
The wave of new technologies in genomics — such as 
‘third-generation’ sequencing technologies1, sophisti-
cated imaging systems and mass spectrometry-based 
flow cytometry2 — are enabling data to be generated at 
unprecedented scales. As a result, we can monitor the 
expression of tens of thousands of genes simultane-
ously3,4, score hundreds of thousands of SNPs in indi-
vidual samples5, sequence an entire human genome for 
less than US$5,000 (Ref. 6) and relate these data patterns 
to other biologically relevant information.

In under a year, genomics technologies will enable 
individual laboratories to generate terabyte or even 
petabyte scales of data at a reasonable cost. However, the 
computational infrastructure that is required to maintain 
and process these large-scale data sets, and to integrate 
them with other large-scale sets, is typically beyond the 
reach of small laboratories and is increasingly posing 
challenges even for large institutes.

Luckily, the computational field is rife with possibilities  
for addressing these needs. Life scientists have begun to 
borrow solutions from fields such as high-energy parti-
cle physics and climatology, which have already passed 
through similar inflection points. Companies such as 
Microsoft, Amazon, Google and Facebook have also 
become masters of petabyte-scale data sets — as they 
have been linking pieces of data that are distributed over 
a massively parallel architecture in response to a user’s 
requests and presenting them to the user in a matter 
of seconds. Following these advances made by others, 
we provide an overview and guidance on the types of 
computational environments that currently exist and 

that, in the immediate future, can tackle many of the big  
data problems now being faced by the life sciences.

Computational solutions range from cloud-based  
computing to an emerging revolution in high-speed, low-
cost heterogeneous computational environments. But are 
life scientists ready to embrace these possibilities? If you 
are a life scientist confronted with the task of analysing 
a Mount Everest of data, and you are wondering how to 
derive meaning from them using Microsoft Excel 2007’s 
1,048,576 row and 16,384 column limit, then this article 
will take you through the steps needed to allow you to 
compete with more computationally savvy groups.

In this Review, we define the typical workflows asso-
ciated with the generation of high-throughput biological 
data, the challenges in those workflows, and how cloud 
computing and heterogeneous computational environ-
ments can help us to overcome these challenges. We then 
describe how complex data sets can be distilled to obtain 
higher-order biological relationships, and we discuss the 
direction that computation must take to help us to fur-
ther our understanding at the cellular, tissue, organism, 
population and community levels.

Challenges posed by large-scale data analysis
Understanding how living systems operate will require 
the integration of the many layers of biological informa-
tion that high-throughput technologies are generating.

As an example, the amount of data from large projects 
such as 1000 Genomes will collectively approach the 
petabyte scale for the raw information alone. The situ-
ation will soon be exacerbated by third-generation 
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Petabyte
Refers to 1012 bytes. Many large 
computer systems now have 
many petabytes of storage.

Cloud-based computing
The abstraction of the 
underlying hardware 
architectures (for example, 
servers, storage and 
networking) that enable 
convenient, on-demand 
network access to a shared 
pool of computing resources 
that can be readily provisioned 
and released.

Computational solutions to large-scale 
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Abstract | Today we can generate hundreds of gigabases of DNA and RNA sequencing 
data in a week for less than US$5,000. The astonishing rate of data generation by these 
low-cost, high-throughput technologies in genomics is being matched by that of other 
technologies, such as real-time imaging and mass spectrometry-based flow cytometry. 
Success in the life sciences will depend on our ability to properly interpret the large-scale, 
high-dimensional data sets that are generated by these technologies, which in turn 
requires us to adopt advances in informatics. Here we discuss how we can master  
the different types of computational environments that exist — such as cloud and 
heterogeneous computing — to successfully tackle our big data problems.
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Heterogeneous 
computational 
environments
Computers that integrate 
specialized accelerators, for 
example, graphics processing 
units (GPUs) or field- 
programmable gate arrays 
(fPGAs), alongside general 
purpose processors (GPPs).

High-performance 
computing
A catch-all term for hardware 
and software systems that  
are used to solve ‘advanced’ 
computational problems.

Bayesian network
A network that captures causal 
relationships between variables 
or nodes of interest (for 
example, transcription levels of 
a gene, protein states, and so 
on). Bayesian networks enable 
the incorporation of prior 
information in establishing 
relationships between nodes.

NP hard
for the purposes of this paper, 
NP hard problems are some of 
the most difficult computational 
problems; as such, they are 
typically not solved exactly,  
but with heuristics and 
high-performance computing.

Algorithm
A well-defined method or list 
of instructions for solving  
a problem.

Parallelization
Parallelizing an algorithm 
enables different tasks  
that are carried out by  
its implementation to be 
distributed across multiple 
processors, so that  
multiple tasks can be  
carried out simultaneously.

sequencing technologies7 that will enable us to scan 
entire genomes, microbiomes and transcriptomes and 
to assess epigenetic changes directly8 in just minutes,  
and for less than US$100. To this should be added data 
from imaging technologies, other high-dimensional 
sensing methods and personal medical records. Although 
processing individual data dimensions is complex (for 
example, uncovering functional DNA variation in mul-
tiple cancer samples using whole-genome sequencing), 
the true challenge is in integrating the multiple sources 
of data. Mining such large high-dimensional data sets 
poses several hurdles for storage and analysis. Among 
the most pressing challenges are: data transfer, access 
control and management; standardization of data for-
mats; and accurate modelling of biological systems by 
integrating data from multiple dimensions.

Data transfer, access control and management. Analysis 
results can markedly increase the size of the raw data, 
given that all relationships among DNA, RNA and other 
variables of interest are stored and mined. Therefore, it is 
important to efficiently move these big data sets around 
the internet, to provide for access control if the data are 
stored centrally (to reduce storage costs) and to properly 
organize large-scale data in ways that facilitate analyses. 
Network speeds are too slow to enable terabytes of data 
to be routinely transferred over the web. Currently, the 
most efficient mode of transferring large quantities of 
data is to copy the data to a big storage drive and then 
ship the drive to the destination. This is inefficient and 
presents a barrier for data exchange between groups. one 
solution is to house the data sets centrally and bring the 
high-performance computing (HPC) to the data. Although 
this is an attractive solution, it presents access control 
challenges, as groups generating the data may want to 
retain control over who can access the data before they 
are published. Furthermore, controlling access to big 
data sets requires IT support, which is costly.

Mining the data for discovery crucially requires man-
aging and organizing big data sets — consider, for exam-
ple, the task of comparing whole-genome sequence data 
from multiple tumour and matched adjacent normal tis-
sue pairs. Retrieving sequences, over all pairs, that map 
to many different genomic regions would not be trivial 
on inappropriately organized data.

Standardizing data formats. Different centres generate  
data in different formats, and some analysis tools  
require data to be in particular formats or require different 
types of data to be linked together. Thus, time is wasted 
reformatting and re-integrating data multiple times 
during a single analysis. For example, next-generation  
sequencing companies do not deliver raw sequencing 
data in a format common to all platforms, as there is 
no industry-wide standard beyond simple text files that 
include the nucleotide sequence and the corresponding 
quality values. As a result, carrying out sequence analyses 
across different platforms requires tools to be adapted to  
specific platforms.

It is therefore crucial to develop interoperable sets of 
analysis tools that can be run on different computational 

platforms depending on which is best suited for a given 
application, and then stitch those tools together to form 
analysis pipelines.

Modelling the results. A primary goal for biological 
researchers is to integrate diverse, large-scale data sets 
to construct models that can predict complex pheno-
types such as disease. As mentioned above, constructing 
predictive models can be computationally demanding. 
Consider, for example, reconstructing Bayesian networks 
using large-scale DNA or RNA variation, DNA–protein 
binding, protein interaction, metabolite and other types 
of data. As the scales and diversity of the data grow, this 
type of modelling will become increasingly important 
for representing complex systems and predicting their 
behaviour. Computationally, however, the need for this 
type of modelling poses an intense problem that falls 
into the category of NP hard problems9 (fIG. 1). Finding 
the best Bayesian network by searching through all pos-
sible networks is a complex process; this is true even in 
cases in which there are only ten genes (or nodes), given 
that there would be in the order of 1018 possible net-
works. As the number of nodes increases, the number 
of networks to consider grows superexponentially. The 
computational environments that are required to organ-
ize vast amounts of data, build complex models from 
them and then enable others to interpret their data in the 
more informative context of existing models are beyond 
what is available today in the life sciences.

Meeting the challenge
Understanding your computational problem. Addressing 
big data and computational challenges requires effi-
ciently targeting limited resources — money, power, 
space and people — to solve an application of interest. 
In turn, this requires understanding and exploiting the 
nature of the data and the analysis algorithms. Factors 
that must be taken into account to solve a particular 
problem most efficiently include: the size and complex-
ity of the data; the ease with which data can be efficiently 
transported over the internet; whether the algorithm 
to apply to the data can be efficiently parallelized; and 
whether the algorithm is simple (for example, an algo-
rithm used to compute the mean and standard deviation 
of a vector of numbers) or complex (for example, an 
algorithm applied to reconstructing Bayesian networks 
through the integration of diverse types of large-scale  
data) (BOX 1).

one of the most important aspects to consider for 
computing large data sets is the parallelization of the 
analysis algorithms. Computationally or data-intensive  
problems are primarily solved by distributing tasks 
over many computer processors. Because different 
algorithms used to solve a problem are amenable to 
different types of parallelization, different computa-
tional platforms (TABLe 1) are needed to achieve the  
best performance.

We can classify the types of parallelism into two 
broad categories: loosely coupled (or coarse-grained) 
parallelism and tightly coupled (or fine-grained) par-
allelism. In loosely coupled parallelism, little effort is 
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Figure 1 | Generating and integrating large-scale, 
diverse types of data. Modelling living systems  
will require generating (a) and integrating (b) 
multidimensional data sets. In b, large-scale, complex 
data sets are shown as a network in which the nodes 
represent variables of biological interest, such as  
DNA variation, RNA variation, protein levels, protein 
states, metabolite levels and disease-associated traits, 
and the edges between these nodes represent causal 
relationships between the variables. These more 
granular networks (at the gene level) can be effectively 
summarized into subnetworks (c) that interact with  
one another both within and between tissues. In this 
way, a network-centred view is obtained of how core 
biological processes interact with one another to 
define physiological states associated with disease.  
Part b is adapted, with permission, from Ref. 40 © (2009) 
Macmillan Publishers Ltd. All rights reserved.

Markov chain Monte Carlo
A general method for 
integrating over probability 
distributions so that inferences 
can be made around model 
parameters or predictions  
can be made from a model of 
interest. The sampling from  
the probability distributions 
required for this process draws 
samples from a specially 
constructed Markov chain: a 
discrete time random process 
in which the distribution of a 
random variable at a given 
point in time given the random 
variables at all previous time 
points is only dependent on 
the distribution of the random 
variable directly preceding it.

using a Markov chain Monte Carlo (MCMC) method that 
combines the two types of parallelism: the construction 
of each Markov chain is a coarsely parallel problem, but 
the construction of each chain is also an example of a 
fine-grained parallelism in which the algorithm was 
coded using MPI.

Computational solutions. Solutions to integrating 
the new generation of large-scale data sets require 
approaches akin to those used in physics, climatology 
and other quantitative disciplines that have mastered the 
collection of large data sets. Cloud computing and het-
erogeneous computational environments are relatively 
recent inventions that address many of the limitations 
mentioned above relating to data transfer, access control, 
data management, standardization of data formats and 
advanced model building (fIG. 2).

Compared to general purpose processors (GPPs),  
heterogeneous systems can deliver a tenfold increase or 
greater in peak arithmetic throughput for a few hun-
dred US dollars. Cloud computing can make large-scale 

required to break up a problem into parallel tasks. For 
example, consider the problem of computing all genetic 
associations between thousands of gene expression traits 
and hundreds of thousands of SNP genotypes assayed 
in a tissue-specific cohort10. Each SNP–trait pair (or a 
given SNP tested against all traits) can be computed 
independently of the other pairs, so the computation 
can be carried out on independent processors or even 
completely separate computers. Conversely, tightly 
coupled parallelism requires a substantial program-
ming effort, and possibly specialized hardware, because 
communication between the different parallel tasks 
using specialized frameworks must be maintained with 
minimal delay. The message passing interface (MPI)11 
is an example of such a framework. In the context of 
the example just given involving the genetics of gene 
expression, instead of testing for SNP–trait associations 
independently, one could seek to partition the traits 
into modules of interconnected expression traits that 
are associated with common sets of SNPs12. This same 
problem was also solved through a Bayesian approach12 
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General purpose processor
A microprocessor designed for 
many purposes. It is typified  
by the ×86 processors made  
by Intel and AMD and used  
in most desktop, laptop and 
server computers.

OPs/byte
A technical metric that 
describes how many 
computational operations 
(OPs) are performed per byte 
of data accessed, and where 
those bytes originate.

computational clusters readily available on a pay-as-
you-need basis. But both approaches have trade-offs 
that result from trying to optimize for peak perform-
ance (heterogeneous systems) or low-cost and flexibility 
(cloud computing).

It is important that the working scientists understand 
the advantages and disadvantages of these different com-
putational platforms and the problems to which they are 
best suited (TABLe 1). Computational platforms can be clas-
sified by the performance characteristic that they aim to 
optimize and how they allocate resources to do so. In the 
following sections we attempt to address exactly this issue, 
with particular attention to how heterogeneous systems 
and cloud computing have changed the traditional cost–
capability trade-offs that users consider when deciding 
on the approach that best suits their computing needs. 
We provide an overview of these computational systems 
and directions for choosing the ideal computational  
architecture for an application of interest.

Cloud computing and MapReduce
Cluster-based and grid computing. HPC has been 
transformed in the past decade by the maturation of 
‘cluster-based computing’ (fIG. 2). With a wide range  
of components available (for example, different net-
works, computational nodes and storage systems), clusters 
can be optimized for many classes of computationally 
intense applications. Consider the annotation of genes 
predicted in novel bacterial genomes, an important 
research problem for understanding microbiomes and 
how they interact with our own genomes to alter phe-
notypes of interest13–15. Using BLASTP16 to search 6,000 
predicted genes against, say, the non-redundant protein 
(NR) database is a moderately computationally intense 
problem. Searching one gene against the NR database 
on a standard desktop computer would take ~30 s, 
so searching all 6,000 predictions could take 4 days. 
Distributing the searches over 1,000 central processing 
units (CPUs) would complete the search in less than  
10 min. Although not all applications experience 
improvements on this scale, cluster-based comput-
ing can markedly accelerate these types of operations. 
However, there is a significant cost associated with 
building and maintaining a cluster. Even after the hard-
ware components are acquired and assembled to build 
an HPC cluster, substantial costs are associated with 
operating the cluster, including those of space, power, 
cooling, fault recovery, backup and IT support. In this 
sense a cluster contrasts with grid computing, an earlier  
form of cluster-like computing. Here, a combination of 
loosely coupled networked computers that are adminis-
trated independently work together on common com-
putational tasks at low or no cost, as individual computer 
owners volunteer their systems for such efforts (for  
example, the Folding@Home project).

Cloud computing. More recently, supercomputing has 
been made more accessible and affordable through the 
development of virtualization technology. virtualization 
software allows systems to behave like a true physical 
computer, but with the flexible specification of details 
such as number of processors, memory and disk size, 
and operating system. Multiple virtual machines can often 
be run from a single physical server, providing signifi-
cant cost savings in server hardware, administration  
and maintenance.

The use of these on-demand virtual computers17,18 is 
known as cloud computing. The combination of virtual 
machines and large numbers of affordable CPUs has 
made it possible for internet-based companies such as 
Amazon, Google and Microsoft to invest in ‘mega-scale’ 
computational clusters and advanced, large-scale data-
storage systems. These companies offer on-demand 
computing to tens of thousands of users simultaneously, 
with flexible computer architectures that can manipulate  
and process petabyte scales of data (BOX 2).

Advantages of cloud computing. Cloud computing 
platforms offer a convenient solution for addressing 
computational challenges in modern genetics research, 
beyond what could be achieved with traditional on-site 

 Box 1 | Understanding the informatics components of your problem

Selecting the best computational platform for your problem of interest requires an 
understanding of the magnitude and complexity of the data, as well as the memory, 
network bandwidth and computational constraints of the problem. This is because 
different platforms have different strengths and weaknesses with respect to these 
constraints. One of the key technical metrics to consider is OPs/byte. Others are 
described below.

Understanding the nature of the data
•	Can the data be efficiently copied via the internet to the computational environment 

in which it will be processed along with other data? The size of your data set, the 
location of other data sets needed to process your data set and the network speed 
between the data set locations and computational environment determine whether 
your problem will be ‘network bound’.

•	Can the data be efficiently managed on a single disk-storage device for processing,  
or do they need to be distributed over many disk storage systems? Extremely large 
data sets that cannot be processed on a single disk, but instead demand a distributed 
storage solution for processing, are said to be ‘disk bound’.

•	Can the data be efficiently managed for processing by existing computer memory? 
Certain applications, such as constructing weighted co-expression networks36, 
operate on the data most efficiently if they are held in a computer’s random access 
memory (RAM). If the data set is too large to hold in memory for a particular 
application, the application is said to be ‘memory bound’.

Disk- and network-bound applications may be more dependent on the broader 
system than on the type of processor. These types of applications benefit from 
targeted investment in system components or a distributed approach that assembles 
large, aggregate memory or disk bandwidth from clusters of low-cost, low-power 
components37. In some instances, such as during the construction of weighted 
co-expression networks, expensive special-purpose supercomputing resources may 
be required.

Understanding the analysis algorithms
•	Does the processing require algorithms that are computationally intense, such as  

the class of NP hard algorithms? Reconstructing Bayesian networks is an example of 
an NP hard problem, that is, one that requires supercomputing resources (resources 
capable of trillions of floating point operations per second or more) to solve 
effectively and in a timely manner. Such problems are considered to be 
‘computationally bound’.

•	Computationally bound applications can benefit from a particular processor or the 
use of a specialized hardware accelerator. This was the case in the early days of DNA 
and protein sequencing: determining best alignments was a computationally intense 
operation. Popular algorithms such as the Smith–Waterman alignment algorithm 
were substantially accelerated using specialized hardware.

R E V I E W S

650 | SEPTEMBER 2010 | voLUME 11  www.nature.com/reviews/genetics

© 20  Macmillan Publishers Limited. All rights reserved10



Random access memory
Computer memory that can  
be accessed in any order.  
It typically refers to the 
computer system’s main 
memory and is implemented 
with large-capacity, volatile 
DRAM modules.

Cluster
Multiple computers linked 
together, typically through  
a fast local area network,  
that effectively function  
as a single computer.

Cluster-based computing
An inexpensive and scalable 
approach to large-scale 
computing that lowers costs  
by networking hundreds to 
thousands of conventional 
desktop central processing 
units together to form  
a supercomputer.

clusters. For example, paying for cloud computing is 
typically limited to what you use — that is, the user 
requests a computer system type on demand to fit their 
needs and only pays for the time in which they used 
an instance of that system. Administrative functions 
such as backup and recovery are included in this cost. 
This pay-as-you-go model provides enormous flex-
ibility: a computational job that would normally take 
24 hours to complete on a single virtual computer can 
be sped up to 1 hour on 24 virtual computers for the 
same nominal cost. Such flexibility is difficult to achieve 
in the life sciences outside the large data centres in the 
genome sequencing centres or larger research institutes, 
but it can be achieved by anyone leveraging the cloud 
computing services offered by large information cen-
tres such as Amazon or Microsoft. In fact, Microsoft 
Research and the US National Science Foundation 
(NSF) recently initiated a programme to offer individual 
researchers and research groups selected through NSF’s 
merit review process free access to advanced cloud 
computing resources (see ‘Microsoft and the National 
Science Foundation enable research in the cloud’ on the 
Microsoft News Center website).

In addition to flexibility, cloud computing addresses 
one of the challenges relating to transferring and sharing 
data, because data sets and analysis results held in the 
cloud can be shared with others. For example, Amazon 
Web Services provides access to many useful data sets, 
such as the Ensembl and 1000 Genomes data. Also, to 
minimize cost and maximize flexibility, cloud vendors 
offer almost all aspects of the computer system, not just 
the CPU, as a service. For example, persistent data are 
often maintained in networked storage services, such as 
Amazon S3.

Disadvantages of cloud computing. The downsides of 
cloud computing are a reduced control over the distri-
bution of the computation and the underlying hardware, 
and the time and cost that are required to transfer large 
volumes of data to and from the cloud. Although cloud 
computing offers flexibility and easy access to big com-
putational resources, it does not solve the data transfer 
problem. Network bandwidth issues make the transfer of  
large data sets into and out of the cloud or between 
clouds impractical, making it difficult for groups using 
different cloud services to collaborate easily.

Table 1 | Main categories of high-performance computing platforms

Large-scale 
computing 
platform

computing architectures Advantages Disadvantages example applications

Cluster 
computing

Multiple computers linked 
together, typically through a fast 
local area network, that effectively 
function as a single computer

Cost-effective way to 
realize supercomputer 
performance

Requires a dedicated, 
specialized facility, 
hardware, system 
administrators and  
IT support

•	BLAST
•	Bayesian network reconstruction
•	Computing genetic associations in 

large-scale GWA studies

Cloud 
computing

Computing capability that 
abstracts the underlying hardware 
architectures (for example, 
servers, storage and networking), 
enabling convenient, on-demand 
network access to a shared pool of 
computing resources that can be 
readily provisioned and released 
(NIST Technical Report)

The virtualization 
technology used results 
in extreme flexibility; 
good for one-off 
HPC tasks, for which 
persistent resources  
are not necessary

Privacy concerns; 
less control over 
processes; bandwidth 
is limited as large data 
sets need to be moved 
to the cloud before 
processing

•		Searching sequence databases
•	Aligning raw sequencing reads  

to genomes
•	General purpose genomics tools (for 

example, GeneSifter from Geospiza)
•	Most applications running on a cluster 

can be transferred to a cloud

Grid computing A combination of loosely coupled 
networked computers from 
different administrative centres 
that work together on common 
computational tasks. Typified 
by volunteer computing efforts 
(such as Folding@Home), which 
‘scavenge’ spare computational 
cycles from volunteers’ computers

Ability to enlist 
large-scale 
computational 
resources at low or 
no cost (large-scale 
volunteer-based efforts)

Big data transfers are 
difficult or impossible; 
minimal control over 
underlying hardware, 
including availability

•	Protein folding (Folding@Home)
•	Proteome analysis
•	Protein prediction (Rosetta@Home)
•	Predicting interactions between  

small molecules and proteins 
(FightAIDS@Home)

•	Condor project

Heterogeneous 
computing

Computers that integrate 
specialized accelerators — for 
example, GPUs or reconfigurable 
logic (FPGAs) — alongside GPPs

Cluster-scale computing 
for a fraction of the cost 
of a cluster; optimized 
for computationally 
intensive fine-grained 
parallelism; local control 
of data and processes 

Significant expertise 
and programmer 
time required 
to implement 
applications; not 
generally available 
in cluster- and 
cloud-based services

•	Bayesian network learning
•	Protein folding (Folding@Home)
•	Molecular dynamics simulation (NAMD)
•	BLAST
•	CLUSTALW
•	HMMER
•	Reconstruction of evolutionary trees

The above categories are not exclusive. For example, heterogeneous computers are often used as the building blocks of cluster, grid or cloud computing systems; the 
shared computational clusters available in many organizations could be described as private Platform as a Service (PaaS) clouds. The main differences between 
the platforms are degree of coupling and tenancy — grid and cloud computers are designed for loosely coupled parallel workloads, with the grid resources allocated 
exclusively for a single user, whereas the underlying hardware resources in the cloud are typically shared among many users (multi-tenancy). Cluster computers are 
typically used for tightly coupled workloads and are often allocated to a single user. FPGA, field-programmable gate array; GPP, general purpose processor;  
GPU, graphics processing unit; GWA, genome-wide association; HPC, high-performance computing; NIST, National Institute of Standards and Technology.
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Figure 2 | cluster, cloud, grid and heterogeneous computing hardware and software stacks. The hardware and 
software stacks comprise the different layers of a computational environment. At the lowest level of the stack is the 
physical structure that houses the hardware, with networking infrastructure coming next, and then the physical 
computers or servers. Sitting on top of the physical hardware is the virtualization layer, and the operating system lies 
on top of that. Finally, there are the software infrastructure and application layers. The different types of computing 
can be differentiated by which of these layers are under the user’s direct control (solid line) and which levels  
are provided by others, for example, the cloud provider and grid volunteer (dashed lines). Cloud and grid services are 
best suited for applications with loosely coupled, or coarse-grained, parallelism. Heterogeneous systems include 
specialized hardware accelerators, such as graphics processing units (GPUs). These accelerators are optimized for 
massive tightly coupled, or fine-grained, parallelism. However, the software that runs on these accelerators differs 
from its general purpose processor (GPP) counterparts, and often must be specifically written for a particular 
accelerator. MPI, message passing interface.

Computational node
The unit of replication in a 
computer cluster. Typically  
it consists of a complete 
computer comprising one or 
more processors, dynamic 
random access memory 
(DRAM) and one or more  
hard disks.

Central processing unit
(CPU). A term often used 
interchangeably with  
the term ‘processor’, the CPU 
is the component in the 
computer system that executes 
the instructions in the program. 

Virtualization
Refers to software that 
abstracts the details of  
the underlying physical 
computational architecture 
and allows a virtual machine  
to be instantiated.

Operating system
Software that manages the 
different applications that  
can access a computer’s 
hardware, as well as the  
ways in which a user can 
manipulate the hardware.

Health Insurance and 
Portability and 
Accountability Act
(HIPAA.) United States 
legislation that regulates, 
among many things, the secure 
handling of health information.

Distributed file system, 
distributed query language 
and distributed database
A file system, query language 
or database that allows access 
to files, queries and databases, 
respectively, from many 
different hosts that are 
networked together and that 
enable sharing via the network. 
In this way, many different 
processes (or users) running on 
many different computers can 
share data, share database 
and storage resources and 
execute queries in a large grid 
of computers.

Furthermore, there are privacy concerns relating to 
the hosting of data sets on publicly accessible servers, 
as well as issues related to storage of data from human 
studies (for example, those posting human data must 
ensure compliance with the Health Insurance Portability 
and Accountability Act (HIPAA)).

MapReduce. Several years ago, a distributed computing 
paradigm known as MapReduce emerged to simplify the 
development of massively parallel computing applica-
tions and provide better scalability and fault tolerance for 
computing procedures involving many (>100) simulta-
neous processes19. In the context of distributed comput-
ing, MapReduce refers to the splitting of a problem into 
many homogeneous sub-problems in a ‘map’ step, fol-
lowed by a ‘reduce’ step that combines the output of the 
smaller problems into the whole desired output. Whereas 
the Google implementation of distributed MapReduce 
remains proprietary, an open-source implementation 
of the concept is widely available through the Hadoop 
project19. In addition to meeting the required computa-
tional demand, this project addresses several of the data 
access and management challenges, as it provides for use-
ful abstractions such as distributed file systems, distributed  
query language and distributed databases. An example of 
a problem that can be solved using MapReduce is that 
of aligning raw sequence reads that have been generated 

from a whole-genome sequencing run against those of a 
reference genome. The homogeneous sub-problems in 
this case (the map step) consist of aligning individual 
reads against the reference genome. once all reads are 
aligned, the reduce step consists of aggregating all of 
the aligned reads into a single alignment file. In a later 
section, we cover in detail how you could implement 
this problem using the Amazon Web Services’ Elastic 
MapReduce resource.

Combining MapReduce and cloud computing. The com-
bination of distributed MapReduce and cloud computing 
can be an effective answer for providing petabyte-scale 
computing to a wider set of practitioners. Several recent 
papers have demonstrated the feasibility of this concept 
by implementing MapReduce workflows on cloud-based 
resources for searching sequence databases20 and align-
ing raw sequencing reads to reference genomes21,22. The 
work by Langmead21 advances this trend one step fur-
ther by converting a traditional two-stage workflow —  
sequence alignment followed by consensus calling  
— into a single application of a MapReduce workflow. 
The resultant pipeline scales well with additional com-
putational resources: a whole-genome SNP analysis 
that started with 38× sequencing coverage of the human 
genome was completed in less than 3 hours using a  
320-CPU cluster.
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 Box 2 | Should I run my analysis in the cloud?

With the rise of remote, or cloud, computational resources, the ‘where’ has become  
as important a question for scientific computing as the ‘how’. At the terabyte, or  
even gigabyte, scale it is often more efficient to bring the computation to the data.

As a rule of thumb, 100,000 central processing unit (CPU) cycles are required to 
amortize the cost of transferring a single byte of data to a remote computational 
resource via the internet (equivalent to roughly 1 second per megabyte on current 
high-end laptops)38. For example, constructing a Bayesian network using 
state-of-the-art algorithms can require in the order of 1018 computational cycles  
on current high-end general purpose processors (GPPs). Given such computational 
demands on problems that may involve no more than hundreds of megabytes of 
data3,10,39, it is cost effective to pipe such data through the internet to high-end 
computational environments to carry out such an operation.

However, if summarizing the distribution of allele frequencies in a population of 
50,000 individuals genotyped at 1,000,000 SNPs (about one trillion bytes, or a 
terabyte, of data), only 1012 computational cycles are required, orders of magnitude 
less than the 1017 computational cycles that one would need to run to break even in 
piping a terabyte of data over the internet.

Even so, remote systems can offer compelling ease of use and significant cost 
efficiencies, and in many cases large shared data sets are already being hosted in the 
cloud. Again, understanding how best to spend one’s resources is key. The online 
presentation associated with this paper (‘Computational solutions to large-scale 
data management’) provides a decision tree that can be used to help users decide on 
the most appropriate platform for their problem.

Core
Typically used in the context  
of multi-core processors,  
which integrate multiple  
cores into a single processor.

Graphics processing unit
(GPU.) A specialized processor 
that is designed to accelerate 
real-time graphics. Previously 
narrowly tailored for that 
application, these chips have 
evolved so that they can now be 
used for many forms of general 
purpose computing. GPUs can 
offer tenfold higher throughput 
than traditional general 
purpose processors (GPPs).

Field-programmable gated 
array
(fPGA). Digital logic that can  
be reconfigured for different 
tasks. It is typically used for 
prototyping custom digital 
integrated circuits during the 
design process. Modern fPGAs 
include many embedded 
memory blocks and digital 
signal-processing units, making 
them suitable for some general 
purpose computing tasks.

Floating point operations
(fLOPS). The count of floating 
point arithmetic operations 
(an approximation of 
operations on real numbers)  
in an application.

The MapReduce model is often a straightforward 
fit for data-parallel approaches in which a single task, 
such as read alignment, is split into smaller identi-
cal sub-tasks that operate on an independent subset 
of the data. Many large-scale analyses in biology fit 
into this ‘embarrassingly parallel’ decomposition (for 
example, sequence searches, image recognition, read 
alignments and protein ID by mass spectrometry). The 
use of distributed file systems (implicit in distributed 
MapReduce) becomes a necessity when operating on 
data sets of a terabyte scale or larger.

one of the bigger advantages of combining 
MapReduce and cloud computing is the reuse of 
a growing community of developers and software 
tools, and with just a few mouse clicks you can set up 
a MapReduce cluster with many nodes. For example, 
the Amazon EC2 cloud-computing environment pro-
vides a specific service for streamlining the set-up and 
running of Hadoop-based workflows (see the Amazon 
Machine Images website). The ease with which these 
workflows can be established has no doubt fuelled 
the movement of companies such as Eli Lilly to carry 
out their bioinformatics analyses on Amazon’s EC2  
cloud-computing environment23.

As a measure of how ready this platform is for 
widespread use, Hadoop is now being taught to under-
graduate students across the United States24. A new 
generation of computer users is therefore being trained 
to view the internet, rather than a laptop computer, as 
its computing device.

However, not all large-scale computations are best 
treated with a simple MapReduce approach. For exam-
ple, algorithms with complex data access patterns, such 
as those for reconstructing probabilistic gene networks, 
require special treatment. Distributed MapReduce 
should be viewed as an emerging successful model for 

petabyte-scale computing, but not necessarily the only 
model to consider when mapping a particular problem 
to larger-scale computing.

Future developments and applications. Several emerg-
ing trends in cloud computing will influence petabyte-
scale computing for biology. The analysis of large 
biological data sets retrieved from standard gateways, 
such as Ensembl, GenBank, Protein Data Bank (PDB), 
Gene Expression omnibus (GEo), UniGene and the 
database of Genotypes and Phenotypes (dbGAP), can 
incur high network traffic and, consequently, generate  
redundant copies of the data that are distributed 
around the world. By placing these types of data sets 
into cloud-based storage and attaching them to cloud-
based analysis clusters, biological analyses can be 
brought to the data without creating redundant cop-
ies and with a greatly reduced transfer start-up time25. 
The use of cloud resources in this context is also being 
seen as an ideal solution for data storage from biomedi-
cal consortia efforts that require the consolidation of 
large data sets from multiple distributed sites around 
the globe26,27.

Standardization and easy access to petabyte-scale 
computing will soon enable an ecosystem of reusable sci-
entific tools and workflows. one would simply transfer  
or point to their large data set, select their favourite  
workflow of choice and receive results back in the 
form of files in cloud-based storage. The foundations 
for this model of reusable petabyte-scale workflows 
can be seen in the success of virtual appliance market-
places such as those hosted by Amazon, 3Tera, vMware  
and Microsoft.

Heterogeneous computational environments
A complementary system to cloud-based computing 
is the use of heterogeneous multiple core (one-CPU) 
computers — integrated specialized accelerators that 
increase peak arithmetic throughput by 10-fold to 
100-fold and can turn individual computers, the work-
horses of both desktop and cluster computers, into  
mini-supercomputers28.

The accelerators consist of graphics processing units 
(GPUs) that operate alongside the multi-core GPPs that 
are commonly found in desktop and laptop comput-
ers. Similar to cloud computing, heterogeneous systems 
are helping to expand access to HPC capabilities over a 
broad range of applications. Modern GPUs were driven 
by the videogame industry to deliver ever more real-
istic, real-time gaming environments to consumers. 
Although the working scientist is more likely to encoun-
ter GPUs, some vendors sell field-programmable gate array 
(FPGA)-based accelerators for genomic applications 
(for example, the CLC Bioinformatics Cube). Given 
that every modern computer includes a GPU, many of 
which are usable for general purpose computing, GPUs 
can be purchased for between US$100 and US$1,500. 
GPUs from NvIDIA and AMD/ATI offer ‘cluster-
scale’ performance (more than one trillion floating  
point operations (FLoPS) per second) in an add-on card 
that costs only several hundred dollars.
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General purpose heterogeneous computing has 
become feasible only in the past few years, but it  
has already yielded notable successes for biological 
data processing. The Folding@Home project uses a 
distributed client for protein folding simulation, with 
clients available for GPUs. Although GPUs constitute 
only 5% of the processors that are actively engaged in 
this project, they contribute 60% of the total FLoPS29,30. 
The GPU port of NAMD, a widely used program for 
molecular dynamics simulation, running on a 4-GPU 
cluster outperforms a cluster with 16 quad-core GPPs 
(48 cores). A GPU version of the sequence alignment 
program MUMmer was developed and achieved a 
roughly three- to fourfold speed increase over the serial-
CPU version31. Several important algorithms have been 
developed for the GPU for annotating genomes, identi-
fying SNPs and identifying RNA isoforms. They include 
CUDASW++, a GPU version of the Smith–Waterman 
sequence database search algorithm32, and Infernal, a 
novel RNA alignment tool33. Finally, in our own work 
in Bayesian network learning, the GPU implementa-
tion is 5 to 7.5 times faster than the heavily optimized  
GPP implementation34.

In addition to these types of applications, pro-
grammers are writing GPU-accelerated plug-ins for 
commonly used functions in high-level program-
ming frameworks such as R and Matlab. Furthermore, 
GPU-optimized libraries of software functions are also 
being developed, including cuBLAS for basic linear 
algebra operations, cuFFT for carrying out fast Fourier  
transforms and Thrust for large vector operations.

Advantages of heterogeneous computing. With speed 
increases of fivefold to tenfold, a laptop can be used 
in place of a dedicated workstation, a workstation in 
place of a small cluster, or a small cluster in place of 
a larger cluster. The improved performance results 
in significant cost savings to the researcher. Data can 
be stored and analysed locally without requiring any 

specialized infrastructure, such as heavy-duty cooling, 
high-amperage power or professional system admin-
istration. In this respect, heterogeneous systems com-
plement cloud computing by radically changing the 
cost–capability trade-offs.

Because GPUs were primarily designed for real-time 
graphics and gaming, they are optimal for solving prob-
lems involving tightly coupled (or fine-grained) paral-
lelism (TABLe 1). However, for such an application to 
benefit from a GPU, it must require sufficient computa-
tion to amortize the cost of transferring data between 
the GPP and the accelerator (the local analogue of com-
puting on a local machine versus transferring data to 
the cloud to carry out computations on the data). For 
example, in constructing Bayesian networks with fewer 
than 25 nodes, the overhead is too great, in relation to 
the amount of work done by the GPU, to achieve an 
advantage over a GPP. By contrast, for networks with 
more than 25 nodes, the GPUs provide a substantial 
advantage. This highlights an important point: ideally, 
applications such as Bayesian network reconstructions 
would be implemented to run on several different com-
puter architectures, as the characteristics for any given 
problem define the architecture that is best suited to 
solve that particular instance. Although not all appli-
cations can take advantage of heterogeneous systems, 
when they can they will benefit from an efficient alter-
native to assembling similar capabilities from clusters 
of general purpose computers.

Disadvantages of heterogeneous computing. one of the 
primary challenges in leveraging heterogeneous com-
putational environments for scientific computing is that 
most applications of interest to geneticists and others in 
the life sciences have not been ported to these environ-
ments. Significant informatics expertise is required to 
develop or modify applications to run effectively on 
GPUs or FPGAs. Heterogeneous systems improve per-
formance and efficiency by exposing to programmers 
certain architectural features, such as vector arith-
metic units, that are unavailable in GPPs. Not only is 
the code that executes on these accelerators different  
from its GPP counterpart, but often entirely differ-
ent algorithms are needed to take advantage of the  
unique capabilities of the specialized accelerators. As a 
result, developing applications for these architectures is 
more challenging than for traditional GPPs.

The implementation of algorithms to be run in a 
general purpose GPU environment is carried out using 
specialized programming languages, such as CUDA 
programming (a proprietary programming model for 
NvIDIA GPUs)35. To implement an algorithm using 
CUDA, the programmer must write sequential code 
for a single ‘thread’ that processes a small subset of the 
total data set. Then, when the associated program is 
run on a data set of interest, large numbers of these 
individual processes are created in a grid to process the 
entire data set. The GPU operates in a separate mem-
ory space from the GPP, and often uses its own, much 
faster graphics memory. However, as noted above, 
the disadvantage here is that, before launching the 

Table 2 | Examples of cloud and heterogeneous computational environments

environment URL

Cloud computing

Amazon Elastic Compute 
Cloud

http://aws.amazon.com/ec2

Bionimbus http://www.bionimbus.org

NSF CluE http://www.nsf.gov/cise/clue/index.jsp

Rackspace http://www.rackspacecloud.com

Science Clouds http://www.scienceclouds.org

Heterogeneous computing

NVIDIA GPUs http://www.nvidia.com

AMD/ATI GPUs http://www.amd.com

Heterogeneous cloud computing

SGI Cyclone Cloud http://www.sgi.com/products/hpc_cloud/cyclone

Penguin Computing  
On Demand

http://www.penguincomputing.com/POD/Summary

GPU, graphics processing unit; NSF, US National Science Foundation.
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Figure 3 | Amazon Web services. Amazon Web Services provides a simple and intuitive web-based interface into the 
Amazon S3 storage services and Amazon EC2 cloud resources. a | The management console available in Amazon Web 
Services provides a convenient interface into Amazon’s cloud-based services, including direct access to Amazon S3 and 
Amazon EC2 for data storage and large-scale computing, respectively. b |  Steps for using the management console to 
compute big data using Amazon’s Elastic MapReduce resource (see main text for details).

Single-molecule, real-time 
sequencing
(SMRT sequencing). Pacific 
Biosciences’ proprietary 
sequencing platform in  
which DNA polymerization  
is monitored in real time  
using zero-mode waveguide 
technology. SMRT sequencing 
produces much longer  
reads than do current 
second-generation 
technologies (averaging  
1,000 bp or more versus 
150–400 bp). It also produces 
kinetic information that  
can be used to detect base 
modifications such as 
methyl-cytosine.

program, the programmer must explicitly copy to the 
GPU the necessary data, and then copy back the results  
after completion.

A tutorial for computing in the clouds
The number of cloud service providers, big data centres 
and third-party vendors aiming to facilitate your entry 
into cloud computing is growing quickly. The options 
for transferring data to a cloud and begin computing 
on it can be overwhelming (TABLe 2). However, service 
providers have now found simpler means of allow-
ing users to access the cloud. An example of a simpler 
approach to cloud computing is the Amazon Web 
Services Management Console (fIG. 3). The manage-
ment console — which can be accessed from any web 
browser — provides a simple and intuitive interface for 
several uses: moving data and applications into and out 
of the Amazon S3 storage system; creating instances in 
Amazon EC2; and running data-processing programs 
on those instances, including the analysis of big data 
sets using MapReduce-based algorithms.

The best way to understand how to begin process-
ing data in the cloud is to run through an example: 

aligning raw sequencing reads to a reference genome. 
This application is on the rise owing to the drop in 
whole-genome sequencing costs and the develop-
ment of third-generation sequencing technologies, 
such as the Pacific Biosciences single-molecule, real-time 
sequencing (SMRT sequencing) approach1,8. one of the 
first processing steps to be carried out on raw sequenc-
ing reads is to align the reads to a reference genome  
to derive a consensus sequence that can then be used to  
identify novel mutations, structural variations or other 
interesting genomic features.

As discussed above, this application fits well into 
the MapReduce framework21. The input data are the 
raw reads from the sequencing run and a reference 
genome to which to map the reads. Because the reads 
are mapped independently to the reference genome, 
the input reads can be partitioned into sets that are 
then distributed over multiple processors or cores (the 
map part of MapReduce) to carry out the alignments 
more rapidly than could be done on a single processor. 
The alignment files generated in this way can then be 
aggregated into a single alignment file after all reads 
are mapped (the reduce part of MapReduce). The lower 

R E V I E W S

NATURE REvIEWS | Genetics  voLUME 11 | SEPTEMBER 2010 | 655

© 20  Macmillan Publishers Limited. All rights reserved10

http://aws.amazon.com/console/
http://aws.amazon.com/console/


Bucket
fundamental storage unit 
provided to Amazon S3 users 
to store files. Buckets are 
containers for your files that 
are similar conceptually to a 
root folder on your personal 
hard drive, but in this case  
the file storage is hosted on 
Amazon S3.

Exabyte
Refers to 1018 bytes. for 
context, CISCO estimates that 
the monthly global internet 
traffic in the spring of 2010 
was 21 exabytes.

panel of fIG. 3 details the steps needed to carry out this 
type of process using the Amazon Elastic MapReduce 
(EMR) resource. These steps are done in a user-guided 
manner using the management console to create a job 
flow consisting of three simple steps: uploading your 
input data and applications to Amazon S3; configuring 
the job flow and submitting it; and retrieving results 
from S3.

Getting started: uploading input data and applica-
tions. In our example, the first step consists of assem-
bling the input files and applications to carry out the 
alignment procedure and uploading these files into 
your own personal ‘bucket’ on Amazon S3. Using the 
management console, you simply select an option 
to create buckets for the input files, for the applica-
tions and scripts used to process the data and for the 
output results (fIG. 3). In the alignment problem for 
SMRT reads, the input data are the raw reads from 
the SMRT sequencer and a reference genome of inter-
est (in FASTA format). For MapReduce, the raw reads 
need to be split into, say, hundreds of raw reads files so 
that they can be distributed by the Elastic MapReduce 
resource over many different cores on Amazon EC2. 
The long-read aligner application (ReadMatcher) and 
documentation for this tool can be downloaded from 
the Pacific Biosciences Developers Network website. 
With all files assembled, the management console can 
be used to upload the files onto Amazon S3.

Defining the job flow. The next step is defining the 
job flow via the management console, which again is a 
user-guided series of steps that are initiated by click-
ing a ‘create workflow’ button in the management con-
sole. In configuring the workflow the user specifies 
which buckets contain the input files, the applications  
and the output location, and then specifies the size and 
number of instances on Amazon EC2 to allocate for 
the job flow, which will define the amount of memory 
and number of cores to make available for computing 
the alignments. In the map portion of MapReduce, a 
wrapper script calls the ReadMatcher application with 
each of the segmented raw read files. Because each seg-
mented file contains different information, multiple 
instances of ReadMatcher can operate on each file 
independently on each Amazon EC2 instance. In the 
reduce component of MapReduce, another script takes 
all of the independent alignment results and com-
bines — or reduces — them into a single alignment 
file. The mapper and reducer scripts are the only pro-
gramming steps that need to be taken for this exam-
ple. The scripting for this example is straightforward 
and involves substantially less development time than 
would traditional multi-process or multi-threading 
programming.

Running the job flow. After the job flow is configured 
it can be launched, again by submitting the job flow via 
the management console. Several tools are provided  
in the management console that can be used to monitor 
the progress of the run. The final step is retrieving the  

alignment results from Amazon S3. The results can be 
downloaded to your local system or can remain on S3 
for shared use or for additional processing. For exam-
ple, the alignment results in this example can be fed into 
another application, EviCons (available at the Pacific 
Biosciences Development Network), to derive a con-
sensus sequence from the alignments, which can then 
be used to identify SNPs and other types of variation  
of interest.

Perspectives
The problems with data storage and analysis will con-
tinue to grow at a superexponential pace, with the 
complexity of the data only increasing as we are able 
to isolate and sequence individual cells, monitor the 
dynamics of single molecules in real time and lower 
the cost of the technologies that generate all of these 
data, such that hundreds of millions of individuals can 
be profiled. Sequencing DNA, RNA, the epigenome, 
the metabolome and the proteome from numerous 
cells in millions of individuals, and sequencing envi-
ronmentally collected samples routinely from thou-
sands of locations a day, will take us into the exabyte 
scales of data in the next 5–10 years. Integrating these 
data will demand unprecedented high-performance 
computational environments. Big genome centres, 
such as the Beijing Genomics Institute (BGI), are 
already constructing their own cloud-based com-
putational environments with exabyte-scale data-
storage capabilities and hundreds of thousands  
of cores.

Choosing the optimal computer architecture for 
storing, organizing and analysing big data sets requires 
an understanding of the problems one wishes to solve 
and the advantages of each of the architectures or 
mixture of architectures for efficiently solving such 
problems. The optimal solution may not always be 
obvious or may require a mixture of advanced com-
putational environments. We anticipate the creation 
of more versatile cloud-based services that make 
use of computer architectures that are not limited to 
map-reducible problems, as well as low-cost, high-
performance heterogeneous computational solutions 
that can serve as an adequate local solution for many  
laboratories.

Ultimately, our ability to consider very large-scale, 
diverse types of data collected on whole populations 
for the construction of predictive disease models will 
demand an open, data-sharing environment — not 
only from the perspective of industry but from aca-
demic communities as well, in which there are strong 
incentives to restrict data distribution to maintain 
competitive advantages. This will require the devel-
opment of tools and software platforms that enable the 
integration of large-scale, diverse data into complex 
models that can then be operated on and refined by 
experimental researchers in an iterative fashion. This 
is perhaps the most crucial milestone we must achieve 
in the biomedical and life sciences if large-scale data 
and the results derived from them are to routinely 
affect biological research at all levels.
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FURTHER INFORMATION
1000 Genomes Project: http://www.1000genomes.org
3Tera Application Store: http://appstore.3tera.com
Amazon Machine Images: http://developer.
amazonwebservices.com/connect/kbcategory.
jspa?categoryID=171
Amazon Web Services Management Console (MC):  
http://aws.amazon.com/console
CLC Bioinformatics Cube: http://www.clccube.com
Collaboration between the National Science Foundation 
and Microsoft Research for access to cloud computing: 
http://www.microsoft.com/presspass/press/2010/feb10/02-
04nsfpr.mspx
Condor Project: http://www.cs.wisc.edu/condor
Database of Genotypes and Phenotypes (dbGAP):  
http://www.ncbi.nlm.nih.gov/gap
Ensembl: http://www.ensembl.org/index.html
GenBank: http://www.ncbi.nlm.nih.gov/genbank
Gene Expression Omnibus (GEO):  
http://www.ncbi.nlm.nih.gov/geo
Nature Reviews Genetics audio slide show on 
‘Computational solutions to large-scale data management’: 
http://www.nature.com/nrg/multimedia/compsolutions/
index.html
NIST Technical Report:  
http://csrc.nist.gov/groups/SNS/cloud-computing
NVIDIA Bio WorkBench:  
http://www.nvidia.com/object/tesla_bio_workbench.html
Pacific Biosciences Developers Network:  
http://www.pacbiodevnet.com
Protein Data Bank (PDB): http://www.pdb.org
Public data sets available through Amazon Web Services: 
http://aws.amazon.com/publicdatasets
UniGene: http://www.ncbi.nlm.nih.gov/unigene
VMware Virtual Applicances:  
http://www.vmware.com/appliances
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