nane is treated as a continuation of the list for gr oup- narre.

Chapter 10 369

HP Fortran statements
NAMELIST

The same variable name may appear in different NAVELI ST statements within the same

scoping unit.

Examples

PROGRAM
INTEGER i, j(10)
CHARACTER* 10 ¢

NAMELI ST /nl/ i, j,
! Define the nanelist group nl
READ (UNI T=5, NM.=n1)

WRI TE (6, ni)
END

When this program is compiled and executed with the following input record:

&nl

j(8) =86, 7, 8

i = 5C = " XXXXXXXXX'
j =5*0, -1, 2

c(2:6) = 'abcde'
/

its output is:

&n1

[=5

J =

C =' xabcdexxx'
/

Related statements

ACCEPT, CPEN, | NQUI RE, PRI NT, READ, and Rl TE

Related concepts

Namelist-directed 1/O is described in “Namelist-directed 1/0” on page 181.

00000-126738

370

Chapter 10

HP Fortran statements
NULLIFY

NULLI FY

Disassociates a pointer from a target.

Syntax
NULLI FY (poi nter-object-Ilist)
poi nt er-object-1ist

is a comma-separated list of variable names and derived-type components.

Description

The NULLI FY statement disassociates a pointer from any target. A NULLI FY statement is also
used to change the status of a pointer from undefined to disassociated.

Examples

The following example shows the declaration and use of a variable with the pointer attribute:

REAL, TARGET :: val ue
REAL, PO NTER :: pt
pt.pt => val ue

NULLI FY (pt)

! val ue can be target

! for the pointer

! Associate pt with val ue

! Disassociate pt

! ASSCCI ATED intrinsic is valid in next statement if (and only
! if) pt has been previously allocated, assigned (as above), or
! nullified (as above)

I F (. NOT. ASSOCI ATED(pt)) pt => x

The next example shows how a derived type can be used in list processing applications:

TYPE |ist_node

I NTEGER val ue

TYPE (list_node), PO NTER :: next
END TYPE |ist_node

TYPE (list_node), PONTER :: |ist
ALLCCATE (list) I Create new |ist node
list %value = 28 I Initialize data field

NULLI FY (list %next) ! Nullify pointer to the next node

Related statements

ALLOCATE, DEALLQOCATE, PA NTER, and TARGET

Chapter 10 371

HP Fortran statements
NULLIFY

Related concepts

For information about pointers, see “Pointers” on page 49.

372 Chapter 10

HP Fortran statements
ON (extension)

ON (extension)

Specifies the action to take when program execution is interrupted.

Syntax
ON interrupt-condition action
interrupt-condition

is the interrupt to be handled, either an arithmetic error or a keyboard
interrupt.

action

is one of the following:

e CALLtrap-routine
e ABCRT

- | Q\CRE

where:

trap-routine

is an external subroutine name.

Description

The ONstatement is an HP extension. It is an executable statement that specifies the action to
be taken after the occurrence of an exception that interrupts program execution.

For each i nt errupt - condi ti on, you can specify one of the following actions:

e CALL: specifies a subroutine to be called.
= ABORT: causes the program to abort.
= | GNCRE: causes the interrupt to be ignored.

Table 10-32 lists the range of values for i nt er rupt - condi t i on. The first column identifies
the type of trap; the second gives the keywords that must appear on the O\ statement,
immediately following the word ON; and the third column gives equivalent keywords you can
specify instead of those in the second column. For example, the following ON statement causes
the program to trap an attempt to divide by zero with 8-byte floating-point operands, passing
control to a user-written trap handler called di v_zero_trap:

Chapter 10 373

HP Fortran statements
ON (extension)

ON REAL(8) DIV 0 CALL trap_div_by_zero

The following ONstatement does the same thing, but it specifies the equivalent keywords from

the third column of the table:

ON DOUBLE PRECI SION DIV 0 CALL trap_div_by zero

Table 10-32

Exceptions handled by the ON statement

Exceptions

Exception keywords

Alternate keywords

Division by zero

REAL(4) DIV 0

REAL DIV 0

REAL(8) DIV 0

DOUBLE PRECISION DIV O

REAL(16) DIV 0

(none)

INTEGER(2) DIV 0

INTEGER*2 DV 0

I NTEGER(4) DIV 0

INTEGER DIV O

Overflow REAL(4) OVERFLOWN REAL OVERFLOW
REAL(8) OVERFLOWN DOUBLE PRECQ SI ON OVERFLOW
REAL(16) OVERFLOWN (none)
| NTEGER(2) OVERFLOW | NTECER*2 OVERFLOW
| NTEGER(4) OVERFLOW | NTEGCER OVERFLOW
Underflow REAL(4) UNDERFLOWN REAL UNDERFLOW

REAL(8) UNDERFLOW

DOUBLE PREC S| ON UNDERFLOW

REAL(16) UNDERFLOW (none)
Invalid (illegal) operation | REAL(4) | LLEGAL REAL | LLEGAL
REAL(8) | LLEGAL DOUBLE PREC Sl ON | LLEGAL
REAL(16) | LLEGAL (none)
Inexact result REAL(16) | NEXACT (none)
REAL(4) | NEXACT REAL | NEXACT
REAL(8) | NEXACT DOUBLE PREC Sl ON | NEXACT
Control-C CONTROLC (none)
374 Chapter 10

HP Fortran statements
ON (extension)

To use the ON statement to trap for integer overflow, you must also include the HP
CHECK_OVERFLOWdirective. This is described in the HP Fortran Programmer’s Guide.

Using the ON statement at optimization levels 2 and above is restricted. When compiling at
optimization level 2 or above, the optimizer makes assumptions about the program that do
not take into account the behavior of procedures called by the ON statement. Such procedures
must therefore be “well-behaved”—in particular, they must meet the following criteria:

< The ON procedure must not assume that any variable in the interrupted procedure or in
its caller has its current value. (The optimizer may have placed the variable in a register
to be stored there until after the call to the interrupted procedure is complete.)

= The ON procedure must not change the value of any variable in the interrupted procedure
or in its caller if the effect of the ON procedure is to return program control to the point of
interrupt.

NOTE If you include the ONstatement in a program that is compiled at optimization
level 2 or higher and the program takes an exception, the results may vary from
those you would get from the unoptimized program or from the same program
without the ON statement.

Examples

The following example uses the ONstatement to call the procedure trap_di v_by zero if the
function do_di v is passed 0 in argumenty. If trap_di v_by_ zero is called, it prints an error
message and assigns 0 to the result.

REAL FUNCTI ON do_di v(x, V)

REAL :: X, VY

ON REAL DIV O CALL trap

do_div = x/y | causes an interrupt if y =0
RETURN

END FUNCTI ON do_di v

SUBROUTI NE trap(res)

REAL :: res
PRINT *, "Don't do that."
res =0

END SUBROUTI NE trap

Related concepts

The HP Fortran Programmer’s Guide provides detailed information about using the QN
statement, including example programs that use the ONstatement.

Chapter 10 375

HP Fortran statements
OPEN

CPEN

Connects file to a unit.

Syntax
OPEN (i o-specifier-list)
io-specifier-1list
is a list of the following comma-separated 1/O specifiers:
[UNI T=]uni t

specifies the unit to connect to an external file. uni t must be an integer
expression that evaluates to a number greater than 0. If the optional
keyword UNl T= is omitted, uni t must be the first item in

i o-specifier-list.

ACCESS=char act er - expr essi on

specifies the method of file access. char act er - expr essi on can be one of the
following arguments:

Table 10-33
' DI RECT Open file for direct access.

'SEQUENTI AL' Open file for sequential access
(default).

' PCBI TI ONE To open a file for append (to
APPEND position the file just before the
end-of-file record)

ACTI ON=char act er - expr essi on

specifies the allowed data-transfer operations. char act er - expr essi on can
be one of the following arguments:

Table 10-34
' READ Do not allow WRI TE and
ENDFI LE statements.
'WRITE' Do not allow READ statements.

376 Chapter 10

HP Fortran statements
OPEN

Table 10-34 (Continued)

' READVRI TE Allow any data transfer
statement (default).

BLANK=char act er - expr essi on

specifies treatment of blanks within numeric data on input. This specifier is
applicable to formatted input only. char act er - expr essi on can be one of
the following arguments:

Table 10-35
" NULL' Ignore blanks (default).
' ZERO Substitute zeroes for blanks.

DELI M=char act er - expr essi on

specifies the delimiter to use (if any) when delimiting character constants in
list-directed and namelist-directed formatting. This specifier is applicable to
formatted output only. char act er - expr essi on can be one of the following
arguments:

Table 10-36

" APCSTROPHE Use the apostrophe to delimit
character constants in
list-directed and
namelist-directed formatting.

' QUOTE Use double-quotation marks to
delimit character constants in
list-directed and
namelist-directed formatting.

" NONE Use no delimiter to delimit
character constants in
list-directed and
namelist-directed formatting
(default).

ERR=st t - | abel

specifies the label of the executable statement to which control passes if an
error occurs during statement execution.

Chapter 10 377

HP Fortran statements
OPEN

FI LE=char act er - expr essi on

specifies the name of the file to be connected to uni t .

char act er - expr essi on can also be the ASCII representation of a device
file. If this specifier does not appear in the OPEN statement, a temporary
scratch file is created.

FORM=char act er - expr essi on

specifies whether the file is connected for formatted or unformatted 1/0.
char act er - expr essi on can be one of the following arguments:

Table 10-37

' FORVATTED Specify formatted 1/0. If the file
is to be opened for sequential
access, this is the default.

" UNFORVATTED Specify unformatted 1/O. If the
file is to be opened for direct
access, this is the default.

| STAT=i nteger-vari abl e

returns the 1/0O status after the statement executes. If the statement
successfully executes, i nt eger - var i abl e is set to zero. If an error occurs, it
is set to a positive integer that indicates which error occurred.

PAD=char act er - expr essi on

specifies whether or not to pad the input record with blanks if the record
contains fewer characters than required by the format specification. This
specifier is applicable to formatted input only. char act er - expr essi on can
be one of the following arguments:

Table 10-38
' YES Pad input records with blanks
(if necessary) to fill it out to
length required by format
specification (default).
" NO Do not pad input record with

blanks if it is not as long as
record specified by format
specification.

378 Chapter 10

HP Fortran statements
OPEN

PCSI TI ON=char act er - expr essi on

specifies the position of an existing file to be opened for sequential access.
char act er - expr essi on can be one of the following arguments:

Table 10-39
"ASI S Leave file position unchanged
(default).
" REWND Position the file at its start.
' APPEND Position the file just before the

end-of-file record.

If the file to be opened does not exist, this specifier is ignored. New files are
always positioned at their start.
RECL=i nt eger - expr essi on

specifies the length of each record in a file to be opened for direct access. The
length is measured in characters (bytes). This specifier must be present
when a file is opened for direct access and is ignored if file is opened for
sequential access.

STATUS=char act er - expr essi on

specifies the state of the file when it is opened. char act er - expr essi on can
be one of the following arguments:

Table 10-40

'aLD Open an existing file. FI LE=
must also be specified and the
named file must exist.

" NEW Create a new file. FI LE= must
also be specified and the named
file must not exist.

" UNKNOWN If the file named in FI LE=

exists, open it with the status of
QLD if it does not exist, open it
with the status of NEW This is
the default status.

Chapter 10 379

HP Fortran statements

OPEN
Table 10-40 (Continued)

' REPLACE If the file does not exist, create
it with a status of OLD; if it does
exist, delete it and open it with
a status of NEW If
STATUS="' REPLACE' is specified,
FI LE= must also be specified.

' SCRATCH Create a scratch file. FI LE=
specifier must not be specified.
For information about scratch
files, see “Scratch files” on
page 172.

Description

The OPENstatement connects a unit to a file so that data can be read from or written to that
file. Once a file is connected to a unit, the unit can be referenced by any program unit in the
program.

1/0 specifiers do not have to appear in any specific order in the OPENstatement. However, if
the optional keyword UNI T= is omitted, uni t must be the first item in the list.

Only one unit can be connected to a file at a time. That is, the same file cannot be connected to
two different units. Attempting to open a file that is connected to a different unit will produce
undefined results.

However, multiple OPENs can be performed on the same unit. In other words, if a unit is
connected to a file that exists, it is permissible to execute another GPEN statement for the
same unit. If FI LE= specifies a different file, the previously opened file is automatically closed
before the second file is connected to the unit. If FI LE= specifies the same file, the file remains
connected in the same position; the values of the BLANK=, DELI M=, PAD=, ERR=, and | OSTAT=
specifiers can be changed, but attempts to change the values of any of the other specifiers will
be ignored.

Examples

The following examples illustrate different uses of the OPEN statement.
Opening a file for sequential access

The following OPEN statement connects the existing file i nv to unit 10 and opens it (by
default) for sequential access. Only READ statements are permitted to perform data transfers.
If an error occurs, control passes to the executable statement labeled 100 and the error code is
placed in the variable i os:

380 Chapter 10

HP Fortran statements
OPEN

OPEN(10, FILE="inv', ERR=100, |O0STAT=ios, &
ACTI ON=' READ' , STATUS=' OLD')

Opening a file for direct access

The following CPEN statement opens the file whose name is contained in the variable next 1,
connecting it to unit 4 as a formatted, direct-access file with a record length of 50 characters:

OPEN(ACCESS=" DI RECT”, UNI T=4, RECL=50, &
FORME" FORVMATTED”, FI LE=next 1)

Opening a device for 1/O transfers

The next example connects the system device / dev/ consol e to unit 6; all data transfers that
specify unit 6 will go to this device:

OPEN(6, FI LE=" / DEV/ CONSOLE')
Opening a scratch file

The following two OPEN statements produce the same results: open a scratch file that is
connected to unit 19 (if the FI LE=nane specifier had appeared in the first statement, the
named file would have been opened instead):

OPEN (UNI T=19)
OPEN (UNI T=19, STATUS=" SCRATCH’)

1/0 specifiers in an OPEN statement

Because the 1/O specifiers that can be used in an OPEN statement do not have to appear in any
specific order, the following three OPEN statements are all equivalent:

OPEN(UNI T=3, STATUS=' NEW, FILE=" QUT. DAT")
OPEN(3, STATUS=' NEW, FILE=" OUT. DAT")
OPEN(STATUS='" NEW, FILE=" QUT. DAT', UNI T=3)

Note, however, that in the second OPEN statement the number 3 must appear first because of
the omission of the optional keyword UNl T=. Thus, the following OPEN statement is illegal:

OPEN(STATUS=' NEW, 3, FILE=' OQUT.DAT') ! illegal
Related statements

CLOSE, | NQUI RE, READ, and WRI TE

Related concepts

For information about 1/0O concepts and examples of programs that perform 1/0O, see
Chapter 8, “I/O and file handling,” on page 169. For information about 1/O formatting, see
Chapter 9, “I/O formatting,” on page 201.

Chapter 10 381

HP Fortran statements
OPTIONAL (statement and attribute)

CPTI ONAL (statement and attribute)

Identifies optional arguments for procedures.

Syntax

The syntax of the type declaration statement with the OPTI ONAL attribute is:

type , attrib-list :: dummy-argunent-nane-|ist
type
is a valid type specification (I NTEGER REAL, LOG CAL, CHARACTER, TYPE (
name) , etc.).
attrib-list
is a comma-separated list of attributes including OPTI ONAL and optionally
those attributes compatible with it, namely:
Table 10-41
DI MENSI ON | NTENT TARGET
EXTERNAL PO NTER VOLATI LE

dummy- ar gunent - narre- | i st

is a comma-separated list of dummy- ar gurrent - narres.
The syntax of the OPTI ONAL statement is:
OPTIONAL [::] dumy-argunent-name-|ist

Description

If a dummy argument has the OPTI ONAL attribute, the corresponding actual argument need
not appear in a procedure reference. In cases where there are arguments that generally do not
change from one reference to another, it is convenient to specify that the arguments are
optional and provide default values for them. They can then be omitted from references in
these general cases. The presence of an optional argument in a procedure may be determined
by using the PRESENT intrinsic function.

Many uses of the ENTRY statement in FORTRAN 77 programs can be replaced by the use of
optional arguments.

The following restrictions apply to the use of the OPTI ONAL attribute:

382 Chapter 10

HP Fortran statements
OPTIONAL (statement and attribute)

= The OPTI ONAL attribute may be specified only for dummy arguments. It may occur in a
subprogram and in any corresponding interface body.

< An optional dummy argument whose actual argument is not present may not be
referenced or defined (or invoked if it is a dummy procedure), except that it may be passed
to another procedure as an optional argument and will be considered not present.

< When an argument is omitted in a procedure reference, all arguments that follow it must
use the keyword form.

« If a procedure has an optional argument, the procedure interface must be explicit.

Examples

The following are two examples of the OPTI ONAL statement. In the first example, the call to
the subroutine t ri p can legally omit the path argument because it has the OPTI ONAL
attribute:

CALL TRIP (distance = 17.0) ! path is onmtted
SUBROUTI NE trip (distance, path)
OPTI ONAL di stance, path

In the next example, the subroutine pl ot uses the PRESENT function to determine whether or
not to execute code that depends on the presence of arguments that have the OPTI ONAL
attribute:

SUBROUTI NE pl ot (pts, o_xaxis, o_yaxis, snooth)
TYPE (point) pts
REAL, OPTIONAL :: o_xaxis, o_yaxis
I Origin - default (0.,0.)
LOG CAL, OPTIONAL :: snmooth
REAL ox, oy
| F (PRESENT (o_xaxis)) THEN
OX = o_xaxis
ELSE
ox =0
! Note that the o_xaxis dummy argunent cannot be referenced if
! the actual argument is not present. The sane applies
I to o_yaxis (below).
END | F
| F (PRESENT (o_yaxis)) THEN
oy = o_yaxis
ELSE
oy =0
END | F
| F (PRESENT(snpot h)) THEN
I F (snooth) THEN
! Snooth al gorithm
RETURN
END | F

Chapter 10 383

HP Fortran statements
OPTIONAL (statement and attribute)

END | F

I Plot points
END SUBROUTI NE pl ot

! Sone valid calls to plot.
CALL plot (points)

CALL plot (observed, o_xaxis = 100., o_yaxis = 1000.)
CALL plot (randompts, smooth = .TRUE.)

Related statements

SUBRQUTI NE and FUNCTI ON

Related concepts
For related information, see the following:

= “Type declaration for intrinsic types” on page 27

< “Arguments” on page 139

= The description of the PRESENT intrinsic in Chapter 11, “Intrinsic procedures,” on

page 467

384

Chapter 10

HP Fortran statements
OPTIONS (extension)

CPTI ONS (extension)

Lowers the optimization level used by the HP Fortran compiler.

Syntax
OPTI ONS +On

where +Qn (or - On) specifies a level of optimization that is equal to or less than the level
specified on the command line.

Description

The OPTI ONS statement is an extension of HP Fortran and is used to specify a level of
optimization that is equal to or less than the level specified on the command line. If the level
specified by the CPTI ONS statement is higher than that specified on the command line, the
statement is ignored.

The OPTIONS statement must be placed outside all program units. The changed level of
optimization applies to the beginning of the next program unit and remains in effect for all
succeeding program units or until superseded by another OPTIONS statement or by the
ISHPS$ OPTIMIZE directive.

The OPTIONS statement differs from the OPTIMIZE directive in that the OPTIMIZE
directive enables or disables optimization but does not change the optimization level. The
ISHP$ OPTIMIZE directive is described in the HP Fortran Programmer’s Guide.

The OPTIMIZE directive takes precedence over the OPTIONS statement: when the
OPTIMIZE directive is used to disable optimization, any subsequent OPTIONS statement has
no effect until a later directive enables optimization.

Examples

In the following example, the first OPTIONS statement optimizes the subroutine go_fast at
optimization level 3. The second OPTIONS statement lowers the optimization level to 2.

OPTI ONS +O3
SUBROUTI NE go_f ast

END SUBROUTI NE go_f ast

OPTI ONS +Q2
SUBROUTI NE not _so_f ast

END SUBROUTI NE not _so_f ast

Chapter 10 385

HP Fortran statements
PARAMETER (statement and attribute)

PARAMETER (statement and attribute)

Defines a named constant.

Syntax
A type declaration statement with the PARAMETER attribute is:

type, attrib-list :: cnanel = cexprl[, cnane2 = cexpr2]..
type is a valid type specification (I NTEGER REAL, LOd CAL, CHARACTER, TYPE
(nane), etc.).

attrib-list is a comma-separated list of attributes including PARAMETER and optionally
those attributes compatible with it, namely:

Table 10-42
D MENSI ON PUBLI C
PRI VATE SAVE
Specifying the SAVE attribute in a PARAVETER statement has no effect.
chane is the name that will represent the constant.
cexpr is an initialization expression that evaluates to the constant represented by

cnane. In the case of an array constant, cexpr must be an array constructor.
In the case of a derived type constant, cexpr must be a structure
constructor.

The syntax of the PARAMETER statement is:

PARAMETER (cnanel = cexprl [, cnane2 = cexpr2]...)

Description

The PARAMETER statement associates a symbolic name with a constant. A symbolic name
defined in a PARAMETER statement is known as a named constant. A named constant must
not become defined more than once in a program unit. Once defined, it can be used only as a
named constant. This means that a named constant cannot be assigned a value like a
variable.

When the PARAVETER attribute is used, the value of the named constant must be provided by
the initialization part of the statement in which the PARAMETER attribute appears.

386 Chapter 10

HP Fortran statements
PARAMETER (statement and attribute)

The type of a named constant is determined by the implicit typing rules, unless its type is
specified by a type declaration statement prior to its first appearance in a PARAMETER
statement or by a type declaration statement that includes PARAMETER as one of its attributes.
If a PARAMETER statement declares and implicitly types a named constant, the named constant
may appear in a subsequent type declaration or | MPLI O T statement, but only to confirm the
type of the named constant.

When the type of the symbolic name and the constant do not agree, the value of the named
constant is assigned in accordance with assignment statement type-conversion rules, as given
in Table 5-5.

The following rules apply to type agreement between the constant and the symbolic name:

= If cnane is of numeric type, cexpr must be an arithmetic constant expression.

= Ifcnane is of type character, the corresponding cexpr must be a character constant
expression.

= If cnane is of type logical, the corresponding cexpr may be either an arithmetic or logical
constant expression.

Any symbolic name of a constant that appears in cexpr must have been defined previously in
the same or a different PARAMETER statement in the same program unit. For example, the
expression in the second PARAMETER statement below is built from the expression in the first
PARAMETER statement, and is legal:

PARAMETER (limt = 1000)
PARAMETER (limit _plus 1 = limt + 1)

The logical operators (. EQ ,.NE.,.LT.,.LE ,.GI.,and . Gt), as well as the following
intrinsic functions, can appear in the PARAVETER statement:

Table 10-43
ABS | AND I XOR MAX
CHAR | CHAR LEN M N
COWPLX | EOR LGE MOD
CONJB | MAG LGT N NT
DM IR LLE NOT
DPRCD | SHFT LLT

If these intrinsic functions are used in a PARAMETER statement, their arguments must be
constants.

Chapter 10 387

HP Fortran statements
PARAMETER (statement and attribute)

If the named constant is of type character and its length is not specified, the length must be
specified in a type declaration statement or | MPLI C T statement prior to the first appearance
of the named constant. Its type and/or length must not be changed by subsequent statements,
including | MPLI A T statements. If a symbolic name of type CHARACTER* (*) is defined in a
PARAMETER statement, its length becomes the length of the expression assigned to it.

If the named constant is an array, the bounds must be explicit and determined by an
initialization expression.

Once such a symbolic name is defined, that name can appear in any subsequent statement of
the defining program unit as a constant in an expression or DATA statement.

Examples

! PARAMETER used in a type declaration statement as an attribute
REAL, DI MENSI ON(4), PARAMETER :: const = &
(/1.2, 1.45, 0.9, 24.3/)

| NTEGER year
| PARAMETER used as a statenent
PARAMETER year = 1996

! Type declaration statement declaring a derived-type constant

TYPE (postal _info), PARAMETER :: package = &
postal _info (9.5, (/10.0, 5.5, 2.25/))

Related concepts

For information about the type declaration statement, see “Type declaration for intrinsic
types” on page 27.

388 Chapter 10

HP Fortran statements
PAUSE

PAUSE

Temporarily stops program execution.

Syntax
PAUSE pause- code

pause- code is a character constant or a list of up to 5 digits.

Description

The PAUSE statement suspends program execution and prints a message, depending on
whether digits, characters, or nothing has been specified in the PAUSE statement:

= If digits, the message “PAUSE di gi t s” is written to standard error.

= If a character expression, the message “PAUSE char act er - expr essi on” is written to
standard error.

= If nothing appears after PAUSE, the word “PAUSE” is written to standard error.

After displaying the appropriate message, the PAUSE statement writes to standard output one
of two messages that give information on resuming the program. If the standard input device
is a terminal, the message is:

To resume program execution, type GO

At this point the program is suspended and remains so until the operator types the word QO
and presses the Return key. The program will terminate if anything other than Qis entered.

If the standard input device is other than a terminal, the message is:

To resunme execution, execute a kill -15 pid &

conmand

where pi d is the unique process identification number of the suspended program. This
command can be issued at any terminal at which the user is logged in.

Examples

I Wite "PAUSE 7777" to standard error
PAUSE 7777

I Wite "PAUSE MOUNT TAPE" to standard error
PAUSE ' MOUNT TAPE

Chapter 10 389

HP Fortran statements
PAUSE

I Wite "PAUSE’ to standard error
PAUSE

Related statements

STOP

Related concepts

For information about flow control statements, see “Flow control statements” on page 113.

390 Chapter 10

HP Fortran statements
POINTER (Cray-style extension)

PA NTER (Cray-style extension)

Declares Cray-style pointers and their objects.

Syntax

PO NTER (pointerl, pointeel) [, (pointer2, pointee2)]...

poi nt er is a pointer.
poi nt ee is a variable name or array declarator.
Description

HP Fortran supports both the standard Fortran 90 PO NTER statement as well as the
Cray-style PO NTER statement. The Cray-style PO NTER statement is supported for
compatibility with older, FORTRAN 77 programs. The following information applies only to
the Cray-style PO NTER statement; the Fortran 90 PQ NTER statement is described in
“POINTER (statement and attribute)” on page 394.

The following restrictions apply to poi nt er:

It should be of type | NTEGER(4) . If it is not, the compiler interprets its type as
| NTEGER(4) regardless of other implicit or explicit type declarations.

= It cannot be declared of any other data type.

= Another pointer cannot point to it.

= Itcannot appear in a PARAMETER or DATA statement.

« Itcannot be in a derived type object.

You can increase the size of poi nt er with the +aut odbl or +aut odbl 4 option.

poi nt ee may be of any type, including an array, a derived type, a record, or a character
string.

The following restrictions apply to poi nt ee:

= It cannot be a dummy argument, function name, function value, common block element,
automatic object, generic interface block name, or derived type.

e It cannot be used in a COMON, DATA, EQUI VALENCE, or NAVEL| ST statement.

= It cannot have any of the following attributes: ALLOCATABLE, EXTERNAL, | NTENT,
I NTRI NSI C, CPTI ONAL, PARAMETER, PQA NTER, SAVE, and TARCGET.

Chapter 10 391

HP Fortran statements
POINTER (Cray-style extension)

= Pointees that are arrays with nonconstant bounds can be used only in subroutines and
functions, not in main programs.

= Variables used in an array-bound expression that appears in a PO NTER statement must
be either subprogram formal arguments or common block variables. The value of the
expression cannot change after subprogram entry.

You associate memory with a pointer by assigning it the address of an object. Typically, this is
done with the | i bU77 function, LOC. The LOC function returns the address of its argument,
which can be assigned to a pointer. The following example assigns 0 to the pointee i :

INTEGER i, j
POl NTER (p, i)

P
j

LOC(])
0

You can also use the MALLCC intrinsic to allocate memory from the heap and assign its return
value to a pointer. Once you are done with the allocated memory, you should use the FREE
intrinsic to release the memory so that it is available for reuse.

If you are using the pointer to manipulate a device that resides at a fixed address, you can
assign the address to the pointer, using either an integer constant or integer expression.

Under certain circumstances, Cray-style pointers can cause erratic program
behavior—especially if the program has been optimized. To ensure correct behavior, observe
the following:

= Subroutines and functions must not save the address of any of their arguments between
calls.

= A function must not return the address of any of its arguments.

= Only those variables whose addresses are explicitly taken with the LOC function must be
referenced through a pointer.

Examples

In the following example, the intrinsic MALLOC returns either the address of the block of
memory it allocated or O if MALLOCwas unable to allocate enough memory. The formal
argument nel emcontains the number of array elements and is multiplied by 4 to obtain the
number of bytes that MALLCCis to allocate. The FREE intrinsic returns memory to the heap for
reuse.

SUBROUTI NE print_iarr(nelem
PO NTER (p, iarr(nelem)

p = MALLOC(4*nelem)

392 Chapter 10

HP Fortran statements
POINTER (Cray-style extension)

IF (p. EQ 0) THEN

PRINT *, ' MALLCC failed."'
ELSE

DO i = 1,nelem

iarr(i) =i

END DO

PRINT *, (iarr(i),i=1,nelem

CALL FREE(p)
ENDI F

RETURN
END SUBROUTI NE print_iarr

Related statements

PA NTER (standard Fortran 90)

Related concepts

For related information, see the following:

= “Pointers” on page 49

= The description of the LOCroutine in Table 12-3

= The descriptions of the MALLOC and FREE intrinsics in Chapter 11, “Intrinsic procedures,”
on page 467

Chapter 10 393

HP Fortran statements
POINTER (statement and attribute)

PO NTER (statement and attribute)

Specifies variables with the POINTER attribute.

Syntax

The syntax of a type declaration statement with the PO NTER attribute is:

type, attrib-list :: dummy-argunent-nane-|ist
type
is a valid type specification (I NTEGER REAL, LOG CAL, CHARACTER, TYPE (
name) , etc.).
attrib-list
is a comma-separated list of attributes including PO NTERand optionally
those attributes compatible with it, namely:
Table 10-44
DI MENSI ON PRI VATE SAVE
CPTI ONAL PUBLI C

dummy- ar gunent - narre- | i st
is a comma-separated list of dummy- ar gurrent - narres.
The syntax of the PO NTER statement is:
PO NTER [::] object-name [(deferred-shape-spec-list)]
[, object-nane [(deferred-shape-spec-list)]]...
obj ect - nane
is a data object or function result.
def err ed- shape- spec-1i st

is a comma-separated list of colons.

394 Chapter 10

HP Fortran statements
POINTER (statement and attribute)

Description

A PO NTER attribute or statement specifies that the named variables may be pointers to some
target object. Pointers provide a capability for creating dynamic objects, such as
dynamic-sized arrays and linked lists. An object with a pointer attribute initially has no space
reserved for its target. A pointer is assigned space for its target when an ALLOCATE statement
is executed or when it is assigned to point to a target using a pointer assignment statement.

Examples

In the first example, two array pointers are declared and used.

| Extents are not specified; they are determ ned during execution
REAL, PO NTER :: weight (:,:,:)
REAL, PO NTER :: wreg (:,:,:)

READ *, i, j, k
ALLCCATE (wei ght (i, j, k)) I create weight

! wreg is an alias for an array section
w.reg => weight (3:i-2, 3:j-2, 3:k-2)
avg_w = sum (w_reg) / ((i-4) * (j-4) * (k-4))

DEALLOCATE (weight) ! weight no | onger needed
The next example illustrates the use of pointers in a list-processing application.

TYPE |ink

REAL val ue

TYPE (link), PO NTER :: next
END TYPE li nk

TYPE(link), PONTER :: |ist, save_list
NULLI FY (list) I Initialize list
DO

READ (*, *, | OSTAT = no_nore) val ue
IF (no_nore /=0) EXIT
save_list => list
ALLCCATE (list) ! Add link to head of |ist
list %value = value
list %next => save_list
END DO
! Linked list renoved when no | onger needed
DO
I F (.NOT. ASSOCI ATED (list)) EXIT
save_list => list % next
DEALLOCATE (i st)
list => save_list
END DO

Chapter 10 395

HP Fortran statements
POINTER (statement and attribute)

Related statements

ALLOCATE, DEALLQOCATE, NULLI FY and TARGET

Related concepts
For related information, see the following:

< “Pointers” on page 49

= “Pointer assignment” on page 97

= The description of the ASSOO ATED intrinsic in Chapter 11, “Intrinsic procedures,” on

page 467.

396

Chapter 10

HP Fortran statements
PRINT

PRI NT

Writes to standard output.

Syntax
The syntax of the PRI NT statement can take one of two forms:

= Formatted and list-directed syntax:
PRINT fornmat [, output-list]

= Namelist-directed syntax:

PRI NT nane

f or mat is one of the following:
= An asterisk (*), specifying list-directed 1/O.
= The label of a FORVAT statement containing the format specification.
< An integer variable that has been assigned the label of a FORVAT

statement.

< An embedded format specification.

nane is the name of a namelist group, as previously defined by a NAMELI ST
statement . Using the namelist-directed syntax, the PRI NT statement sends
data in the namelist group to standard output. To direct output to a
connected file, you must use the WRl TE statement and include the NM_=
specifier.

out put -1i st is a comma-separated list of data items for output. The data items can
include expressions and implied-DOlists.

Description

The PRI NT statement transfers data from memory to standard output. (Unit 6 is preconnected
to the HP-UX standard output.) The PRI NT statement can be used to perform formatted,
list-directed, and namelist-directed 1/O only.

To direct output to a connected file, use the WRI TE statement.

Examples

The examples in this section illustrate different uses of the PR NT statement.

Chapter 10 397

HP Fortran statements
PRINT

Formatted output

The following statement writes the contents of the variables numand des to standard output,
using the format specification in the FORVAT statement at label 10:

PRI NT 10, num des
List-directed output

The following statement uses list-directed formatting to print the literal string x= and the
value of the variable x:

PRINT *, 'x=', X
Embedded format specification

The following statement uses an embedded format specification to print the same output:
PRINT ' (A2, F8.2)', 'x=', X

Namelist-directed output

The following statement prints all variables in the namelist group coor d, using
namelist-directed formatting:

PRI NT coord
Related statements

FORVAT and WRI TE

Related concepts

For related information, see the following:

< ‘“List-directed 1/0” on page 178

< “Embedded format specification” on page 230

< “Implied-DO loop” on page 191

398 Chapter 10

HP Fortran statements
PRIVATE (statement and attribute)

PRI VATE (statement and attribute)

Prevents access to module entities by use association.

Syntax

The syntax of a type declaration statement with the PRI VATE attribute is:

type, attrib-list :: access-id-list
type is a valid type specification (I NTEGER REAL, LOG CAL, CHARACTER, TYPE (
name), etc.).
attrib-list is a comma-separated list of attributes including PRI VATE and optionally
those attributes compatible with it, namely:
Table 10-45
ALLOCATABLE I NTRI NSI C SAVE
DI MENSI ON PARAMVETER TARGET
EXTERNAL PO NTER

access-id-1i st is a comma-separated list of one or more of the following:

= constant-nane
e vari abl e-nane
e procedur e- narre
« defined-type- namre
< nanel i st-group-name
e OPERATOR(operator)
« ASSI GNVENT (=)
The syntax of the PRI VATE statement is:

PRI VATE [[::] access-id-list]

Chapter 10 399

HP Fortran statements
PRIVATE (statement and attribute)

Description

The PRI VATE attribute may appear only in the specification part of a module. The default
accessibility in a module is PUBLI C; it can be changed to PRI VATE using a statement without a
list. However, only one PRI VATE accessibility statement without a list is permitted in a
module.

The PRI VATE attribute in a type statement or in an accessibility statement restricts the
accessibility of entities such as module variables, type definitions, functions, and named
constants. USE statements may restrict accessibility further.

A derived type may contain a PRI VATE attribute or an internal PRl VATE statement, if it is
defined in a module. The internal PR VATE statement in a type definition makes the
components unavailable outside the module even though the type itself might be available.

The PR VATE statement may also be used to restrict access to subroutines, generic specifiers,
and namelist groups.

The PR VATE specification for a generic name, operator, or assignment does not apply to any
specific name unless the specific name is the same as the generic name.

Examples

MODULE fouri er
REAL :: X, y, z ! PUBLIC (default)
COWLEX, PRIVATE :: fft | PRIVATE, accessible only in nodule
TYPE (structure_name), PRIVATE :: structure_a, structure_b
! a, b and c are accessible only within this nodul e
PRIVATE a, b, c
! r, s, and t are accessible outside the nodul e
PUBLIC r, s, t
END MODULE fouri er

MODULE pl ace
PRI VATE | Change default accessibility to PRI VATE
| NTERFACE OPERATOR (. st.)
MODULE PROCEDURE xst
END | NTERFACE

! nake .st. public; everything else is private
PUBLI C OPERATOR (. st.)
LOG CAL, DI MENSION (100) :: It
CHARACTER(20) :: name
INTEGER i X, iy
END MODULE pl ace

Related statements

PUBLI C and USE

400 Chapter 10

HP Fortran statements
PRIVATE (statement and attribute)

Related concepts
For related information, see the following:

= “Type declaration for intrinsic types” on page 27

< “Modules” on page 158

Chapter 10 401

HP Fortran statements
PROGRAM

PROGRAM

Identifies the main program unit.

Syntax
PROGRAM nane

name is the name of the program.

Description

The optional PROGRAMstatement assigns a name to the main program unit. name does not
have to match the main program'’s filename. However, if the corresponding END PROGRAM
statement specifies a name, it must match narre.

If the PROGRAMSstatement is specified, it must be the first statement in the main program unit.

Examples
I A programwi th a nane
PROGRAM nwi n_pr ogr am

PRINT *, 'This program doesn't do nuch.'
END PROGRAM nmi n_program

Related statements

END

Related concepts

For information about the main program unit, see “Main program” on page 126.

402 Chapter 10

HP Fortran statements
PUBLIC (statement and attribute)

PUBLI C (statement and attribute)

Enables access to module entities by use association.

Syntax

The syntax of a type declaration statement with the PUBLI Cattribute is:

type, attrib-list :: access-id-list
type is a valid type specification (I NTEGER REAL, LOG CAL, CHARACTER, TYPE (
nane) , etc.).
attrib-list is a comma-separated list of attributes including PUBLI Cand optionally
those attributes compatible with it, namely:
Table 10-46
ALLOCATABLE I NTRI NSI C SAVE
DI MENSI ON PARAVETER TARGET
EXTERNAL PO NTER VOLATI LE

access-id-1i st isacomma-separated list of one or more of the following:

e constant-nane
e vari abl e-nane
e procedur e- narre
« defined-type- namre
< nanel i st-group-name
e OPERATOR(operator)
« ASSI GNVENT (=)
The syntax of the PUBLI Cstatement is:

PUBLIC [[::] access-id-list]

Chapter 10 403

HP Fortran statements
PUBLIC (statement and attribute)

Description

The PUBLI Cattribute may appear only in the specification part of a module. The default
accessibility in a module is PUBLI C, it can be reaffirmed using a PUBLI Cstatement without a
list. However, only one PUBLI C accessibility statement without a list is permit ted in a
module.

The PUBLI Cattribute in a type statement or in an accessibility statement permits access to
entities such as module variables, type definitions, functions, and named constants. USE
statements may control accessibility further.

A derived type may contain a PUBLI Cattribute or an internal PUBLI Cstatement, if it is
defined in a module.

The PUBLI Cstatement may also be used to permit access to sub routines, generic specifiers,
and namelist groups.

The PUBLI Cspecification for a generic name, operator, or assignment does not apply to any
specific name unless the specific name is the same as the generic name.

Examples
MODULE fouri er
PUBLI C ! PUBLIC unless explicitly PRI VATE
COWLEX, PRIVATE :: fft ! fft accessible only in nodule
PRIVATE a, b, c ! accessible only in nodule
PUBLIC r, s, t ! accessi bl e outside the nodul e

END MODULE f ouri er

MODULE pl ace
PRI VATE | Change default accessibility to PRI VATE
| NTERFACE OPERATOR (. st.)
MODULE PROCEDURE xst
END | NTERFACE

! Make .st. public; everything else is private
PUBLI C OPERATOR (. st.)
LOG CAL, DI MENSION (100) :: It
CHARACTER(20) :: nanme
INTEGER i X, iy
END MODULE PLACE

Related statements

PR VATE and USE

Related concepts

For related information, see the following:

404 Chapter 10

HP Fortran statements
PUBLIC (statement and attribute)

= “Type declaration for intrinsic types” on page 27

< “Modules” on page 158

Chapter 10 405

HP Fortran statements
READ

READ

Inputs data from external and internal files.

Syntax
The syntax of the READ statement can take one of the following forms:
= Long form (for use when reading from a connected file):
READ (i o-specifier-list) [input-list]
= Short form (for use when reading from standard input):
READ format [, input-list]
= Short namelist-directed form (for use when reading from standard input into a namelist
group):
READ nane
i o-specifier-list
is a list of the following comma-separated 1/O specifiers:
[UNIT=] uni t

specifies the unit connected to the input file. uni t can be one of the
following:

= The name of a character variable, indicating an internal file

= An integer expression that evaluates to the unit connected to an
external file

= An asterisk, indicating a pre-connection to unit 5 (standard input)

If the optional keyword UNI T=is omitted, uni t must be the first item in
i o-specifier-list.

[FMr=] f or mat

specifies the format specification for formatting the data. f or nat can be one
of the following:

= An asterisk (*), specifying list-directed 1/O.

= The label of a FORVAT statement containing the format specification.

406 Chapter 10

HP Fortran statements
READ

= Aninteger variable that has been assigned the label of a FORVAT
statement.

= A character expression that provides the format specification.

If the optional keyword FMI'= is omitted, f or mat must be the second item in
i o-specifier-list.

NOTE The NML= and FMT= specifier may not both appear in the same
i o-specifier-list.

[NVL=] narre

specifies the name of a namelist group for namelist-directed input. name
must have been defined in a NAMELI ST statement. If the optional keyword
NM_= is omitted, nane must be the second item in the list. The first item
must be the unit specifier without the optional keyword UN T=.

The NML= and FMr'= specifier may not both appear in the same
i o-specifier-list.

ADVANCE=char act er - expr essi on

Table 10-47

" YES

" NO

END=st nt - | abel

ECR=st nt - | abel

specifies whether to use advancing 1/O for this statement.
char act er - expr essi on can be one of the following arguments:

Use advancing formatted
sequential 1/O (default).

Use nonadvancing formatted
sequential 1/0.

If the ADVANCE= specifier appears ini o- specifier-1list, unit mustbe
connected to an external file opened for formatted sequential 1/0. Also,
ADVANCE=' NO must be specified if the ECR=or Sl ZE= specifier appear in the
list. Nonadvancing I/O is incompatible with list-directed and namelist 1/O.

specifies the label of the executable statement to which control passes if an
end-of-file record is encountered. This specifier is only valid for reading files
opened for sequential access.

Chapter 10

407

HP Fortran statements

READ

specifies the label of the executable statement to which control passes if an
end-of-record condition is encountered. This specifier may appear in
i o-specifier-list onlyif ADVANCE=' NO also appears in the list.

| STAT=i nteger-vari abl e

returns the 1/O status after the statement executes. If the statement
successfully executes, i nt eger - var i abl e is set to zero. If an end-of-file
record is encountered without an error condition, it is set to a negative
integer. If an error occurs, i nt eger - vari abl e is set to a positive integer
that indicates which error occurred.

REC=i nt eger - expr essi on

specifies the number of the record to be read from a file connected for direct
access. This specifier cannot appear ini o-speci fier-1li st with the NML=,
ADVANCE=, S| ZE=, and ECR= specifiers, nor with FMI=* (for list-directed 1/0).

Sl ZE=i nt eger -vari abl e

i nput-1ist

f or mat

nane

returns the number of characters that have been read by this READ
statement. This specifier may appear ini o-speci fi er-1ist only if
ADVANCE=" NO also appears in the list.

is a comma-separated list of data items for input. The data items can
include variables and implied-DOlists.

is one of the following:

< An asterisk (*), specifying list-directed 1/0.
= The label of a FCRVAT statement containing the format specification.

= Aninteger variable that has been assigned the label of a FORVAT
statement.

< An e