Dissertation Defense - Kalpana Dommaraju, PhD Bioinformatics and Computational Biology
April 23, 2021 2:00 - 4:00 PM
VIEW EVENT
All are invited to attend the defense. For more information please contact Graduate Coordinator at kharrism@gmu.edu

Candidate: Kalpana Dommaraju

Program: PhD, Bioinformatics and Computational Biology

Date: Friday, April 23, 2021

Time: 2:00 PM

Place: Zoom Meeting Link: https://zoom.us/j/92134273132?pwd=bEhBSEswbUhLVEZnblFHBk1oeDQYdz09

Title: Computational Identification of Viral/Bacterial Epitopes for Type and Strain Characterization, Leading to the Development of Vaccines Against Human Adenovirus, HIV, and Staphylococcus aureus

Committee Chair: Dr. Donald Seto

Committee Members: Dr. Patrick Gillevet, Dr. Iosif Vaisman

ABSTRACT:
Identifying, characterizing, and typing human viral pathogens are the first steps for managing a potential outbreak. Human adenoviruses are one of the first viral pathogens to be isolated and studied, causing respiratory, ocular, and gastrointestinal infections. As a pathway to novel and emergent pathogens, novel forms result from genome recombination, identified through using the major capsid proteins (penton base, hexon and fiber) as markers. A bioinformatics tool is developed to accurately identify and characterize the genotypes based on BLAST results, phylogenetic trees, and sequence identity with the pre-existing epitopes. This tool enables quick and accurate detection of novel strains. Extending the paradigm to a bacterial human pathogen, a similar tool was developed. Staphylococcus aureus is the leading cause of skin and soft tissue infections with high mortality rate worldwide. Strain identification is critical for understanding the epidemiology of the pathogen. The highly variable unique repeat pattern of spa gene provides a sensitive method for distinguishing S. aureus isolates. Spatyper, A bioinformatics pipeline is developed to characterize the strains and identify novel types.